首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Distribution of neuropeptide Y receptors in the rat hippocampal region   总被引:1,自引:0,他引:1  
The distribution of binding sites for neuropeptide Y (NPY) was studied in the rat hippocampal region by using [3H]NPY together with quantitative in vitro receptor autoradiography. The highest density of specifically bound [3H]NPY was found in regio superior and regio inferior of Ammon's horn. Within these fields, stratum oriens, stratum pyramidale and stratum radiatum harboured the highest densities of [3H]NPY binding while stratum moleculare was relatively poor in [3H]NPY binding sites. In area dentata, the highest density of [3H]NPY binding was found in the inner one third of the molecular layer. In the presubiculum and in the entorhinal area, the outer two layers were slightly more enriched in [3H]NPY binding sites than were the deep layers. In all hippocampal subfields a clear gradient of increased [3H]NPY binding was found at successively more ventral levels.  相似文献   

4.
The effects of treatment with reserpine (10 mg/kg, i.p.) a monoamine depleting agent, on neuropeptide Y immunoreactivity were studied immunohistochemically in neurons of two rat brain structures: locus coeruleus and caudate-putamen nucleus. It was found that reserpine after 24 h increased neuropeptide Y immunoreactivity level but no significant changes were observed 4 and 72 h or 5 days after the injection. The results indicate that despite the known co-existence of neuropeptide Y and noradrenaline in some neurons of the locus coeruleus no concomitant decrease in neuropeptide Y immunoreactivity level was found after reserpine when noradrenaline was depleted from nerve cell bodies and terminals. The increase in neuropeptide Y immunoreactivity observed 24 h after reserpine injection may suggest that the neuropeptide Y-containing neuronal systems of the locus coeruleus and caudate-putamen nucleus are controlled by monoaminergic afferents.  相似文献   

5.
M Smia?owska  B Legutko 《Neuroscience》1991,41(2-3):767-771
The effects of treatment with the antidepressant drug imipramine on neuropeptide Y immunoreactivity were studied immunocytochemically in the rat brain cortex and hypothalamus. It was found that the level of neuropeptide Y immunoreactivity in the cortex was significantly lowered three and 24 h after the last dose of chronic (14 days) imipramine administration as well as 3 h after acute administration. A tendency to decrease neuropeptide Y immunoreactivity was also found in the hypothalamus. The results obtained suggest an important role of the cortical neuropeptide Y in the action of the drug.  相似文献   

6.
Glucose is known to regulate the activity of the hypothalamic feeding centers. Neuropeptide Y (NPY)-containing neurons in the hypothalamic arcuate nucleus (ARC) have been implicated in the stimulation of feeding. We examined the presence of glucose-sensitive neurons in the ARC and their coincidence with NPY-containing neurons. Cytosolic Ca2+ concentration ([Ca2+]i) in single ARC neurons isolated from rat hypothalamus was measured with fura-2 fluorescence imaging; the cells were then stained immunocytochemically with an anti-NPY antiserum. Lowering the glucose concentration from 10 to 1 mM increased [Ca2+]i in 36 out of 180 neurons (20%), the majority of which (34 neurons, 94%) were immunoreactive for NPY. In conclusion, the ARC contains glucose-sensitive NPY-containing neurons. The suggested role of these neurons is to transduce a reduction in the glucose concentration in the brain to the release of NPY and, subsequently, stimulation of feeding.  相似文献   

7.
This experiment was conducted to determine the effects of central alpha-melanocyte stimulating hormone (alpha-MSH) and its interaction with neuropeptide Y (NPY) on ingestive and non-ingestive behaviors in chicks. Chicks received intracerebroventricular injections of either 0, 0.12 nM alpha-MSH, 0.06 nM NPY, or 0.12 nM alpha-MSH+0.06 nM NPY. Immediately following injection, chicks were placed in an observation arena and the number of steps, jumps, feed pecks, drinks, exploratory pecks, escape attempts, the total distance traveled, and the amount of time spent standing, sitting, sleeping, and preening were monitored for 60 min. Chicks treated with NPY consumed 69% more feed than controls whereas alpha-MSH-treated chicks consumed 71% less. Feed intake of the NPY+alpha-MSH groups was similar to alpha-MSH-treated chicks at 66% less than aCSF-treated chicks. Differences in pecking were found and followed a similar pattern as feed intake. All treatments increased the amount of time chicks were in a sitting posture, and the alpha-MSH+NPY group spent more time sitting than alpha-MSH and NPY alone. The sitting response after alpha-MSH+NPY treatment was similar to the alpha-MSH group but not the NPY group. Other behaviors were not affected by treatment. Thus, we conclude that alpha-MSH, at a concentration that causes a similar magnitude decrease in feed intake as NPY increases feed intake, is a more potent appetite-related signal than NPY. alpha-MSH causes behavioral effects that may secondarily affect feed intake at a low magnitude and may modulate the behavioral effects of NPY in chicks, contributing to the overall effect on feed intake.  相似文献   

8.
环胞霉素A抑制神经肽Y诱导大鼠心肌细胞肥大效应   总被引:3,自引:1,他引:3  
目的:观察Ca2+/CaM依赖的钙调神经磷酸酶(CaN)抑制剂环胞素A(CsA)对神经肽Y诱导心肌细胞肥大效应的影响。方法:用神经肽Y(NPY)刺激Wistar乳鼠心肌细胞,并用环胞素A加以干预。应用氚-亮氨酸([3H]-Leu)掺入法测定心肌细胞蛋白质合成速率、RT-PCR法测心肌细胞c-junmRNA表达。结果:(1)心肌细胞氚-亮氨酸([3H]-Leu)掺入量测定:与对照组相比,NPY10nmol/L组氚-亮氨酸([3H]-Leu)掺入量有所增高,但与对照组比无显著差别,而NPY100nmol/L组心肌细胞氚[3H]-Leu掺入量较对照组明显增高(P<0.05)。CsA组和对照组相比无显著差别。(2)心肌细胞内c-junmRNA表达:NPY组心肌细胞c-junmRNA的RT-PCR产物量明显高于对照组和CsA组(P<0.01),对照组和CsA组间无显著差别。结论:NPY刺激心肌细胞蛋白质合成增加、心肌细胞原癌基因(肥大早期反应基因)c-junmRNA表达,提示NPY可诱导心肌细胞肥大;CaN抑制剂CsA可阻断NPY上述效应,说明Ca2+/CaM依赖的CaN信号途径在其中起重要作用。  相似文献   

9.
It is well known that central injection of bombesin (BN) suppresses feeding in mammalian and avian species, but the anorexigenic effect of central BN are still open with special reference to the chick. The dose response (0, 0.1 and 0.5 μg) of intracerebroventricular (ICV) injection of BN was examined in Experiment 1. ICV injection of BN inhibited food intake in a dose-dependent manner. Experiment 2 was done to determine whether BN interacts with the orexigenic effect of neuropeptide Y (NPY) in the neonatal chick. Central administration of NPY (2.5 μg) greatly enhanced food intake, but co-injection of BN (0.5 μg) suppressed food intake. The dose response of NPY (2.5 μg) co-injected with three levels of BN (0, 0.1 and 0.5 μg) was examined in Experiment 3. ICV injection of BN attenuated the hyperphagia by NPY in a dose-related fashion. It is suggested that central BN may interact with NPY for the regulation of feeding in the neonatal chick.  相似文献   

10.
The distribution and coexistence of neuropeptide Y (NPY) and somatostatin (SOM) were evaluated in rat and human cerebral cortex and in the rat hypothalamic arcuate nucleus (n) using double immunofluorescent staining in which primary antisera were raised in different species. The results of the study indicate extensive coexistence of NPY and SOM in both rat and human cortex but only occasional coexistence in the rat arcuate n.  相似文献   

11.
Radioimmunoassay was combined with high pressure liquid chromatography and immunohistochemistry to establish the identity of pancreatic polypeptide-like immunoreactive material in the central nervous system of the rat. Antisera to avian pancreatic polypeptide, bovine pancreatic polypeptide, the invariant amidated carboxyterminal hexapeptide fragment of mammalian pancreatic polypeptides and the structurally related peptide, neuropeptide Y, were used immunocytochemically to localize neurons containing immunoreactive pancreatic polypeptide-like material in rat brain. Adjacent brain sections stained by the indirect immunofluorescent technique and single sections from double-staining experiments demonstrated that identical fibers and perikarya stained for pancreatic polypeptide-like immunoreactive material by antisera directed against each of the four peptides. Characterization of pancreatic polypeptide-like immunoreactive material in chromatographed rat brain extracts by radioimmunoassay using antisera to either neuropeptide Y or the carboxy-terminal portion of the pancreatic polypeptide molecule revealed that the major peak of immunoreactive material, as measured by either assay, appeared to co-elute with synthetic porcine neuropeptide Y. A minor peak of immunoreactive material co-eluting with peptide YY standard was indicated by the neuropeptide Y radioimmunoassay. This was contrasted by data obtained from chromatographic profiles of rat pancreas, which showed that the main immunoreactive peak, as measured by the neuropeptide Y assay, co-eluted with porcine peptide YY, with a minor peak co-eluting with porcine neuropeptide Y. The main peak of immunoreactive material in pancreas, as measured by the pancreatic polypeptide carboxy-terminal radioimmunoassay, eluted considerably earlier than standard peptide YY, neuropeptide Y and bovine pancreatic polypeptide, and is probably identical to rat pancreatic polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The ingestion of fat by rodents affects the level of neuropeptide Y (NPY) in the hypothalamus and we hypothesized that they might be linked via leptin, the adipose tissue hormone. The influence of fat intake on leptin and NPY levels was studied in rats fed on either a high-fat (HF) or a low fat diet (LF) for 5 months. Ingestion of the HF diet increased fat deposition (+48%; P < 0.01), leptinemia (+189%; P < 0.001) and reduced NPY levels in the arcuate nucleus (-35%; P < 0.01) and in the paraventricular nucleus (-22%; P < 0.01). However, although leptin levels reflected the amount of relative fat deposition (r = 0.62; P < 0.01), we found no evidence for a direct relationship between plasma leptin and NPY levels in the hypothalamus. These results suggest that the long-term effects of fat intake on NPY concentrations in the hypothalamus and plasma leptin are associated with different regulatory mechanisms.  相似文献   

13.
Neuropeptide Y (NPY) network effects in hippocampus and frontal cortex and its impact on epileptiform neocortical discharges were investigated in rat juvenile brain slices. NPY (1 μM) reduced amplitudes of paired pulse stimulation in hippocampal brain tissue (p<0.05) whereas NPY (1 nM-2 μM) had no effect in neocortex. Late stage epileptiform activity in the neocortex was unaffected by NPY (1 μM). Our results point to a region dependent effect of NPY with a high impact on hippocampal and minimal impact on neocortical networks.  相似文献   

14.
In this study we have optimized the electroimmunoblotting conditions for neuropeptide Y (NPY). NPY standards and samples extracted from the rat vas deferens were separated on urea-sodium dodecyl sulphate gels. Densitometric scanning of the Coomassie Blue-stained gels allow a semi-quantitative analysis of NPY in the range of approximately 10(-11) to 10(-8) mol of NPY. Electroimmunoblotting of NPY was also shown to be best achieved overnight at 4 degrees C and with NC membranes of 0.22 micron. Under these conditions NPY extracted from the vas deferens has been efficiently electroimmunoblotted. Higher molecular weight NPY-reactive peptides were also detected that may be related to proteolytic processing of the NPY precursor.  相似文献   

15.
目的探讨自发性癫痫大鼠(SER)海马中,神经肽Y(Neuropeptide Y,NPY)的表达变化。方法 RT-PCR检测自发性癫痫大鼠和正常对照组Wistar大鼠海马中NPY mRNA表达,ELISA试剂盒法检测NPY蛋白浓度变化。结果自发性癫痫大鼠海马中NPY mRNA表达水平和NPY蛋白的浓度比正常对照组Wistar大鼠明显上调(P0.01)。结论 NPY mRNA和蛋白过表达可能与自发性癫痫发生机制有关。  相似文献   

16.
The distribution of neuropeptide Y in the developing rat brain was studied with immunocytochemistry, using the peroxidase-antiperoxidase method. Immunoreactive perikarya were first seen on embryonic day 13 and staining of fibres appeared from embryonic day 15 onwards: perikaryal staining was generally more intense prenatally than after birth. Areas rich in neuropeptide Y immunostaining included the monoaminergic regions of the brain stem from embryonic day 13 (especially the lateral reticular nucleus and the medullary reticular formation), the dorsal mesencephalon (with spots of immunoreactivity in the outer subventricular zone at embryonic days 13 or 14 and many cells and fibres in the inferior colliculus from embryonic days 16-20) and the olfactory tubercle/ventral striatum from embryonic day 15 until birth. The period of development of cortical neurones extended from embryonic day 19 until postnatal day 21. A hitherto unreported feature unique to neuropeptide Y was the presence in certain parts of the cerebral cortex of transient cells at the base of the cortical plate bearing radial processes which transverse its width. They were present from embryonic day 17 until postnatal day 4 and were maximally developed at embryonic days 20 or 21, contributing at this age a substantial fibre projection through the immature corpus callosum. The abundance of neuropeptide Y in the prenatal rat brain suggests it may play an important role in development.  相似文献   

17.
Neuropeptide Y (NPY) is widely distributed throughout the central nervous system and in several sympathetically innervated tissues, including the kidney. Although many central and peripheral acting endogenous compounds alter renal function, the role of NPY is unknown. Accordingly, we examined the effects of intracerebroventricular (ICV) or intrarenal administration of NPY on sodium and water excretion in the barbiturate anesthetized rat. Sprague-Dawley rats were uninephrectomized 10 days prior to testing and, in rats undergoing ICV administration, cannulae were implanted 3 days prior to testing. For testing, rats were anesthetized (Nembutal) and the jugular vein, renal artery and ureter catheterized. The results showed that the intrarenal infusion of NPY at 1 microgram/kg/min increased sodium and water excretion relative to the saline control group without altering blood pressure or creatinine clearance. Similarly, ICV administration of NPY at 10 micrograms in a 5 microliters volume increased the excretion of sodium and water without altering blood pressure as compared to the artificial CSF group. These findings suggest that both central and peripheral NPY may contribute to the regulation of sodium and water excretion in the rat.  相似文献   

18.
To study the effect of adrenal steroids on neuropeptide Y (NPY) synthesis in the hypothalamic-pituitary system, we examined NPY expression in rats treated with dexamethasone (a synthetic glucocorticoid) by in situ hybridization and immunohistochemistry. Rats were injected daily with dexamethasone (0.2mg/100g/day for 10 days, sc) or sesame oil (vehicle control), or non-injected (intact control). Relative staining area for corticotropin-releasing hormone or neurophysin II, a vasopressin carrier protein, was increased in the external zone of the median eminence in vehicle control, but was equivalent to that of intact control in the dexamethasone-injected group. Density of NPY-stained fiber varicosities was drastically increased in the external, but not the internal, zone of dexamethasone-injected group, coinciding with the increased NPY hybridization signal level in the arcuate nucleus. Dual-labeling experiments revealed no colocalization of NPY with hypophysiotropic or other peptides examined in single fibers of the median eminence. In the dexamethasone-injected group, expressions of NPY mRNA and peptide were detectable in a few pituitary cells, with some being corticotropes. These results suggest that NPY plays hormonal roles in the hypothalamic-pituitary-adrenal axis.  相似文献   

19.
海洛因依赖对大鼠直肠神经肽Y表达的影响   总被引:1,自引:0,他引:1  
目的探讨海洛因依赖期间大鼠直肠内神经肽Y(NPY)免疫反应阳性细胞的形态学改变。方法选取成年SD大鼠,分为海洛因依赖组、盐水对照组和正常对照组,皮下注射海洛因建立大鼠海洛因依赖模型,取直肠组织用免疫组织化学SABC法及图像分析法进行研究。结果与正常及盐水对照组比较,海洛因依赖组大鼠直肠NPY阳性细胞的细胞数均增多。图像分析显示海洛因依赖期间大鼠直肠内NPY阳性细胞的平均灰度值均低于正常及盐水对照组(P〈0.05);以17 d时间组最低(P〈0.05)。结论海洛因依赖期间直肠NPY阳性细胞的平均灰度值发生变化,提示NPY合成和分泌增多。  相似文献   

20.
Neuropathic pain that results from injury to the peripheral or CNS responds poorly to opioid analgesics. Y1 and Y2 receptors for neuropeptide Y (NPY) may, however, serve as targets for analgesics that retain their effectiveness in neuropathic pain states. In substantia gelatinosa neurons in spinal cord slices from adult rats, we find that NPY acts via presynaptic Y2 receptors to attenuate excitatory postsynaptic currents (EPSCs) and predominantly on presynaptic Y1 receptors to attenuate glycinergic and GABAergic inhibitory postsynaptic currents (IPSCs). Because NPY attenuates the frequency of TTX-resistant miniature EPSCs and IPSCs, perturbation of the neurotransmitter release process contributes to its actions at both excitatory and inhibitory synapses. These effects, which are reminiscent of those produced by analgesic opioids, provide a cellular basis for previously documented spinal analgesic actions mediated via Y1 and Y2 receptors in neuropathic pain paradigms. They also underline the importance of suppression of inhibition in spinal analgesic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号