首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activins and inhibins are structurally related glycoprotein hormones modulating pituitary FSH secretion and gonadal steroidogenesis. Activins and inhibins are also produced in the adrenal cortex where their physiological role is poorly known. Hormonally active human adrenocortical tumors express and secrete inhibins, while in mice adrenal inhibins may function as tumor suppressors. To clarify the significance of adrenal activins and inhibins we investigated the localization of activin/inhibin signaling components in the adrenal gland, and the effects of activins and inhibins on adrenocortical steroidogenesis and apoptosis.Activin receptor type II/IIB and IB, activin signal transduction proteins Smad2/3, and inhibin receptor betaglycan were expressed throughout the adrenal cortex, whereas Smad4 expression was seen mainly in the zona reticularis and the innermost zona fasciculata as evaluated by immunohistochemistry. Treatment of cultured adrenocortical carcinoma NCI-H295R cells with activin A inhibited steroidogenic acute regulatory protein and 17alpha-hydroxylase/17,20-lyase mRNA accumulation as evaluated by the Northern blot technique, and decreased cortisol, androstenedione, dehydroepiandrosterone and dehydroepiandrosterone sulfate secretion as determined by specific enzyme immunoassays. Activin A increased apoptosis as measured by a terminal deoxynucleotidyl transferase in situ apoptosis detection method. Inhibins had no effect on steroidogenesis or apoptosis.In summary, activin/inhibin signaling components are coexpressed in the zona reticularis and the innermost zona fasciculata indicating full signaling potential for adrenal activins and inhibins in these layers. Activin inhibits steroidogenic enzyme gene expression and steroid secretion, and increases apoptosis in human adrenocortical cells. Thus, the activin-inhibin system may have a significant role in the regulation of glucocorticoid and androgen production and apoptotic cell death in the human adrenal cortex.  相似文献   

2.
Inhibin, a member of the TGF-beta superfamily, has been proposed to act as an inhibitor of activin and bone morphogenetic protein (BMP) by sequestering their type II receptors in nonsignaling complexes with betaglycan. This mechanism of inhibin action was tested in a mouse adrenocortical (AC) cell line by examining the effects of inhibins A and B on cytochrome P450 17alpha-hydroxylase 17,20-lyase (Cyp17) expression and 17alpha-hydroxylase activity, measured by progesterone 17alpha-hydroxylation, in the absence and presence of activin or BMP isoforms. Cyp17 mRNA endogenously expressed by AC cells was suppressed by activins A and B and BMP-2, -6, and -7, and each ligand accordingly inhibited 17alpha-hydroxyprogesterone production (IC(50) of 0.24, 0.27, 0.4, 0.51, and 2.2 nm, respectively). Neither inhibin A nor inhibin B alone affected Cyp17 expression or 17alpha-hydroxyprogesterone production. Both inhibin A and inhibin B blocked the inhibitory actions of activins A and B in AC cells, supporting the antiactivin model of inhibin action. Inhibin A provided more potent and effective antagonism of both activins than did inhibin B, and activin A was less subject to antagonism by either inhibin than was activin B. In contrast to the major antagonism of activin by both inhibins, only inhibin A antagonized the actions of BMP-2, BMP-6, and BMP-7, whereas inhibin B was ineffective against all tested BMP isoforms except BMP-7 at high concentrations. These results provide limited support for the anti-BMP model of inhibin action and reveal that, relative to inhibin A, inhibin B essentially behaves as a selective activin antagonist in AC cells. In conclusion, inhibins A and B differentially antagonize the actions of activins and BMPs to control adrenocortical C(19) steroid production.  相似文献   

3.
Activin-stimulated FSH synthesis and release by the pituitary gonadotrope is antagonized by gonadally derived inhibins. The two isoforms of inhibin, inhibin A and B, bind to the activin type II receptors, though at a lower affinity than the activins, but do not stimulate intracellular signaling. Theoretically, therefore, inhibins can prevent activin signaling through competitive binding if present at higher concentrations than the activins. In reality, the inhibins have been shown to antagonize activin signaling when the two ligand types are present at equimolar concentrations. These observations led to the hypothesis that inhibin binding proteins or co-receptors exist that either increase the affinity of the inhibins for the activin receptors or propagate inhibin-specific intracellular signals. Two candidate inhibin co-receptors, betaglycan and InhBP/p120, interact with activin receptors and augment inhibin antagonism of activin action. Here, we report the effect of betaglycan and InhBP/p120 on both inhibin A and inhibin B binding to the activin receptors ActRIIA and ActRIIB2. InhBP/p120 did not bind inhibin A or B when expressed alone or in combination with activin receptors, requiring a re-examination of the role of this protein in inhibin biology. Both inhibins bound the activin type II receptor, ActRIIB2. Inhibin B had a higher affinity for this receptor than inhibin A but an approximately 10-fold lower affinity than that of activin A. Inhibin A and B bound betaglycan with high affinity; however, only inhibin A binding to ActRIIB2 was significantly enhanced in the presence of betaglycan. Both inhibin isoforms showed slight but significant binding to ActRIIA, yet this binding was potentiated in the presence of betaglycan. Additionally, the complex formed between the inhibins, ActRIIA, and betaglycan was resistant to disruption by activin A, whereas activin A potently competed for inhibin binding to ActRIIB2 and betaglycan. Collectively, these data show that the inhibin isoforms have different affinities for the activin type II receptors but bind betaglycan with high affinity. A recently developed model of inhibin action proposes that inhibins form a high affinity, activin-resistant ternary complex with activin type II receptors and betaglycan, thereby providing a mechanism for inhibin antagonism of activin signaling. Importantly, the results presented here clearly show that this model does not apply equally to both forms of inhibin nor to the different activin type II receptor isoforms. Thus, it appears that the mechanisms of inhibin action may vary depending on the ligand and receptor types involved.  相似文献   

4.
5.
Inhibins are gonadal glycoproteins with endocrine effects on pituitary FSH secretion and para/autocrine effects on ovarian and testicular function. The purpose of this study was to investigate the endocrine and para/autocrine regulation of inhibin A and inhibin B secretion in human ovarian granulosa-luteal cells. The cells were obtained from women undergoing in vitro fertilization, and the primary cultures were treated with FSH, LH, human chorionic gonadotropin (hCG), activin A, 8-bromo cyclic AMP (8-BrcAMP), staurosporine (a protein kinase C inhibitor) and an antagonist of IGF action (type-1 IGF receptor antibody alpha IR3). The secretion of inhibins was measured by ELISA assays capable of reliably distinguishing between inhibin A and B. FSH, LH, hCG and 8-BrcAMP increased inhibin A secretion on average up to 180% (P<0.01), 192% (P<0.05), 210% (P<0.01) and 243% (P<0.01) respectively of the control level, while their stimulatory effect on inhibin B secretion was less pronounced (up to 167%, P<0.01; 139%, P<0.05; 127%, P>0.05; 133%, P>0.05 of the controls respectively). alpha IR3 decreased inhibin A and B secretion down to 70% (P<0.01) and 50% (P<0.01) respectively of the control. Staurosporine decreased inhibin B secretion down to 49% (P<0.01) of the control; its effect on inhibin A secretion was not significant. Activin A increased inhibin B secretion up to fourfold of the control (P<0.05) while its effect on inhibin A secretion was insignificant. We conclude that gonadotropins via the protein kinase A signal transduction pathway are the main positive regulators of inhibin A and B secretion in human granulosa-luteal cells. The protein kinase C signal transduction pathway seems to be important especially for inhibin B secretion. Locally produced IGFs are probably important inducers of the production of both forms of inhibin in human ovaries while activins seem to upregulate inhibin B secretion.  相似文献   

6.
Pituitary gonadotropins mediate part of their effects on ovarian function via local hormones and growth factors produced by granulosa cells. Activins and inhibins are among these factors, and they have often opposite effects on various components of the reproductive system. The purpose of this study was to investigate the regulation of ovarian activin A secretion using cultured human ovarian granulosa-luteal cells as a model. The granulosa-luteal cells, obtained from women taking part in an in vitro fertilization program, were cultured and treated with FSH, LH, 8-bromo cAMP (8-BrcAMP, a protein kinase A activator) and 12-O-tetradecanoyl phorbol-13-acetate (TPA, a protein kinase C activator). Conditioned cell culture media were analyzed for activin A, inhibin A and progesterone concentrations with specific enzyme immunoassays. FSH and LH (1-100 IU/l) increased activin A secretion with 24 h of treatment (to 132% and 253% of control respectively; P<0.05 for both), but their effects were inhibitory in 48-h treatments (26% and 16% decreases respectively; P<0.05 for both). In the same experiments, FSH and LH increased inhibin A and progesterone secretion after both 24 and 48 h of treatment. 8-BrcAMP (0.1-100 muM) increased activin A in 24- and 48-h experiments (to 206% and 148% of control respectively; P<0.01 for both). Inhibin A and progesterone secretion were stimulated by 8-BrcAMP time- and dose-dependently. TPA increased activin A secretion dose-dependently (0.1-100 ng/ml) in both 24- and 48-h experiments. At 100 ng/ml concentration, it increased activin A up to 61-fold and inhibin A up to 16-fold of control in 24-h experiments. We conclude that gonadotropins regulate immunoreactive activin A secretion biphasically in cultured human granulosa-luteal cells: initial stimulation is followed by inhibition. In contrast, gonadotropins increase inhibin A and progesterone secretion continuously. Consequently, continuing gonadotropin stimulation leads to a decreasing activin:inhibin ratio, which may have a significant role in the local fine-tuning of ovarian steroidogenesis.  相似文献   

7.
Inhibins and activins are dimeric proteins of the transforming growth factor-beta superfamily which have been shown to be expressed in the adrenal cortex. Recent studies have suggested a role for these peptides in the pathogenesis and/or function of adrenal tumours. To investigate further their physiological and pathological roles, we have documented immunoreactivity for inhibin alpha, betaA and betaB subunits in normal adult and fetal human adrenals, in hyperplastic adrenals and in adrenal tumours. In the normal and hyperplastic adult gland, diffuse immunopositivity was demonstrated for beta subunits, suggesting that activins (beta beta dimers) can be expressed in all zones. Inhibin alpha was limited to the zona reticularis and the innermost zona fasciculata in the normal gland, extending centripetally into the zona fasciculata in hyperplasia, supporting a role for ACTH in the regulation of expression, and suggesting that expression of inhibins (alpha beta dimers) is restricted. Immunopositivity for all three subunits was seen in both fetal and definitive zones of the fetal cortex, indicating that both inhibins and activins could be expressed in both. Immunopositivity for all three subunits was seen in most adrenocortical tumours. Loss of immunopositivity for inhibin alpha in a subgroup of carcinomas might indicate a role in tumour progression. The greater intensity of staining for inhibin alpha in tumours associated with Cushing's syndrome again suggests a link with cortisol production.  相似文献   

8.
The roles of inhibin and related peptides in gonadal function   总被引:8,自引:0,他引:8  
Inhibin A and B are dimeric proteins capable of suppressing FSH both in vitro and in vivo. The principal form in the male is inhibin B which is produced in the testis and circulates to inhibit pituitary FSH secretion. Activin A, B and AB are dimeric proteins that share the same beta subunits with the inhibins but, in contrast, stimulate FSH secretion. Although activin A circulates, castration does not lead to a decrease in serum concentrations, indicating that the testis is not the major source of activin A. In the circulation, the activins are bound to a structurally unrelated binding protein, follistatin, that neutralizes the biological actions of these proteins. The subunits of the inhibins/activins as well as follistatin are also produced locally within the pituitary and their levels can be modulated by testosterone and gonadotrophin releasing hormone as well as by autocrine mechanisms. Consequently, the output of FSH is dependent of the balance between local processes and the circulating feedback exerted by testosterone and inhibin. There is increasing data to support the local gonadal production of not only inhibin but also activin and follistatin by both germ cells and somatic cells such as the Sertoli cells. Evidence is accumulating to support the concept that these proteins exert local regulatory mechanisms in the testis.  相似文献   

9.
In the mammalian ovary cell growth and differentiation is regulated by several members of the transforming growth factor beta (TGF beta) superfamily including activins, inhibins, growth differentiation factors and bone morphogenetic proteins (BMPs). The effects of TGF beta family members are mediated to the target cells via heteromeric complexes of type I and II serine/threonine kinase receptors which activate Smad signaling protein pathways in various cell types. We have previously shown that inhibin B, a hormonally important product from human granulosa cells, is up regulated by activin and BMPs. Here, we report the use of adenoviral gene transfer methodology to manipulate the TGF beta growth factor signaling system in primary cultures of human granulosa cells. These cells are exceedingly difficult to transfect by conventional transfection methods, but were virtually 100% infected with recombinant adenoviruses expressing green fluorescent protein (GFP). Adenoviruses expressing constitutively active forms of the seven known mammalian type I activin receptor-like kinase receptors (Ad-caALK1 through Ad-caALK7) cause activation of endogenous and adenovirally transferred Smad signaling proteins so that Ad-caALK1/2/3/6 and Ad-caALK4/5/7 induced phosphorylation of the Smad1 and Smad2 pathways, respectively. Activin A and BMP-2 activated the Smad1 and Smad2 pathways as well as inhibin B production as did all the Ad-caALKs. Furthermore, overexpression of adenoviral Smad1 and Smad2 proteins without exogenously added ligands induced inhibin B production. The inhibitory Smad7 protein suppressed BMP-2 and activin induced inhibin B production. Collectively, the present data demonstrate that adenoviral gene transfer provides an effective approach for dissecting the TGF beta signaling pathways in primary ovarian cells in vitro and more specifically indicate that the Smad1 and Smad2 pathways are involved in the regulation of inhibin B production by TGF beta family ligands in the ovary.  相似文献   

10.
In the present study, we have examined the role of hormones and growth factors in regulating dimeric inhibin production in immature rat granulosa cells. Purified granulosa cells from estrogen-primed immature rats were cultured under defined conditions. Inhibins A and B in the culture media were measured using a two-site enzyme-linked immunosorbent assay specific for each dimer. Under basal conditions, granulosa cells produced 14-fold more inhibin A than inhibin B (inhibin A, 2.0; inhibin B, 0.14 ng/ml, measured against human standards; average A/B apparent ratio, 14). Addition of increasing doses of FSH elicited dose-dependent increases in both inhibins, the effects being more pronounced on inhibin A than on inhibin B (9.4- and 4.1-fold increases, respectively; average A/B ratio, 34). Estradiol, when added alone, stimulated inhibin A production 3- to 6-fold, whereas minor changes were observed in inhibin B production. Insulin-like growth factor-I produced a similar stimulation of both inhibins (3-fold stimulation over control). This growth factor, however, induced a marked dissociation in the sensitivity of inhibins A and B to FSH stimulation, with maximal stimulation of inhibin B observed at comparatively lower concentrations of the gonadotropin. Transforming growth factor-beta (TGF-beta, 5 ng/ml) had a more marked stimulatory effect on inhibin B than on inhibin A production (7- to 14-fold vs. 2- to 5-fold for inhibin B and A, respectively). A more pronounced differential stimulation of inhibin B was also exerted by another member of the TGF-beta superfamily, activin A (A/B ratio, 0.66). This preferential stimulation of inhibin B by TGF-beta and activin A was amplified in the presence of FSH. Coculture of rat granulosa cells with freshly isolated bovine oocytes was also associated with a marked stimulation of inhibin B production (100-fold increase) and a comparatively lower stimulation of inhibin A (10-fold increase; A/B ratio, 1). The discrepancy between the proportion of inhibin dimers in serum (A/B ratio, 0.13) and those produced by untreated granulosa cells may suggest that intraovarian factors, such as TGF-beta, activin A, or oocyte-derived factor(s), are responsible for the shift of the ratio toward the predominance of inhibin B.  相似文献   

11.
Inhibins are expressed in the adrenal cortex, but little is known of their binding or role in the adrenal. The aims of the present study were, first, to establish whether a mouse adrenocortical (AC) cell line expresses inhibins/activins and bone morphogenetic proteins (BMP), along with proteins required for inhibin to antagonise activin and BMP actions and, secondly, to characterise and compare inhibin binding sites and proteins in the rat adrenal gland and AC cells. AC cells were found to: (1) express mRNA for multiple BMPs (BMP-2, -3, -4, -6, -8a), growth/differentiation factors (GDF-1, -3, -5, -9), Lefty A and B, and the inhibin alpha, beta(A) and beta(B) subunits (2) secrete inhibin A and inhibin B and (3) express mRNA encoding the inhibin co-receptor, betaglycan, along with activin and BMP type I (ALK2-7) and type II (ActRII, ActRIIB, BMPRII) receptors, and binding proteins (follistatin, BAMBI, gremlin). When applied to sections of rat adrenal glands, [(125)I]inhibin A specifically bound to cells of the adrenal cortex, mainly in the zona reticularis. Scatchard analyses of in vitro [(125)I]inhibin A binding to dispersed rat adrenal cells and AC cells revealed sites of high affinity (K(d)(1) of 0.18 and 0.15 nM, respectively) and low affinity (K(d)(2) of 2.6 and 1.3 nM, respectively. Competition for [(125)I]inhibin A binding by activin A or B (30 nM) was negligible, whereas BMP-2, -6 and -7 competed for between 21 and 33% of specific inhibin A binding (IC(50) between 0.2 and 0.3 nM). Inhibin B crossreaction with inhibin A binding sites was < 8%. Multiple binding protein complexes (molecular weight ranging from 35 to > 220 kDa) were affinity labelled by [(125)I]inhibin A on both the primary rat adrenal and AC cells. The species of > 220 kDa were shown by immunoprecipitation to include betaglycan, the species of 105 kDa is consistent in size with type II receptors for activin/BMP, and that of 62 kDa co-migrates with the inhibin-follistatin complex.In summary, the results show that inhibin A binds selectively and with both high and low affinity to AC cells via multiple binding proteins, including a single betaglycan-like species. The results support the role of glycosylated betaglycan in the high affinity binding of inhibin A, but provide consistent evidence from two independent sources of adrenal cells that inhibin A interacts with several membrane proteins in addition to those currently understood to mediate the anti-activin/BMP actions of inhibin.  相似文献   

12.
13.
Little is known about the ability of the fetal primate gonads to produce inhibin/activin. We investigated the presence of the alpha-, beta A-, and beta B-subunits of inhibin/activin in fetal human (16-23 weeks gestational age) and rhesus monkey (days 150-157 of gestation; term = 165 days) testes and ovaries by immunocytochemistry. The regulation of alpha-inhibin secretion by gonadotropins was studied in fetal testicular cultures. In the human fetal testis, alpha-subunit immunostaining was found in interstitial and intratubular cells, while beta A- and beta B-subunit immunostaining occurred in clusters of Leydig cells that were clearly demarcated from groups of Leydig cells that were immunonegative. In the late gestational monkey testis, the alpha-subunit was localized in tubular cells, and the beta B-subunit was present in the tubules and interstitium. Testicular cells from midgestation human testes secreted detectable immunoreactive alpha-inhibin in response to FSH and hCG stimulation; alpha-inhibin levels were significantly higher after hCG than FSH. In contrast, levels of alpha-inhibin secreted by rhesus monkey testicular cells were significantly increased by FSH, but not hCG. In the ovary, only weak beta B-subunit immunoreactivity was detected in granulosa cells of a few primary follicles from midgestational human fetal ovaries. In contrast, all three subunits were found in granulosa cells of numerous primary and secondary follicles in the late gestation rhesus monkey ovary. In light of recent evidence that inhibins/activins have actions on gonadal differentiation and growth modulation in vitro, as well as endocrine effects on the fetal pituitary, we propose that these proteins may have intragonadal and endocrine roles in human and subhuman intrauterine gonadal development.  相似文献   

14.
Inhibins and activins are members of the transforming growth factor (TGFβ) superfamily, that includes the TGFβs, inhibins and activins, bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs). The family members are expressed throughout the human body, and are involved in the regulation of a range of important functions. The precise regulation of the TGFβ pathways is critical, and mutations of individual molecules or even minor alterations of signalling will have a significant affect on function, that may lead to development of disease or predisposition to the development of disease. The inhibins and activins regulate aspects of the male and female reproductive system, therefore, it is not surprising that most of the diseases associated with abnormalities of the inhibin and activin genes are focused on reproductive disorders and reproductive cancers. In this review, I highlight the role of genetic variants in the development of conditions such as premature ovarian failure, pre-eclampsia, and various reproductive cancers. Given the recent advances in human genetic research, such as genome wide association studies and next generation sequencing, it is likely that inhibins and activins will be shown to play more important roles in a range of human genetic diseases in the future.  相似文献   

15.
The aim of the present study was to determine the endocrine activity of cultured early antral follicles (EAF) isolated from prepubertal diethylstilbestrol-treated rats. The effect of steroidogenic substrates and FSH on steroid, inhibin A and B, Pro-αC and activin A production was evaluated. Androsterone was the predominant steroid produced by EAF. The addition of androstenedione, androstenedione + FSH and progesterone stimulated oestradiol production, whereas 25-hydroxycholesterol (25-OH-Chol) increased progesterone production. Inhibin A, B, Pro-αC, and activin A were produced under basal conditions. The predominance of inhibin B over inhibin A was not affected by the addition of androstenedione or progesterone. Inhibin A and activin A production was stimulated by FSH. 25-OH-Chol increased Inha, Inhba and Inhbb mRNA expression and the production of the three molecular forms of inhibins but decreased activin A production. These results show that FSH and the steroid follicular microenvironment differentially modulate the gene expression of inhibin/activin subunits, their assembly and secretion.  相似文献   

16.
OBJECTIVE: Inhibins and activins are members of the transforming growth factor beta superfamily and are known to modulate the growth and differentiation of several cell types. The present study investigated the localization of inhibin and activin subunits in human normal and pathological breast tissues. DESIGN: A cross-sectional study comparing the expression of inhibin/activin subunits alpha, betaA and betaB in surgical specimens from women undergoing reductive mammoplasty (classified, according to the phase of the menstrual cycle, as follicular, luteal, or postmenopausal), and patients submitted to lumpectomy for fibrocystic disease, benign (intraductal papilloma, adenomyoepithelioma, and hamartoma) or malignant breast neoplams (intraductal, intralobular, and invasive carcinoma). METHODS: Immunohistochemistry was used to localize inhibin alpha and activin betaA and betaB subunits in the cytoplasm of epithelial cells of mammary glands. Dimeric activin A, inhibin A and inhibin B were measured by specific two-site enzyme immunoassay in the cystic fluid collected from patients with fibrocystic disease. RESULTS: An intense staining for the alpha inhibin subunit and a mild staining for betaA and betaB subunits were present in samples obtained from normal breast tissue regardless of menstrual cycle phase, and in fibrocystic disease and benign neoplasms. Carcinoma cells stained weakly to moderately for alpha subunit and were negative for betaA and betaB subunits. Fibrocystic disease was associated with absence of betaA subunit expression in normal epithelial cells and intense staining for all subunits in the apocrine cells. Immunoreactive inhibin A, inhibin B, and activin A were also present in cystic fluid, suggesting a local secretion of these proteins. CONCLUSION: These data suggest a local expression and secretion of inhibin and activin in human normal, fibrocystic disease and neoplastic breast tissues. The low expression of these proteins may facilitate abnormal cell proliferation in breast carcinoma.  相似文献   

17.
Weng Q  Medan MS  Okano T  Murase T  Tsubota T  Xu M  Watanabe G  Taya K 《Endocrine》2006,29(2):345-350
The objective of this study was to investigate the changes in secretion of inhibin and cellular localization of inhibin alpha and inhibin/activin (beta(A) and beta(B)) subunits during the breeding season in the wild male Japanese black bear. Histological observations of testes were performed and seminiferous tubule diameters were measured. The sections of the testes were immunostained by the avidin- biotin-peroxidase complex method (ABC) using polyclonal antisera raised against porcine inhibin alpha, inhibin/ activin beta(A), and inhibin/activin beta(B) during the breeding season. Serum concentrations of immunoreactive (ir-)inhibin, testosterone, and luteinizing hormone (LH) were measured by radioimmunoassay. Higher values of seminiferous tubule diameters and all types of spermatogenic cells including mature-phase spermatozoa were found during the breeding season. There were seasonal changes in serum concentrations of ir-inhibin, testosterone, and LH. Ir-inhibin was positively correlated with testosterone, and LH. In addition, immunoreactivity of inhibin alpha, beta(A), and beta(B) subunits were also detected in Sertoli and Leydig cells during the breeding season. These results suggest that Japanese black bear testes may secrete bioactive inhibins during the breeding season and that the circulating inhibin may be a useful indicator of the testicular function in wild male Japanese black bears.  相似文献   

18.
Production and regulation of activin A and inhibin B during the cycle of the seminiferous epithelium were investigated in adult rats. Immunohistochemistry localised the activin beta(A)-subunit to the Sertoli cell cytoplasm, with much weaker expression in spermatocytes and spermatids. Both activin A and inhibin B, measured by ELISA were secreted by, seminiferous tubule fragments over 72 h in culture. Activin A was secreted in a cyclic manner with peak secretion from tubules isolated at stage VIII. Tubules collected during stage VI produced the least activin A. Inhibin B secretion was highest from stage IX-I tubules and lowest from stage VII tubules. Addition of interleukin-1beta (IL-1beta) had relatively little effect on activin A or inhibin B secretion in culture. In contrast, the peak secretion of activin A by stage VIII tubules was blocked by co-incubation with an excess of human recombinant IL-1 receptor antagonist, whereas inhibin B secretion increased slightly. Dibutyryl cAMP stimulated activin A secretion by late stage VII and VIII tubules and stimulated inhibin B across all stages. These data indicate that activin A and inhibin B are cyclically regulated within the seminiferous epithelium, with endogenous IL-1 (presumably IL-1alpha produced by the Sertoli cells), responsible for a peak of activin A production subsequent to sperm release at stage VIII. These data provide direct evidence that production of activin A and inhibin B by the Sertoli cell is locally modulated by IL-1alpha , in addition to FSH/cAMP, under the influence of the developing spermatogenic cells.  相似文献   

19.
Inhibin and activin are protein hormones with diverse physiological roles including the regulation of pituitary FSH secretion. Like other members of the transforming growth factor-beta gene family, they undergo processing from larger precursor molecules as well as assembly into functional dimers. Isolation of inhibin and activin from natural sources can only produce limited quantities of bioactive protein. To purify large-scale quantities of recombinant human inhibin and activin, we have utilized stably transfected cell lines in self-contained bioreactors to produce protein. These cells produce approximately 200 microg/ml per day total recombinant human inhibin. Conditioned cell media can be purified through column chromatography resulting in dimeric mature 32-34 kDa inhibin A and 28 kDa activin A. The purified recombinant proteins maintain their biological activity as measured by traditional in vitro assays including the regulation of FSH in rat anterior pituitary cultures and the regulation of promoter activity of the activin-responsive promoter p3TP-luc in tissue culture cells. These proteins will be valuable for future analysis of inhibin and activin function and have been distributed to the US National Hormone and Peptide Program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号