首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the main serotonergic (5HT) projections to the forebrain, the dorsal raphe nucleus (DRN) has been implicated in disorders of anxiety and depression. Although the nucleus contains the densest population of 5HT neurons in the brain, at least 50% of cells within this structure are non-serotonergic, including a large population of nitric oxide synthase (NOS) containing neurons. The DRN has a unique topographical efferent organization and can also be divided into sub-regions based on rostro-caudal and medio-lateral dimensions. NOS is co-localized with 5HT in the midline DRN but NOS-positive cells in the lateral wing (LW) of the nucleus do not express 5HT. Interestingly, the NOS LW neuronal population is immediately rostral to and in line with the cholinergic lateral dorsal tegmental nucleus (LDT). We used immunohistochemical methods to investigate the potential serotonergic regulation of NOS LW neurons and also the association of this cell grouping to the LDT. Our results indicate that >75% of NOS LW neurons express the inhibitory 5HT1A receptor and are cholinergic (>90%). The findings suggest this assembly of cells is a rostral extension of the LDT, one that it is subject to regulation by 5HT release. As such the present study suggests a link between 5HT signaling, activation of cholinergic/NOS neurons, and the stress response including the pathophysiology underlying anxiety and depression.  相似文献   

2.
The dorsal raphe nucleus (DRN)–serotonin (5-HT) system has been implicated in acute responses to stress and stress-related psychiatric disorders such as anxiety and depression. Stress alters serotonin (5-HT) release in a regionally specific manner. For example, swim stress increases extracellular levels of 5-HT in the striatum and decreases levels in the lateral septum. This finding suggests that the 5-HT efferents to the striatum and lateral septum arise from distinct populations of DRN neurons that are differentially affected by swim stress. To further examine this, retrograde axonal transport of fluorescent RetroBeads™ was used to identify the distribution of DRN neurons projecting to the lateral septum and striatum in the rat brain. Retrograde labeling from the lateral septum was observed primarily within the more caudal portions of the DRN, while labeling from the striatum was observed in neurons located in the more rostral regions of the DRN. Few cell bodies were observed that were labeled from both the striatum and lateral septum suggesting that DRN neurons do not send collateralized projections to the septal region and striatum. Many septal- and striatal-projecting neurons in the DRN exhibited 5-HT, and collateralized projections, when observed, were immunoreactive for 5-HT. Taken together with previous microdialysis studies, these results support the existence of distinct DRN–5-HT-forebrain projections that are differentially regulated by stress.  相似文献   

3.
本研究探讨高频电刺激丘脑底核对大鼠背侧中缝核5-羟色胺(5-HT)表达的影响。实验动物分两组,刺激组给予高频电流(130Hz,100μA,60μs)刺激大鼠右侧丘脑底核,对照组大鼠右侧丘脑底核植入电极,但无电流输出。刺激结束后,用免疫组织化学方法染色背侧中缝核5-HT能神经元,检测背侧中缝核5-HT能神经元的数量和平均灰度值。结果显示电刺激组背侧中缝核5-HT阳性神经元数目与对照组比明显减少(t(13)=3.786,P=0.002),并且神经递质5-HT表达量减少,平均灰度值显著增高(t(13)=7.917,P<0.001)。本实验结果表明高频电刺激丘脑底核对背侧中缝核5-HT能神经元有抑制作用,在应用高频电刺激丘脑底核治疗Parkison病运动障碍时出现的情绪障碍可能与其有关。  相似文献   

4.
It is well known that the dorsal raphe nucleus (DRN) sends serotonergic and nonserotonergic projections to target regions in the brain stem and forebrain, including the vestibular nuclei. Although retrograde tracing studies have reported consistently that there are differences in the relative innervation of different target regions by serotonergic and nonserotonergic DRN neurons, the relative termination patterns of these two projections have not been compared using anterograde tracing methods. The object of the present investigation was to trace anterogradely the individual serotonergic and nonserotonergic components of the projection from DRN to the vestibular nuclei in rats. To trace nonserotonergic DRN projections, animals were pretreated with the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), and then, after 7 days, the anterograde tracer biotinylated dextran amine (BDA) was iontophoretically injected into the DRN. In animals treated with 5,7-DHT, nonserotonergic BDA-labeled fibers were found to descend exclusively within the ventricular plexus and to terminate predominantly within the periventricular aspect of the vestibular nuclei. Serotonergic DRN projections were traced by injecting 5,7-DHT directly into DRN, and amino-cupric-silver staining was used to visualize the resulting pattern of terminal degeneration. Eighteen hours after microinjection of 5,7-DHT into the DRN, fine-caliber degenerating serotonergic terminals were found within the region of the medial vestibular nucleus (MVN) that borders the fourth ventricle, and a mixture of fine- and heavier-caliber degenerating serotonergic terminals was located further laterally within the vestibular nuclear complex. These findings indicate that fine-caliber projections from serotonergic and nonserotonergic DRN neurons primarily innervate the periventricular regions of MVN, whereas heavier-caliber projections from serotonergic DRN neurons innervate terminal fields located in more lateral regions of the vestibular nuclei. Thus, serotonergic and nonserotonergic DRN axons target distinct but partially overlapping terminal fields within the vestibular nuclear complex, raising the possibility that these two DRN projection systems are organized in a manner that permits regionally-specialized regulation of processing within the vestibular nuclei.  相似文献   

5.
The dorsal raphe nucleus (DRN) projects serotonergic axons throughout the brain and is involved in a variety of physiological functions. However, it also includes a large population of cells that contain other neurotransmitters. To clarify the physiological and pharmacological differences between the serotonergic and nonserotonergic neurons of the DRN, their postsynaptic responses to 5-hydroxytryptamine (5-HT, serotonin) and to selective activation of 5-HT1A or 5-HT2A/C receptors and their action potential characteristics were determined using in vitro patch-clamp recordings. The slices containing these neurons were then immunostained for tryptophan hydroxylase (TPH), a marker of serotonergic neurons. It was found that subpopulations of both serotonergic and nonserotonergic neurons responded to 5-HT with outward (i.e., inhibitory) and inward (i.e., excitatory) currents, responded to both 5-HT1A and 5-HT2A/C receptor activation with outward and inward currents, respectively, and displayed overlapping action potential characteristics. These findings suggest that serotonergic and nonserotonergic neurons in the DRN are both heterogeneous with respect to their individual pharmacological and electrophysiological characteristics. The findings also suggest that the activity of the different populations of DRN neurons will display heterogeneous changes when the serotonergic tone in the DRN is altered by neurological disorders or by drug treatment.  相似文献   

6.
In order to investigate the effects of monoaminergic neurons of the dorsal raphe nucleus (DRN) and locus coeruleus (LC) on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180–200 g received sucrose solution (250 g/L) for 7–14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of ibotenic acid (1.0 μg/0.2 μL) in the DRN or in the LC. The tail withdrawal latencies of the rats in the tail-flick test were measured immediately before and 7 days after this treatment. The neurochemical lesion of locus coeruleus, but not of DRN neural networks with ibotenic acid, after the chronic intake of sweetened solution, decreased the sweet-substance-induced antinociception. These results indicate the involvement of noradrenaline-containing neurons of the LC in the sucrose-induced antinociception. We also consider the possibility of DRN serotonergic neurons exerting some inhibitory effect on the LC neural networks involved with the elaboration of the sweet-substance-induced antinociception.  相似文献   

7.
Several studies have shown that the 5-hydroxytryptamine (serotonin, 5-HT) system is severely affected after degeneration of nigrostriatal dopaminergic neurons. In the present study, we examined the changes in the firing rate and firing pattern of the dorsal and median raphe nuclei (DRN and MRN) 5-HT neurons, and the effect of the selective 5-HT1A receptor agonist (R)-(+)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) and antagonist (N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-2-pyridylcyclohexane carboxamide maleate salt (WAY-100635) on the neuronal firing in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta by using extracellular recording. The unilateral lesion of the nigrostriatal pathway significantly increased the mean firing rate of DRN and MRN 5-HT neurons compared with normal rats, and the firing pattern of these neurons also changed significantly towards a more bursty one. The lower dose of 8-OH-DPAT, 4 μg/kg (cumulative doses, i.v.), completely inhibited the firing activity of all DRN and MRN 5-HT neurons examined in normal and sham rats. In contrast to normal and sham rats, only the higher doses of 8-OH-DPAT, 128 and 64 μg/kg, completely inhibited the firing rate of DRN and MRN 5-HT neurons in 6-OHDA-lesioned rats, respectively. Furthermore, the local application of 8-OH-DPAT, 1.5 μg, in the DRN completely inhibited the firing rate of 5-HT neurons in normal and sham rats, while having no effect on firing rate in the lesioned rats. Altogether, these results indicate that lesion of the nigrostriatal pathway leads to hyperactivity of DRN and MRN 5-HT neurons, suggesting the implication of the DRN and MRN in the pathophysiology of Parkinson's disease, and the decreased response of these 5-HT neurons to 5-HT1A receptor stimulation, reflecting 5-HT1A receptor dysfunction in 6-OHDA-lesioned rats.  相似文献   

8.
Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons.  相似文献   

9.
We previously reported that intracerebroventricular (icv) administration of corticotropin-releasing factor (CRF) antagonist attenuates the arousal response during yawning behavior in rats. However, the CRF-related pathway involved in the arousal response during yawning is still unclear. In the present study, we assessed the involvement of the CRF-containing pathway from the hypothalamic paraventricular nucleus (PVN) to the locus coeruleus (LC) and the dorsal raphe nucleus (DRN) in the arousal response during frequent spontaneous yawning, which was induced by several microinjections of l-glutamate into the PVN in anesthetized rats, using c-Fos immunohistochemistry. The PVN stimulation showed significant increases in activation of PVN CRF neurons, LC noradrenalin (NA) neurons and DRN serotonin (5-HT) neurons as well as arousal response during yawning. But icv administration of a CRF receptor antagonist, α-helical CRF (9-41), significantly inhibited the activation of both LC NA neurons and DRN 5-HT neurons except the activation of CRF neurons in the PVN, and significantly suppressed the arousal response during yawning. These results suggest that the CRF-containing pathway from PVN CRF neurons to LC NA neurons and DRN 5-HT neurons can be involved in the arousal response during yawning behavior.  相似文献   

10.
The serotonin (5HT) system of the brain is involved in many CNS functions including sensory perception, stress responses and psychological disorders such as anxiety and depression. Of the nine 5HT nuclei located in the mammalian brain, the dorsal raphe nucleus (DRN) has the most extensive forebrain connectivity and is implicated in the manifestation of stress-related psychological disturbances. Initial investigations of DRN efferent connections failed to acknowledge the rostrocaudal and mediolateral organization of the nucleus or its neurochemical heterogeneity. More recent studies have focused on the non-5HT contingent of DRN cells and have revealed an intrinsic intranuclear organization of the DRN which has specific implications for sensory signal processing and stress responses. Of particular interest are spatially segregated subsets of nitric oxide producing neurons that are activated by stressors and that have unique efferent projection fields. In this regard, both the midline and lateral wing subregions of the DRN have emerged as prominent loci for future investigation of nitric oxide function and modulation of sensory- and stressor-related signals in the DRN and coinciding terminal fields.  相似文献   

11.
Melanin-concentrating hormone (MCH)-containing neurons are localized in the lateral hypothalamus and incerto-hypothalamic areas, and project to several brain regions including the dorsal raphe nucleus (DRN). The MCHergic system has been involved in the regulation of emotional states and we have demonstrated that MCH microinjections into the rat DRN promote a depressive-like state. To understand the MCHergic transmission into the DRN, in the present study we characterized the distribution and density of the MCHergic fibers along the rostro-caudal axis of the rat DRN and their anatomical relationship with the 5-HT- and GABA-containing neurons. Additionally, a functional in vivo microdialysis study was carried out in order to evaluate the MCH effects on the 5-HT extracellular levels.Immunolabeling studies showed that MCHergic fibers were widely distributed throughout the rostro-caudal DRN extent and a reduced density at the most caudal level was observed. Interestingly, MCHergic fibers appeared in close apposition to 5-HT and GABA-containing neurons. Microdialysis studies evidenced an opposite effect of two concentrations of MCH on 5-HT levels: the lower concentration (30 μM) produced a significant and long-lasting (up to 120 min) decrease while the higher (100 μM) induced a slight and brief (20 min) increase.Morphological and functional results strongly suggest that both 5-HT- and GABA-containing neurons of the DRN are modulated by MCH. A different sensitivity of these neurons to MCH may explain the dose-response effect on 5-HT release. The decrease in extracellular 5-HT levels may account for the depressive-like effect induced by MCH reported in our previous studies.  相似文献   

12.
Some procedures for stimulating arousal in the usual daily rest period (e.g., gentle handling, novel wheel-induced running) can phase shift circadian rhythms in Syrian hamsters, while other arousal procedures are ineffective (inescapable stress, caffeine, modafinil). The dorsal and median raphe nuclei (DRN, MnR) have been implicated in clock resetting by arousal and, in rats and mice, exhibit strong regionally specific responses to inescapable stress and anxiogenic drugs. To examine a possible role for the midbrain raphe nuclei in the differential effects of arousal procedures on circadian rhythms, hamsters were aroused for 3 h in the mid-rest period by confinement to a novel running wheel, gentle handling (with minimal activity) or physical restraint (with intermittent, loud compressed air stimulation) and sacrificed immediately thereafter. Regional expression of c-fos and tryptophan hydroxylase (TrpOH) were quantified immunocytochemically in the DRN, MnR and locus coeruleus (LC). Neither gentle handling nor wheel running had a large impact on c-fos expression in these areas, although the manipulations were associated with a small increase in c-Fos in TrpOH-like and TrpOH-negative cells, respectively, in the caudal interfascicular DRN region. By contrast, restraint stress significantly increased c-Fos in both TrpOH-like and TrpOH-negative cells in the rostral DRN and LC. c-Fos-positive cells in the DRN did not express tyrosine hydroxylase. These results reveal regionally specific monoaminergic correlates of arousal-induced circadian clock resetting, and suggest a hypothesis that strong activation of some DRN and LC neurons by inescapable stress may oppose clock resetting in response to arousal during the daily sleep period. More generally, these results complement evidence from other rodent species for functional topographic organization of the DRN.  相似文献   

13.
目的 观察乙醇处理大鼠脑内色氨酸羟化酶(TPH)、5-羟色胺(5-HT)和5-羟色胺转运体(SERT)的表达改变,判断乙醇对脑内5-HT能神经体系的影响.方法 以20%乙醇代替饮水饲养30只Wistar大鼠6个月;利用免疫组织化学、免疫印迹及流式细胞术等方法,分析乙醇处理大鼠有关脑区5-HT能神经体系相关指标的改变.结果 1.免疫组织化学法可见,乙醇处理组大鼠脑内中缝背核TPH、5-HT免疫反应阳性神经元数量少于对照组(P<0.01);TPH免疫阳性神经元直径小于对照组(P<0.01);相关脑区TPH、5-HT和SERT免疫反应灰度值比对照组增高(P<0.05).2.流式细胞术检测可见,乙醇处理组大鼠TPH、5-HT和SERT的表达量低于对照组(P<0.05).3.免疫印迹法检测可见,乙醇处理组大鼠SERT和TPH与β-actin相对吸光度比值均小于相应对照组(P<0.05).结论 乙醇降低脑内TPH、5-HT和SERT的表达,可能改变脑内5-HT能神经体系的功能活动.  相似文献   

14.
Dysfunctions of the brain 5-HT system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. Estrogen receptor (ER) beta agonists have been shown to attenuate anxiety- and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected s.c. with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors.  相似文献   

15.
The dorsal raphe nucleus (DRN) contains both serotonergic and nonserotonergic projection neurons. Retrograde tracing studies have demonstrated that components of the basal forebrain and extended amygdala are targeted heavily by input from nonserotonergic DRN neurons. The object of this investigation was to examine the terminal distribution of nonserotonergic DRN projections in the basal forebrain and extended amygdala, using a technique that allows selective anterograde tracing of nonserotonergic DRN projections. To trace nonserotonergic DRN projections, animals were pretreated with nomifensine, desipramine and the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), 7 days prior to placing an iontophoretic injection of biotinylated dextran amine (BDA) into the DRN. In animals treated with 5,7-DHT, numerous nonserotonergic BDA-labeled fibers ascended to the basal forebrain in the medial forebrain bundle system. Some of these labeled fibers crossed through the lateral hypothalamus, bed nucleus of the stria terminalis, and substantial innominata. These fibers entered the amygdala through the ansa peduncularis and ramified within the central and basolateral amygdaloid nuclei. Other fibers entered the diagonal band of Broca and formed a dense plexus of labeled fibers in the dorsal half of the intermediate portion of the lateral septal nucleus and the septohippocampal nucleus. These findings demonstrate that the basal forebrain and extended amygdala receive a dense projection from nonserotonergic DRN neurons. Given that the basal forebrain plays a critical role in processes such as motivation, affect, and behavioral control, these findings support the hypothesis that nonserotonergic DRN projections may exert substantial modulatory control over emotional and motivational functions.  相似文献   

16.
McDonald AJ  Mascagni F 《Neuroscience》2007,146(1):306-320
Although it is well established that there are alterations in type 2A 5-HT receptors (5-HT2ARs) in the basolateral nuclear complex of the amygdala (BLC) in several neuropsychiatric disorders, very little is known about the neuronal localization of these receptors in this brain region. Single-labeling and dual-labeling immunohistochemical techniques were utilized in the rat to address this question. Three different 5-HT2AR antibodies were used, each producing distinct but overlapping patterns of immunostaining. Two of three 5-HT2AR antibodies mainly stained pyramidal projection neurons in the BLC. The third antibody only stained pyramidal cells in the dorsolateral subdivision of the lateral amygdalar nucleus. With one of the antibodies, the most intensely stained neurons were a population of large nonpyramidal neurons whose morphology and distribution closely resembled those shown in previous studies to project to the mediodorsal thalamic nucleus (MD). This was confirmed in the present study using a technique that combined 5-HT2AR immunohistochemistry with fluorogold retrograde tract-tracing. Two of three 5-HT2AR antibodies stained large numbers of parvalbumin-containing interneurons in the BLC. One of these two antibodies also stained a subpopulation of somatostatin-containing neurons. None of the 5-HT2AR antibodies stained significant numbers of the other two main interneuronal subpopulations, the large cholecystokinin-positive neurons or the small interneurons that exhibit extensive colocalization of calretinin and cholecystokinin. Since each of the three antibodies was raised against a distinct immunizing antigen, they may recognize different conformations of 5-HT2AR in different neuronal domains. The expression of 5-HT2ARs in pyramidal cells and parvalbumin-positive interneurons in the BLC is consistent with the results of previous electrophysiological studies, and suggests that 5-HT may produce excitation of several neuronal populations in the BLC via 5-HT2ARs.  相似文献   

17.
McDonald AJ  Mascagni F 《Neuroscience》2001,105(3):681-693
The basolateral amygdala contains subpopulations of non-pyramidal neurons that express the calcium-binding proteins parvalbumin, calbindin-D28k (calbindin) or calretinin. Although little is known about the exact functions of these proteins, they have provided useful markers of specific neuronal subpopulations in studies of the neuronal circuitry of the cerebral cortex and other brain regions. The purpose of the present study was to investigate whether basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibit immunoreactivity for GABA, and to determine if calretinin is colocalized with parvalbumin or calbindin in the rat basolateral amygdala. Pyramidal neurons were distinguished from non-pyramidal neurons on the basis of staining intensity. Using immunofluorescence confocal laser scanning microscopy, as well as the 'mirror technique' on immunoperoxidase-stained sections, it was found that there was virtually no colocalization of calretinin with parvalbumin or calbindin, but that the great majority of basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibited GABA immunoreactivity. Calbindin-positive neurons constituted almost 60% of the GABA-containing population in both subdivisions of the basolateral nucleus and more than 40% of the GABA-containing population in the lateral nucleus. Parvalbumin-positive neurons constituted 19-43% of GABA-immunoreactive neurons in the basolateral amygdala, depending on the nucleus. Calretinin-positive non-pyramidal neurons constituted about 20% of the GABA-positive neuronal population in each nucleus of the basolateral amygdala.These findings indicate that non-pyramidal neurons containing parvalbumin, calbindin, or calretinin comprise the majority of GABA-containing neurons in the basolateral amygdala, and that the calretinin subpopulation is distinct from non-pyramidal subpopulations containing parvalbumin and calbindin. These separate neuronal populations may play unique roles in the inhibitory circuitry of the amygdala.  相似文献   

18.
目的:探索大鼠脑干内神经核团中缝背核(dorsal raphe nucleus,DRN)在吗啡依赖和戒断形成过程中的作用及其机制。方法:雄性成年SD大鼠、(260±20)g,随机分为戒断组,依赖组,生理盐水组,纳洛酮组和抑制剂组。建立吗啡依赖与戒断并进行行为学观测评分后取材相关部位,连续冠状冰冻切片,神经元型一氧化氮合酶(neuron nitric oxide synthase,nNOS)免疫组织化学标记。计数各组动物相同层面脑片和脊髓背角nNOS标记细胞的表达情况。结果:戒断组大鼠,戒断症状及总评分较对照组和依赖组大鼠差异显著(P<0.01);给NOS抑制剂组戒断症状评分较戒断组明显降低(P<0.05)。生理盐水组和纳洛酮组于中缝背核相应区域计数到部分nNOS标记神经元,但两但间无显著性差异(P<0.05);依赖组与戒断组大鼠nNOS标记神经元计数明显增加(P<0.05);而NOS抑制剂组大鼠nNOS标记神经元数量较戒断组明显减少(P<0.05)。脊髓背角切片显示,依赖组与戒断组大鼠nNOS标记神经元计数均较各对照组明显增加(P<0.05);而NOS抑制剂组大鼠nNOS标记神经元数量较戒断组减少显著(P<0.05),其变化与中缝背核结果一致。结论:脑内中缝背核可能参与通过一氧化氮(nitric oxide,NO)信号通路介导的脊髓对吗啡依赖和戒断形成的调节。  相似文献   

19.
Release of serotonin (5-HT) from dorsal raphe nucleus (DRN) neurons projecting to the ventromedial hypothalamus (VMH) has a modulatory effect on the neural pathway involved in feeding, hunger, and satiety. The obese Zucker rat, an animal model of genetic obesity, exhibits differences in serotonin signaling as well as a mutated leptin receptor. To evaluate possible mechanisms underlying this difference in serotonin signaling, we have compared electrophysiological responses of DRN neurons from 14- to 25-day-old male lean (Fa/Fa) and obese (fa/fa) Zucker rats using the whole-cell patch clamp technique on cells in brain slices from these animals. We found that the resting properties of these neurons are not different, but the DRN neurons from obese rats are hyperexcitable in response to current injection. This hyperexcitability is not accompanied by an increase in the depolarization caused by current injection or by changes in the threshold for spiking. However, the hyperexcitability is accompanied by reduction in the size and time course of the afterhyperpolarization (AHP) following an action potential. DRN neurons of obese rats recover from the AHP faster due to a smaller amplitude AHP and a faster time constant (tau) of decay of the AHP. These deficits are not due to changes in the spike waveform, as the spike amplitude and duration do not differ between lean and obese animals. In summary, we provide evidence that serotonergic DRN neurons from obese Zucker rats are intrinsically hyperexcitable compared with those from lean rats. These results suggest a potential mechanism for the reported increase in 5-HT release at the VMH of obese rats during feeding, and provide the first direct evidence of changes in the intrinsic activity of serotonergic neurons, which are crucial regulators of feeding behavior, in a genetic model of obesity.  相似文献   

20.
Previous studies have shown that: (1) raphe neurons respond to acoustic and vestibular stimuli, some with a latency of 10–15 ms; (2) alterations of the raphe nuclei alter the acoustic startle reflex; (3) the dorsal raphe nucleus (DRN) is the major source of serotonergic neurons; and (4) approximately 57% of the DRN neurons are nonserotonergic. In the present study, cholera toxin subunit-B (CTB) was injected into cat cochleas, and the brain tissue was examined after a survival period of 5–7 days. Aside from neurons which were known to project to the inner ear, i.e., olivocochlear and vestibular efferent neurons, a surprising new finding was made that somata of a subpopulation of DRN neurons were intensely labeled with CTB. These CTB-labeled neurons were densely distributed in a dorsomedian part of the DRN with some in a surrounding area outside the DRN. The present results suggest that a novel raphe-labyrinthine projection may exist. A future study of anterograde labeling with injections of a tracer in the DRN will be needed to establish the existence of a raphe-labyrinthine projection more thoroughly. A raphe-labyrinthine descending input, together with an ascending input from the inner ear to the DRN through intervening neurons, such as the juxta-acousticofloccular raphe neurons (JAFRNs) described by Ye and Kim, may mediate a brain stem reflex whereby a salient multisensory (including auditory and vestibular) stimulus may alter the sensitivity of the inner ear. As a mammal responds to a biologically important auditory-vestibular multisensory event, the raphe projections to the inner ear and other auditory and vestibular structures may enhance the mammal's ability to localize and recognize the sound and respond properly. The raphe-labyrinthine projection may also modulate the inner ear's sensitivity as a function of the sleep–wake arousal state of an organism on a slower time course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号