首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several findings obtained recently indicate that inflammation may contribute to the pathogenesis in Parkinson's disease (PD). Genetic variants of genes coding for components involved in immune reactions in the brain might therefore influence the risk of developing PD or the age of disease onset. Five single nucleotide polymorphisms (SNPs) in the genes coding for interferon-gamma (IFN-gamma; T874A in intron 1), interferon-gamma receptor 2 (IFN-gamma R2; Gln64Arg), interleukin-10 (IL-10; G1082A in the promoter region), platelet-activating factor acetylhydrolase (PAF-AH; Val379Ala), and intercellular adhesion molecule 1 (ICAM-1; Lys469Glu) were genotyped, using pyrosequencing, in 265 patients with PD and 308 controls. None of the investigated SNPs was found to be associated with PD; however, the G1082A polymorphism in the IL-10 gene promoter was found to be related to the age of disease onset. Linear regression showed a significantly earlier onset with more A-alleles (P = 0.0095; after Bonferroni correction, P = 0.048), resulting in a 5-year delayed age of onset of the disease for individuals having two G-alleles compared with individuals having two A-alleles. The results indicate that the IL-10 G1082A SNP could possibly be related to the age of onset of PD.  相似文献   

2.
We studied genetic polymorphisms in the promoter region at position -511 of the interleukin (IL) -1beta gene (IL-1B-511) and at position -889 of the IL-1alpha gene (IL-1A-889), in 111 Japanese patients with multiple system atrophy (MSA) and 160 controls. The distribution of IL-1B-511 was significantly different between MSA patients and controls, because of the under-representation of patients with homozygotes for allele 2 (IL-1B-511*2), a high producer of IL-1beta. The frequency of IL-1A-889*2, a high secretor of IL-1alpha, was also decreased in MSA patients. Our findings suggest that abnormal cytokine expression may be implicated in the pathogenesis of MSA.  相似文献   

3.
Raised levels of plasma interleukin-1beta in major and postviral depression   总被引:13,自引:0,他引:13  
OBJECTIVE: Interleukin-1beta (IL-1beta) is released as part of the acute phase immune response and can directly stimulate the release of corticotrophin-releasing hormone and thus induce hypothalamic pituitary adrenal axis hyperactivity. Major depression has been shown to be accompanied by both an acute phase immune response, including raised IL-1beta production and hypothalamic pituitary adrenal axis hyperactivity. In this study the possible role of IL-1beta in major depression and postviral depression was investigated. METHOD: Plasma IL-1beta levels were measured in four groups; patients suffering from postviral depression (n= 17), patients with major depression (n = 20), subjects who were postviral and euthymic (n= 12) and normal controls (n = 20). RESULTS: IL-1beta serum concentrations were significantly elevated in both groups of depressed patients compared to controls. The serum concentrations of IL-1beta were higher in the postviral group than in the major depression group; this difference was not significant. CONCLUSION: These data confirm previous suggestions of elevated IL-1beta levels in major depression and postviral depression. IL-1beta is known to induce depressive symptoms as well as sickness behaviour and may contribute to the hypothalamic pituitary adrenal axis hyperactivity found in mood disorders.  相似文献   

4.
The alpha-synuclein Rep1 polymorphism was studied in patients and controls in an ethnic Greek population. There was an association of allele 2 with risk of Parkinson's disease (PD; adjusted odd ratio = 3.25; 95% CI = 1.80-5.87). Survival analyses (Cox proportional hazards models) were employed to explore the influence of genotypes on age at onset of PD. Age at onset of carriers of at least one Rep1 allele 2 was earlier (3.6 years) compared to noncarriers (adjusted hazard ratio = 2.21; 95% CI = 1.58-3.10). Kaplan-Meier analysis also supported a dosage effect of Rep1 allele 2 on age at onset. For Rep1 allele 1, there was neither association with risk of PD nor influence on age at onset. This is the first study showing an influence of Rep1 polymorphism on age at onset of PD.  相似文献   

5.
Our previous study demonstrated that the inhibition of interleukin-1beta (IL-1beta) reduces ischemic brain injury; however, the molecular mechanism of the action of IL-1 in cerebral ischemia is unclear. We are investigating currently the role of NFkappaB during focal cerebral ischemia, using mutant mice deficient in the interleukin-1 converting enzyme gene (ICE KO) in a middle cerebral artery occlusion (MCAO) model. Adult male ICE KO and wild-type mice (n = 120) underwent up to 24 hr of permanent MCAO. Cytoplasmic phospho-NFkappaB/p65 expression in ischemic brain was examined using Western blot analysis and immunohistochemistry. NFkappaB DNA-binding activity was detected using electrophoretic mobility shift assay (EMSA). Furthermore, ICAM-1 expression was examined in both the ICE KO and wild-type mice (WT). Western blot analysis and immunostaining showed that the level of cytosolic phosphorylated NFkappaB/p65 increased after 2 and 4 hr of MCAO in WT mice; however, NFkappaB/p65 was significantly reduced after MCAO in the ICE KO mice (P < 0.05). EMSA showed that NFkappaB DNA-binding activity increased after MCAO in WT mice; but this effect was reduced in the ICE KO mice. The number of ICAM-1-positive vessels in the ischemic hemisphere was greatly attenuated in the ICE KO mice (P < 0.05), which paralleled the results of immunohistochemistry. Our results demonstrate that NFkappaB phosphorylation is reduced in ICE KO mice, suggesting that ICE or IL-1 are involved in early NFkappaB phosphorylation. Because cerebral ischemia induced infarction is significantly reduced in ICE KO mice, we conclude that early NFkappaB phosphorylation plays a disruptive role in the ischemic process.  相似文献   

6.
Pascale E, Passarelli E, Purcaro C, Vestri AR, Fakeri A, Guglielmi R, Passarelli F, Meco G. Lack of association between IL‐1β, TNF‐α, and IL‐10 gene polymorphisms and sporadic Parkinson’s disease in an Italian cohort.
Acta Neurol Scand: 2011: 124: 176–181.
© 2010 John Wiley & Sons A/S. Objective – There is increasing evidence suggesting that neuroinflammation and microglia activation may play important roles in the pathway leading to neuronal cell death in Parkinson’s disease (PD). Chronic activation of microglia may cause neuronal damage through the release of potentially cytotoxic molecules, such as pro‐inflammatory cytokines. Different functional promoter polymorphisms within genes coding pro‐ or anti‐inflammatory cytokines involved in the immune reactions in the brain might influence the risk of developing PD or the age of disease onset. Aim – To investigate the interleukin (IL)‐1β‐511, tumor necrosis factor alpha (TNF‐α)‐308, and interleukin (IL)‐10‐1082 gene polymorphisms as susceptibility factors for PD. Methods;– We analyzed genotype and allele distributions of these polymorphisms in146 Italian patients with PD and 156 healthy controls. Results – None of the polymorphisms we investigated was found to be associated with PD or with age of disease onset. No significant differences between patients with PD and controls were found as regards the concomitant presence of variant alleles in the three polymorphisms studied. We found that only the combined genotype TNF‐α‐308GG/IL‐1β‐511T(+) is associated with a decreased risk of PD. Conclusion – Our results indicate that the cytokine gene polymorphisms we investigated are not related to the development of PD in the Italian population; further studies are warranted to clarify the role of the TNF‐α‐308GG/IL‐1β‐511T(+) combined genotype.  相似文献   

7.
Several lines of neuroimmunological evidence correlate the development of the inflammatory responses of the brain with the formation of amyloid plaques associated with the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. Within this context, we tested the ability of interleukin-1beta (IL-1beta) to regulate the processing of beta-amyloid precursor protein (beta-APP) in neuroglioma U251 cells. Our findings have shown that short-term treatment with IL-1beta (2 hr) resulted in a concentration-dependent decrease in the amount of the cell-associated form of beta-APP in U251 cells as compared to untreated cells, whereas a 2-hr treatment with IL-1beta led to increased release of secreted APP(alpha) fragment (sAPP(alpha)) into the conditioned media of the cells. The fact that sAPP(alpha) is an alpha-secretase cleavage metabolite of the cell-associated form of beta-APP, and the observation that IL-1beta-induced sAPP(alpha) release could be blocked by tissue inhibitors of metalloproteinases-1 (alpha-secretase inhibitors), suggested that alpha-secretase might be involved in IL-1beta-induced-sAPP(alpha) release. Moreover, to determine whether an intracellular signaling pathway mediates the IL-1beta-induced increase in sAPP(alpha) secretion, we used various specific signaling inhibitors and found that sAPP(alpha) release is significantly blocked by the mitogen-activated protein kinase (MEK1/2) inhibitor PD98059 and the c-Jun N-terminal kinase inhibitor SP600125. These findings suggested that the mechanism of IL-1beta-induced-sAPP(alpha) release is dependent on MEK1/2- and JNK-activated alpha-secretase cleavage in neuroglioma U251 cells.  相似文献   

8.
Stromal cell-derived factor 1 alpha (SDF-1alpha) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HIV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1beta following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1beta receptor antagonist (IL-1Ra) and IL-1beta siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1beta mRNA expression. These observations provide direct evidence that IL-1beta, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD.  相似文献   

9.
Activated glia, as a result of chronic inflammation, are associated with amyloid-beta peptide (Abeta) deposits in the brain of Alzheimer's disease (AD) patients. In vitro, glia are activated by Abeta inducing secretion of pro-inflammatory molecules. Recent studies have focused on soluble oligomers (or protofibrils) of Abeta as the toxic species in AD. In the present study, using rat astrocyte cultures, oligomeric Abeta induced initial high levels of IL-1beta decreasing over time and, in contrast, fibrillar Abeta increased IL-1beta levels over time. In addition, oligomeric Abeta, but not fibrillar Abeta, induced high levels of iNOS, NO, and TNF-alpha. Our results suggest that oligomers induced a profound, early inflammatory response, whereas fibrillar Abeta showed less increase of pro-inflammatory molecules, consistent with a more chronic form of inflammation.  相似文献   

10.
Guo CJ  Douglas SD  Gao Z  Wolf BA  Grinspan J  Lai JP  Riedel E  Ho WZ 《Glia》2004,48(3):259-266
Cytokines and neuropeptides are modulators of neuroimmunoregulation in the central nervous system (CNS). The interaction of these modulators may have important implications in CNS diseases. We investigated whether interleukin-1beta (IL-1beta) modulates the expression of neurokinin-1 receptor (NK-1R), the primary receptor for substance P (SP), a potent neuropeptide in the CNS. IL-1beta upregulated NK-1R expression in human astroglioma cells (U87 MG) and primary rat astrocytes at both mRNA and protein levels. IL-1beta treatment of U87 MG cells and primary rat astrocytes led to an increase in cytosolic Ca(2+) in response to SP stimulation, indicating that IL-1beta-induced NK-1R is functional. CP-96,345, a specific non-peptide NK-1R antagonist, inhibited SP-induced rise of [Ca(2+)](i) in the astroglioma cells. Investigation of the mechanism responsible for IL-1beta action revealed that IL-1beta has the ability of activating nuclear factor-kappab (NF-kappaB). Caffeic acid phenethyl ester (CAPE), a specific inhibitor of NF-kappaB activation, not only abrogated IL-1beta-induced NF-kappaB promoter activation, but also blocked IL-1beta-mediated induction of NK-1R gene expression. These findings provide additional evidence that there is a biological interaction between IL-1beta and the neuropeptide SP in the CNS, which may have important implications in the inflammatory diseases in the CNS.  相似文献   

11.
There has been increasing evidence suggesting that inflammatory response maybe involved in the pathogenesis of Parkinson's disease (PD). Alpha1-antichymotrypsin gene (ACT) has been regarded as a susceptibility factor for PD in the past, but the evidence remains controversial. This case-control study was designed to investigate the association of alpha1-antichymotrypsin gene (ACT) polymorphism between 210 Taiwanese patients with clinical definite sporadic PD and 260 controls, matched by age and sex. There were no differences of allelic frequency (A and T) and genotype polymorphism (AA, AT and TT) of the ACT in PD patients from the controls. However, there were significantly fewer early-onset PD (onset age younger than 60 years) or PD women carrying the homozygote AA genotype (ACT-AA) than in controls (p=0.046 and 0.044, respectively). Further analysis revealed that the reduced risk of ACT-AA was particularly significant among PD women with the onset age younger than 60 years (OR=0.796, 95% CI=0.749-0.847, p<0.0001). This study shows that ACT-AA may confer a modest protection against developing early-onset PD in women.  相似文献   

12.
Among the changes which occur in the brain with age is an increase in hippocampal concentration of proinflammatory cytokines like interleukin-1beta (IL-1beta) and an increase in IL-1beta-induced signaling. Here we demonstrate that the increase in IL-1beta concentration is accompanied by an increase in expression of IL-1 type I receptor (IL-1RI) and an age-related increase in microglial activation, as shown by increased expression of the cell surface marker, major histocompatibility complex II (MHCII) and increased MHCII staining. The evidence indicates that these age-related changes were abrogated in hippocampus of aged rats treated with dexamethasone and vitamin D3. Similarly, the age-related increases in activation of the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), as well as caspase-3 and PARP were all attenuated in hippocampal tissue prepared from rats that received dexamethasone and vitamin D3. The data indicate that dexamethasone and vitamin D3 ameliorated the age-related increase in IFNgamma and suggest that IFNgamma may be the trigger leading to microglial activation, since it increases MHCII mRNA and IL-1beta release from cultured glia. In parallel with its ability to decrease microglial activation in vivo, we report that treatment of cultured glia with dexamethasone and vitamin D3 blocked the lipopolysaccharide increased MHCII mRNA and IL-1beta concentration, while the IL-1beta-induced increases in activation of JNK and caspase 3 in cultured neurons were also reversed by treatment with dexamethasone and vitamin D3. The data suggest that the antiinflammatory effect of dexamethasone and vitamin D3 derives from their ability to downreguate microglial activation.  相似文献   

13.
Calcitonin gene-related peptide (CGRP) is synthesized in dorsal root ganglion (DRG) neurons and released from primary afferent neurons to mediate hemodynamic effects and neurogenic inflammation. The effect of the proinflammatory cytokine interleukin-1 (IL-1)-beta on CGRP release from these sensory neurons was investigated. The results showed that IL-1beta (1 ng/ml) could directly induce CGRP release following prolonged incubation (24 hr) with these neurons. Treatment with IL-1beta (0.1-1.0 ng/ml) significantly increased CGRP release in a concentration-dependent manner. In addition, pretreatment of DRG cells with actinomycin D at 1 microM or cyclohexamide at 10 microM for 30 min inhibited 1 ng/ml IL-1beta-induced CGRP release in DRG neurons of neonatal rats. The inhibitors of PKC, JNK MAPK and NF-kappaB, but not p38 or ERK1/2 MAPK, blocked IL-1beta-induced CGRP release. RNase protection assay showed that IL-1beta could cause alpha-CGRP mRNA increase in a time- and concentration-dependent manner, although the level of beta-CGRP mRNA was not affected. These results indicate that IL-1beta may activate PKC, which in turn initiates JNK MAPK and activates NF-kappaB and finally induces alpha-CGRP gene expression and release from these sensory neurons.  相似文献   

14.
15.
Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.  相似文献   

16.
Some recent reports show that schizophrenia is accompanied by changes in lymphocyte activity. This study investigated the activity of monocytes by determining their release of interleukin- 1 beta (IL- 1 beta) and tumor necrosis factor-alpha (TNF-alpha). Monocytes were immunomagnetically isolated from the peripheral blood of schizophrenic patients before and after neuroleptic medication and stimulated by lipopolisaccharide (LPS) in vitro. The monocytes of schizophrenic patients released significantly higher amounts of IL- 1 beta and TNF-alpha than those of healthy controls. Treatment with the typical neuroleptics haloperidol and perazine decreased the release of IL- 1 beta and TNF-alpha to the control levels. The study has shown that the activity of monocytes is increased in schizophrenia and that neuroleptic treatment normalizes this activity.  相似文献   

17.
In the present study we sought to examine cell-cell interactions by investigating the effects of factors released by stimulated microglia on inducible nitric oxide (NO) synthase (iNOS) induction in astrocytoma cells. After examining the temporal profiles of proinflammatory molecules induced by lipopolysaccharide (LPS) stimulation in BV2 microglial cells, iNOS and IL-1beta were observed to be the first immediate-response molecules. Removal of LPS after 3 hr stimulation abrogated NO release, whereas a full induction of IL-1beta was retained in BV2 cells. We observed consistently that conditioned medium (CM) from activated microglia resulted in the induction of iNOS in C6 cells, and IL-1beta was shown to be a key regulator of iNOS induction. An IL-1beta-neutralizing antibody diminished NO induction. Incubation with recombinant IL-1beta stimulated NO release to a lesser extent compared to microglial CM; co-treatment of LPS and IL-1beta had a potent, synergistic effect on NO release from C6 cells. Transient transfection with MEK kinase 1 (MEKK1) or nuclear factor-kappa B (NF-kappaB) expression plasmids induced iNOS, and IL-1beta further enhanced the MEKK1 response. Furthermore, IL-1beta-mediated NO release from C6 cells was significantly suppressed by inhibition of p38 mitogen activated protein kinase (MAPK) or NF-kappaB by specific chemical inhibitors. Both IL-1beta and MEKK1 stimulated p38 and JNK MAPKs, as well as the NF-kappaB pathway, to induce iNOS in C6 cells. Microglia may represent an anti-tumor response in the central nervous system, which is potentiated by the local secretion of immunomodulatory factors that in turn affects astrocytoma (glioma) cells. A better understanding of microglia-glioma or microglia-astrocyte interactions will help in the design of novel immune-based therapies for brain tumors or neuronal diseases.  相似文献   

18.
INTRODUCTION: Drug-eluting stent (DES) implantation represents an important innovation in the treatment of coronary artery disease. However, inflammatory-related complications, including subacute thrombosis and in-stent restenosis, are still important limitations to percutaneous coronary intervention (PCI). The aim of this study was to compare early local release of interleukin 1beta (IL-1beta) and IL-6 proinflammatory cytokines after elective placement of either bare metal stents or DES. MATERIALS AND METHODS: IL-1beta and IL-6 levels were assayed in plasma obtained from the coronary sinus both before and 20 min after stent implantation in 59 patients with stable angina, who were randomly assigned to receive bare, paclitaxel-, or sirolimus-eluting stents during elective PCI. RESULTS: We found that IL-1beta and IL-6 levels were significantly increased in the coronary sinus of patients receiving either bare, paclitaxel- or sirolimus-eluting stents 20 min after stent implantation as compared with basal concentrations. The variation in the level of both cytokines was comparable among the three study groups. CONCLUSIONS: A local release of proinflammatory cytokines occurs shortly after coronary stent placement, including DES, which is possibly related to plaque rupture and/or endothelium traumatism following the stenting procedure. This suggests that precocious anti-inflammatory treatment could be of benefit to further improve the PCI clinical outcome.  相似文献   

19.
We studied the relationship between Parkinson's disease (PD) and the S18Y polymorphism in the UCH-L1 gene and the effect on this relationship of age at onset, smoking, and pesticides. Patients requested free health coverage for PD to the Mutualité Sociale Agricole (MSA), the French health insurance organization for people whose work is related to agriculture. Controls requested reimbursement of health expenses to the MSA. A maximum of three controls were matched to each case. Analyses included participants with both parents born in Europe. There were no differences in S18Y genotypes between patients (n = 209; 67% SS, 32% SY, 1% YY) and controls (n = 488; 66% SS, 30% SY, 4% YY). The relationship between PD and S18Y was modified by age at onset (P = 0.03). The Y allele was inversely associated with PD for patients with onset before 61 years (odds ratio [OR] = 0.53; 95% confidence interval [CI], 0.29-0.99); there was no association for older patients (62-68 years: OR = 1.21; 95% CI, 0.67-2.20; >68 years: OR = 1.24; 95% CI, 0.67-2.31). Among patients, Y carriers had a later onset than noncarriers (P = 0.04). These findings were not modified or confounded by smoking and pesticides. In this community-based case-control study, carriers of the Y allele were at decreased risk of developing PD at a young age, independently of pesticides and smoking.  相似文献   

20.
Marty V  Médina C  Combe C  Parnet P  Amédée T 《Glia》2005,49(4):511-519
Schwann cells are best known as myelinating glial cells of the peripheral nervous system, but they also participate actively in the sphere of immunity by producing pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta). In a previous study, we demonstrated that posttranslational processing of IL-1beta by immune-challenged Schwann cells required the P2X7 receptor. Remarkably, the release of IL-1beta was not associated with cell death, indicating the involvement of an active mechanism. ATP binding cassette (ABC) transporters are known to transport leaderless secretory proteins, such as IL-1beta; therefore, we investigated whether such transporters were at work in Schwann cells. Mouse Schwann cells expressed ABC1 transporter mRNA and displayed the functional protein. Glybenclamide and diisothiocyanato-stilbene-disulfonic acid (DIDS), two blockers of chloride fluxes that drive the export activity of ABC1 transporters, inhibited IL-1beta release without altering its intracellular processing. Enhancing chloride efflux potentiated the release of IL-1beta, while decreasing it led to a strong reduction in its release. Because the stimulation of the P2X7 receptor also activates a chloride conductance, we investigated the possibility of a sole anionic pathway mobilized by the P2X7 receptor and ABC1. Glybenclamide and DIDS had no significant effects on the P2X7-activated chloride current suggesting therefore the existence of two different pathways. In summary, ABC1 transporters are required for the release of IL-1beta by mouse Schwann cells. Being associated together with chloride conductance, P2X7 receptors and ABC1 transporters delineate a subtle and complex regulation of IL-1beta production in mammalian Schwann cells. Furthermore, ABC1 transporters could be a target of therapeutic interest for regulating IL-1beta activity in neuroinflammation disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号