首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
伊曲康唑固体分散体制备及体外溶出实验   总被引:6,自引:0,他引:6  
目的:运用固体分散体技术提高难溶性药物伊曲康唑的溶解度及体外溶出速率.方法:选用聚乙烯吡咯烷酮(PVPK30)为载体,采用喷雾干燥法制备伊曲康唑固体分散体,通过差热分析及X射线衍射对固体分散体进行鉴定,比较考察伊曲康唑及其物理混合物和固体分散体的溶出特性.结果:差热分析、X射线衍射图谱表明药物以无定形状态分散于载体中;体外溶出结果表明固体分散体能显著增加药物在水及人工胃液中的溶出度(45 min时1:4固体分散体体外溶出度为伊曲康唑的11.5倍.1:4固体分散体在0.1 mo1·L-1盐酸中溶解度是伊曲康唑的67倍).结论:伊曲康唑固体分散体能明显提高伊曲康唑的溶解度及体外溶出速率.  相似文献   

2.
张庆刚  赵星星 《齐鲁药事》2013,(9):526-527,556
目的采用热熔挤出技术制备难溶性药物吡罗昔康固体分散体,来提高其溶出速率。方法以共聚维酮(PVP-VA64)为亲水性载体材料,聚乙二醇6000为增塑剂,采用热熔挤出技术制备吡罗昔康固体分散体。通过比较差示扫描量热图谱和累积溶出曲线,来表征和评价所制备的固体分散体。结果所制备的固体分散体溶出速率较物理混合物均显著提高。结论热熔挤出技术适用于制备吡罗昔康固体分散体,药物是以无定型分散在载体中,溶出度得到显著提高。  相似文献   

3.
热熔挤出技术提高水飞蓟素溶出度的初步研究   总被引:9,自引:1,他引:9  
杨睿  唐星  黄惠锋 《中国新药杂志》2005,14(11):1305-1308
目的:研究热熔挤出技术是否提高难溶性药物溶出度.方法:以难溶性水飞蓟素为模型药物,以泊洛沙姆-188为亲水性载体,采用热熔挤出技术和熔融法分别制备挤出物和固体分散体,比较两者的差示扫描量热(DSC)图谱和累积溶出曲线.结果:挤出物是分散程度较高的固体分散体,DSC图谱中药物的吸热峰均消失,载体泊洛沙姆-188的吸热峰向低温方向移动,挤出物中的移行程度大于固体分散体;药物在90 min时从挤出物中溶出90.63%,而在固体分散体中的溶出量为71.06%.结论:热熔挤出技术可提高水飞蓟素的溶出度,且效果优于熔融法.  相似文献   

4.
热熔挤出法制备槲皮素固体分散体   总被引:2,自引:2,他引:2  
目的采用热熔挤出技术制备难溶性药物槲皮素的固体分散体,提高其溶出速率。方法以聚丙烯酸树脂(EudragitEPO)、聚维酮(PVP-K30)、共聚维酮(PVP-VA,Kollidon VA64)为亲水性载体材料,使用双螺杆热熔挤出机制备槲皮素固体分散体,通过体外溶出度测定、差示扫描量热法(DSC)、傅立叶红外光谱(FTIR)和X射线衍射法(XRD)来表征和评价所制备的固体分散体。结果制备的槲皮素固体分散体,与原料药相比,药物溶出得到显著提高,在人工胃液中3 min时处方槲皮素-EPO(1∶9)的药物溶出度可达到67%,处方槲皮素-木糖醇-PVPK30(1∶3∶6)的药物溶出度可达到65%,而在60 min时原料药溶出度不足10%。XRD图谱显示药物晶体衍射峰消失,DSC图谱显示药物熔点吸热峰消失,提示药物是以无定形态分散在载体材料中。结论热熔挤出技术可用于制备槲皮素固体分散体,使药物以无定型态高度分散在载体中,溶出度得到显著提高。  相似文献   

5.
目的 研究二氯甲烷-乙醇混合溶剂组分比对喷雾干燥制备伊曲康唑固体分散体物理性质的影响。方法 采用HPLC测定室温下伊曲康唑在不同体积比的二氯甲烷-乙醇混合溶剂中的平衡溶解度。以PVP VA64为载体,体积比分别为100:0、90:10、70:30、50:50的二氯甲烷-乙醇混合液为溶剂,采用喷雾干燥法制备伊曲康唑固体分散体,通过扫描电镜、差示扫描量热法、接触角测定仪和体外溶出试验对制得的固体分散体进行表征。采用差示扫描量热法考察固体分散体在90℃放置48,96,192 h后的物理稳定性。结果 伊曲康唑溶解度的大小取决于二氯甲烷-乙醇混合溶剂的组成,在不同体积比的二氯甲烷-乙醇混合溶剂中的溶解度差别很大。喷雾干燥制得的4种伊曲康唑固体分散体均为无定形固体分散体,具有单一的玻璃化转变温度、不同的形态和润湿性。体外溶出试验表明相对于原料药,制备得到的4种伊曲康唑固体分散体溶出速率显著提高。90℃高温加速稳定性试验放置后的固体分散体显示不同的物理稳定性。结论 二氯甲烷-乙醇混合溶剂组分比会对喷雾干燥制备伊曲康唑固体分散体的物理性质产生显著影响,其原因是由于伊曲康唑在混合溶剂中的溶解度差异会导致药物沉淀析出的时间不同,并进一步影响药物在固体分散体中的分布行为和物理稳定性。  相似文献   

6.
目的应用热熔挤出技术制备难溶性药物联苯双酯(bifendate,DDB)的固体分散体,提高DDB的溶出度。方法以共聚维酮(S630)(PVP,N-乙烯基-2-吡咯烷酮和醋酸乙烯酯以质量比为60∶40的比例合成的水溶性共聚物)、PEG6000、丙烯酸树脂Ⅳ为亲水性载体辅料,采用同向双螺杆热熔挤出技术制备DDB固体分散体。比较不同载体挤出物的差示扫描量热图谱和累积溶出曲线,从而判断热熔挤出法对提高DDB溶出度方面的作用。结果采用热熔挤出技术制备的固体分散体可以显著的提高DDB的溶出度。结论采用HME方法制备DDB固体分散体可以显著提高药物的溶出度。  相似文献   

7.
目的制备螺内酯固体分散体,提高其体外溶出。方法分别以亲水性高分子材料聚乙烯己内酰胺-聚醋酸乙烯酯-聚乙二醇接枝共聚物和乙烯吡咯烷酮-醋酸乙烯酯共聚物为载体,采用热熔挤出技术制备螺内酯固体分散体,以有关物质、体外溶出为指标,筛选、优化处方及工艺,并应用差示扫描量热法、X射线衍射法、红外光谱法、偏振光显微镜表征最优固体分散体。结果采用热熔挤出技术可以制备螺内酯固体分散体;最优处方中,螺内酯以分子或无定型状态分散于载体中;固体分散体显著提高了螺内酯在水中的溶出。结论热熔挤出技术制备的固体分散体显著地提高了螺内酯的体外溶出。  相似文献   

8.
阿奇霉素固体分散体制备工艺研究   总被引:1,自引:0,他引:1  
目的比较不同方法制备难溶性阿奇霉素固体分散体的体外溶出度,优化制备工艺。方法选择不同载体,并采用热熔挤出法和喷雾干燥法制备阿奇霉素固体分散体,并与气流粉碎技术制备的样品比较。采用饱和溶解度和体外累积溶出度判定不同方法所制备成品的差异。结果 2种固体分散体制备技术均能加快药物的溶出度,同时均优于气流粉碎制备的样品。结论相比热熔挤出法,采用喷雾干燥法制备的固体分散体更能显著提高药物的饱和溶解度和溶出度。  相似文献   

9.
目的 为了解决伊曲康唑的难溶性问题,提高其体外溶出度,为伊曲康唑多颗粒体系进一步工业化放大生产提供参考。方法 采用流化床底喷包衣工艺,制备伊曲康唑多颗粒体系微丸,将伊曲康唑与羟丙甲纤维素溶于有机溶剂后喷载于蔗糖丸芯表面,在微丸表面形成固体分散体。采用单因素法考察流化床底喷包衣制备参数。采用星点设计-响应面法,以溶出度、上药效率及粘连率为响应值,对伊曲康唑多颗粒体系的药物载体质量比和丸芯增重进行优化。制备样品对优化后处方进行验证,通过扫描电子显微镜观察伊曲康唑多颗粒体系的镜下层级结构,运用差示扫描量热法(DSC)及X-射线粉末衍射法(XRD)对伊曲康唑多颗粒体系微丸中的固体分散体进行表征,并通过对比伊曲康唑微丸和物理混合物在0.1 N HCl溶出介质中的溶出曲线,对其增溶效果进行验证。结果 单因素法确定流化床底喷包衣参数,泵液速度为3.0~5.0 mL?min-1,雾化压力为1.5 Bar,进风量为110 m3?h-1,物料温度为35 ℃;根据星点设计-响应面法拟合优化后处方的药物载体质量比为1:1.5,丸芯增重为75%,此时各响应值达到期望值。根据扫描电子显微镜结果可知伊曲康唑多颗粒体系微丸直径约为900 μm,微丸的蔗糖丸芯直径约为570 μm,上药后载药层厚度约为110 μm,包封层厚度约为11 μm。通过DSC与XRD结果可知伊曲康唑多颗粒体系微丸中伊曲康唑形成了均匀的固体分散体,为无定形。在0.1 N HCl溶出介质中,第90 min多颗粒体系溶出度约为物理混合物的10倍,增溶效果显著。结论 将伊曲康唑制成多颗粒体系微丸,形成固体分散体,可以显著改善伊曲康唑的体外溶出度。  相似文献   

10.
王磊  李德刚  李晓祥 《安徽医药》2017,21(5):821-824
目的 利用热熔挤出法制备难溶性的药物苯氧乙酸吡嗪酯类化合物FC固体分散体,提高FC的溶出度.方法 选用亲水性的PVPK30、PEG6000、Poloxamer188作为载体辅料,采用热熔挤出技术制备FC固体分散体.通过比较药物FC在不同载体挤出物中的差示扫描量热图和累积溶出曲线图,来判断热熔挤出技术对提高难溶性药物FC溶出度方面的作用.结果 利用热熔挤出法制备的固体分散体能够显著的提高FC的溶出度.结论 用热熔挤出法制备的FC固体分散体,在提高难溶性药物的溶出度方面具有显著的作用.  相似文献   

11.
Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced dissolution.  相似文献   

12.
The aim of the current research project was to explore the possibilities of combining pressurized carbon dioxide with hot stage extrusion during manufacturing of solid dispersions of itraconazole and polyvinylpyrrolidone-co-vinyl acetate 64 (PVP-VA 64) and to evaluate the ability of the pressurized gas to act as a temporary plasticizer as well as to produce a foamed extrudate. Pressurized carbon dioxide was injected into a Leistritz Micro 18 intermeshing co-rotating twin-screw melt extruder using an ISCO 260D syringe pump. The physicochemical characteristics of the extrudates with and without injection of carbon dioxide were evaluated with reference to the morphology of the solid dispersion and dissolution behaviour and particle properties. Carbon dioxide acted as plasticizer for itraconazole/PVP-VA 64, reducing the processing temperature during the hot stage extrusion process. Amorphous dispersions were obtained and the solid dispersion was not influenced by the carbon dioxide. Release of itraconazole from the solid dispersion could be controlled as a function of processing temperature and pressure. The macroscopic morphology changed to a foam-like structure due to expansion of the carbon dioxide at the extrusion die. This resulted in increased specific surface area, porosity, hygroscopicity and improved milling efficiency.  相似文献   

13.
Solid dispersions containing different ratios of itraconazole and hydroxypropylmethylcellulose (HPMC) were prepared by solvent casting. Based on dose, differential scanning calorimetry and dissolution results, a drug/polymer ratio of 40/60 w/w was selected in order to prepare dispersions by melt extrusion. The melt extrusion process was characterized using a design of experiments (DOE) approach. All parameter settings resulted in the formation of an amorphous solid dispersion whereby HPMC 2910 5 mPas prevents re-crystallization of the drug during cooling. Dissolution measurements demonstrated that a significantly increased dissolution rate was obtained with the amorphous solid dispersion compared to the physical mixture. The outcome of DOE further indicated that melt extrusion is very robust with regard to the itraconazole/HPMC melt extrudate characteristics. Stability studies demonstrated that the itraconazole/HPMC 40/60 w/w milled melt extrudate formulation is chemically and physically stable for periods in excess of 6 months as indicated by the absence of degradation products or re-crystallization of the drug.  相似文献   

14.
Purpose

The purpose of this study was to explore the feasibility of developing amorphous solid dispersion (ASD) by inducing acid-base interaction at an elevated temperature using hot melt extrusion.

Methods

Itraconazole and glutaric acid, which do not form salt with each other, were selected as, respectively, model basic drug and weak organic acid. A 1:4:1w/w mixture of itraconazole, glutaric acid and a polymer, Kollidon®VA64, was melt extruded at 95°C. The ground extrudate was characterized by DSC and PXRD and then tested for dissolution at pH 1.2, followed by a change in pH to 5.5.

Results

Despite the high melting point of 168°C, itraconazole dissolved in glutaric acid at around the melting temperature of acid (~98°C), and physically stable ASD was produced when the formulation was extruded at 95°C. Capsules containing 100-mg equivalent of itraconazole dissolved rapidly at pH 1.2 producing highly supersaturated solution. When the pH was changed from 1.2 to 5.5, very fine suspensions, facilitated by the presence of Kollidon®VA64, was formed.

Conclusions

Physically stable ASD of itraconazole with high drug load was prepared by interaction with glutaric acid in a hot melt extruder. This may be used as a platform technology for the development ASD of most poorly water-soluble basic drugs.

  相似文献   

15.
Solid dispersions made up of itraconazole and Inutec SP1, a new polymeric surfactant, were prepared by spray drying and hot-stage extrusion. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were used to evaluate the miscibility of the components of the dispersions, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGFsp) to evaluate the pharmaceutical performance of itraconazole from the solid dispersions. DSC analysis showed that the solid dispersions are phase separated systems made up of glassy and crystalline itraconazole and amorphous Inutec SP1. The amount of crystalline drug substance was higher in the dispersions prepared by hot-stage extrusion and was clearly a function of the drug concentration. Since no crystallinity could be detected by XRD points to the fact that the crystallites formed are very small in size. Despite the presence of glassy and crystalline clusters, the dissolution properties of the solid dispersions were significantly improved in comparison to pure itraconazole (glassy or crystalline) or physical mixtures with Inutec SP1. This study proves the potential of the new polymeric surfactant as a carrier in the formulation of solid dispersions for poorly soluble drugs.  相似文献   

16.
Purpose The purpose of the study is to evaluate the effect of surfactant-plasticizers on the physical stability of amorphous drug in polymer matrices formed by hot melt extrusion.Method Solid dispersions of a poorly soluble drug were prepared using PVP-K30, Plasdone-S630, and HPMC-E5 as the polymeric carriers and surfactants as plasticizers. The solid dispersions were produced by hot melt extrusion at temperatures 10°C above and below the glass transition temperature (Tg) of the carrier polymers using a 16 mm-Haake Extruder. The surfactants tested in this study included Tween-80 and Docusate Sodium. The particle size of the extrudate was reduced to have mean of 100–200 micron. The physical stability of the solid dispersions produced was monitored at 30°C/60% for six-months and at 60°C/85% for two-months in open HDPE bottles. Modulated differential scanning calorimetry, polarized light microscopy, powder X-ray diffraction and dissolution testing was performed to assess the physical stability of solid dispersions upon stress testing.Results The dispersions containing HPMC-E5 were observed especially to be susceptible to physical instability under an accelerated stress conditions (60°C/85%RH) of the solid dispersion. About 6% conversion of amorphous drug to crystalline form was observed. Consequently, the system exhibits similar degree of re-crystallization upon addition of the surfactant. However, under 30°C/60%RH condition, the otherwise amorphous Drug-HPMC-E5 system has been destabilized by the addition of the surfactant. This effect is much more reduced in the extruded solid dispersions where polymeric carriers such as Plasdone S-603 and PVP-K30 (in addition to surfactants) are present. Furthermore, the drug release from the solid dispersions was unaffected at the stress conditions reported above.Conclusions Possible reasons for the enhanced stability of the dispersions are due to the surfactants ability to lower the viscosity of the melt, increase the API solubility and homogeneity in the carrier polymer. In contrast, while it is possible for the surfactants to destabilize the system by lowering the Tg and increasing the water uptake, the study confirms that this effect is minimal. By and large, the surfactants appear to be promising plasticizers to produce solid dispersions by hot melt extrusion, in so doing improving dissolution rate without compromising the physical stability of the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号