首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985. Received: 7 March 2002/Accepted: 19 August 2002  相似文献   

2.
Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation, and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60-cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 g) for 30 min in a refrigerated centrifuge maintained at 4°C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment-specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: ease of extraction, volumes of pore water isolated, minimal preparation time, and least time required for extraction of pore water from multiple samples at one time. Received: 24 July 1997/Accepted: 14 November 1997  相似文献   

3.
Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p′-DDE. Concentrations of ΣDDT (sum of o,p′- and p, p′ forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal-Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ΣDDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ΣDDT in tissue, as a function of ΣDDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ΣDDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States. Received: 6 August 1996/Accepted: 5 May 1997  相似文献   

4.
5.
6.
To characterize the partitioning of metals in a stream ecosystem, concentrations of trace metals including As, Cd, Cu, Pb, and Zn were measured in water, colloids, sediment, biofilm (also referred to as aufwuchs), macroinvertebrates, and fish collected from the Boulder River watershed, Montana. Median concentrations of Cd, Cu, and Zn in water throughout the watershed exceeded the U.S. EPA acute and chronic criteria for protection of aquatic life. Concentrations of As, Cd, Cu, Pb, and Zn in sediment were sufficient in the tributaries to cause invertebrate toxicity. The concentrations of As, Cu, Cd, Pb, and Zn in invertebrates from lower Cataract Creek (63, 339, 59, 34, and 2,410 μg/g dry wt, respectively) were greater than the concentrations in invertebrates from the Clark Fork River watershed, Montana (19, 174, 2.3, 15, and 648 μg/g, respectively), that were associated with reduced survival, growth, and health of cutthroat trout fed diets composed of those invertebrates. Colloids and biofilm seem to play a critical role in the pathway of metals into the food chain and concentrations of As, Cu, Pb, and Zn in these two components are significantly correlated. We suggest that transfer of metals associated with Fe colloids to biological components of biofilm is an important pathway where metals associated with abiotic components are first available to biotic components. The significant correlations suggest that Cd, Cu, and Zn may move independently to biota (biofilm, invertebrates, or fish tissues) from water and sediment. The possibility exists that Cd, Cu, and Zn concentrations increase in fish tissues as a result of direct contact with water and sediment and indirect exposure through the food chain. However, uptake through the food chain to fish may be more important for As. Although As concentrations in colloids and biofilm were significantly correlated with As water concentrations, As concentrations in fish tissues were not correlated with water. The pathway for Pb into biological components seems to begin with sediment because concentrations of Pb in water were not significantly correlated with any other component and because concentrations of Pb in the water were often below detection limits.  相似文献   

7.
8.
Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) μg/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3–7.4 ng/L, with methyl mercury accounting for <0.03–52% of the total mercury. Consumption of fish containing 0.31 μg mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health. Received: 3 July 1997/Accepted: 2 September 1997  相似文献   

9.
10.
Risk assessments of metals in sediments are often based on sediment-quality guidelines (SQGs) and do not take into account the chemistry of the overlying water. To determine the effects of water chemistry on the toxicity of metals in sediments, both water and sediment were collected from five metal-contaminated lakes with widely differing water chemistry near Canadian smelters. Metal bioaccumulation by Hyalella azteca was measured in laboratory exposures with each sediment and with overlying water from several different sources. The effect of water chemistry on Ni bioaccumulation from sediment was minimal. However, the effect was substantial for Cd because the effect of water chemistry on sediment-water partitioning was opposite to, and augmented, the effect of water chemistry on the Hyalella/water accumulation ratio. The effect of overlying water must be considered when conducting risk assessments for some metals in sediment (e.g., Cd). Examples are provided of equations that can be used to adjust cause-and-effect–based SQGs for water chemistry (e.g., using calcium concentrations or pH).  相似文献   

11.
Samples of four different species of seaweed were collected monthly between October 2000 and March 2001 from the coast of the Strait of Magellan, Chile to establish baseline levels of trace metals (silver, total mercury, nickel, lead, antimony, vanadium and zinc) and to compare the accumulation capacity among species. The algae included in the study were Adenocystis utricularis (n = 15); Enteromorpha sp. (n = 11), Mazzaella laminarioides (n = 12) and Porphyra columbina (n = 6). The concentration range of each metal in μg g−1 dry weight varied as follows: Ag = ND-0.3, Hg = ND-0.02, Ni = ND-12.6, Pb = ND-11.2, Sb = ND-1.97, V = ND-11.34 and Zn = 14.10-79. Results showed that levels of Ag, Hg, Ni, Pb, Sb, V and Zn for all species were similar to those found in other studies for non-contaminated areas with very little influence from anthropogenic activity. Also among the four species studied macroalgae Enteromorpha sp. had the highest capacity for metal accumulation and could therefore be considered as a biomonitor for future studies in the area.  相似文献   

12.
In this study, the concentrations of arsenic and boron were determined in the water and the sediment, as well as in the muscle tissues of Squalius cephalus, Alburnoides bipunctatus, Barbus plebejus and Capoeta tinca from Emet Stream. The fish samples were caught in May 2011 and September 2012. The metal concentrations in the water samples were as follows: arsenic was 137.1–1002 µg L?1, and boron was 2421–14490 µg L?1. The metal concentrations in the sediment samples were as follows: arsenic was 14.51–3317.1 mg kg?1, and boron was 14.22–1014.01 mg kg?1. The mean tissue concentration of arsenic was lower than the TFC and WHO limits. Boron has been identified in fish tissues at concentrations between 0.26 and 2.96 mg kg?1. The bioaccumulation in the muscle tissues of all fish species caught from Emet Stream did not exceed the limit values.  相似文献   

13.
The concentrations of heavy metals Ag, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn and Zn were analysed in water and surface sediments of five Rift Valley lakes Nakuru, Elementaita, Naivasha, Bogoria and Baringo in Kenya. The dissolved mean concentration levels (μg/L) in water ranged within 13.0–185.0 (Ag), 2.0–43.0 (Cd), 5.0–316.0 (Co), 25.0–188.0 (Cr), 4.7–100.0 (Cu), 50.0–282.0 (Mn), 19.0–288.0 (Ni), 25.0–563.0 (Pb), 300.0–1050.0 (Sn) and 29.0–235.0 (Zn). The mean sediment concentrations (in μg/g (dry weight)) ranged within 0.1–0.35 (Ag), 0.05–1.18 (Cd), 0.17–1.38 (Co), 1.94–4.91 (Cr), 1.46–20.95 (Cu), 667.7–3946.8 (Mn), 11.69–39.72 (Ni), 10.92–38.98 (Pb), 17.21–56.52 (Sn) and 96.2–229.6 (Zn). The data indicate that some of the sites analysed, especially in Lake Nakuru, had relatively higher concentration levels of heavy metals Cd, Co, Cu, Pb, Ni, and Zn in the water which points to anthropogenic addition. However, potential influence of geochemical processes on the concentration levels in sediment is also shown in Co, Ni, and Cu which were more concentrated in the remote Lake Baringo sediment as well as in Pb and Mn which were more concentrated in the remote Lake Bogoria sediment. Data on some important limnological parameters including pH, salinity, electrical conductivity and temperature are also presented.  相似文献   

14.
Organotin compounds (OTs) and representative booster biocides were measured in sediment and mussels from Otsuchi Bay, Japan. The mean amounts of tributyltin (TBT) and triphenyltin (TPT) compounds in sediment were 13 μg kg−1 dry and 3 μg kg−1 dry, respectively. Representative booster biocides (Sea-Nine 211, Diuron, Dichlofluanid, Irgarol 1501, M1, which is a degradation compound of Irgarol 1051, and Copper pyrithione) were also detected in sediment from Otsuchi Bay. OT concentrations were higher than those of the measured booster biocides. Otsuchi Bay was divided into four parts by cluster analysis based on OT concentrations in sediment sampled from the bay. These areas included the vicinity of a shipyard, a small fishing port, the closed inner area of the bay, and the mouth of the bay. Higher concentrations of TBT and TPT and a higher ratio of TBT to total BTs were observed in the vicinity of the shipyard. A higher concentration of TPT in comparison with TBT was detected in a small fishing port. Furthermore, OT concentrations in the mouth of the bay were higher than those in the closed-off section. OT concentrations in mussels decreased with distance from the shipyard. Otsuchi Bay was then divided into three parts by cluster analysis based on the concentrations of representative booster biocides found in the bay’s sediment. These areas included the vicinity of a shipyard, a small fishing port, and other sites. Concentrations of Diuron and Irgarol 1051 in the vicinity of a shipyard and a small fishing port were dramatically high in comparison with the other sites. Copper pyrithione and Dichlofluanid in addition to Diuron and Irgarol 1051 were also detected in the area of a small fishing port. The concentrations of antifouling biocides were highest in the water in front of the shipyard and showed a marked decrease with distance from the shipyard.  相似文献   

15.
16.
The concentrations (mg/kg dry weight) of Cu, Zn, As, Cd, Hg, and Pb were measured in benthic macroalgae and invertebrates collected in the upper transboundary tributaries of the Onon River, Transbaikalia, Russia. The background concentration ranges in Cladophora fracta, Ulothrix zonata and Zygnemataceae were: 6.4–9.1 for Cu, 27.2–73.1 for Zn, 0.4–0.9 for Cd, 6.7–35.3 for As, 0.01–0.02 for Hg, and 1.9–4.3 for Pb. In Brachycentrus americanus and Lymnaea media the concentration ranges were: 9.0–25.5 for Cu, 21.4–96.0 for Zn, 0.1–0.3 for Cd, 1.7–5.6 for As, 0.004–0.02 for Hg, and 0.4–2.2 for Pb. The concentrations of Cu, Zn, Pb, and Hg were consistent with data for uncontaminated areas. Under contamination conditions the concentrations in C. fracta were: 938 for Zn, 513 for Pb, and 9.5 for Cd; in Lymnaea media were: 46.8 for Cu, 176 for Zn, 52.3 for Pb, and 3.0 for Cd. All the organisms showed a common response to contamination, and consequently can be used as biomonitors of contamination by heavy metals.  相似文献   

17.
This study investigated interactions between dietary fat intake and IL-6 polymorphisms on obesity and serum lipids in black and white South African (SA) women. Normal-weight and obese, black and white women underwent measurements of body composition, serum lipids and dietary fat intake, and were genotyped for the IL-6 −174 G>C, IVS3 +281 G>T and IVS4 +869 A>G polymorphisms. In black women the IVS4 +869 G allele was associated with greater adiposity, and with increasing dietary fat intake adiposity increased in the IVS3 +281 GT+GG and IVS4 +869 AA or AG genotypes. In white women, with increasing omega-3 (n-3) intake and decreasing n-6:n-3 ratio, body mass index (BMI) decreased in those with the −174 C allele, IVS3 +281 T allele and IVS4 +869 AG genotype. In the white women, those with the IVS3 +281 T allele had lower triglycerides. Further, with increasing n-3 polyunsaturated fatty acid (PUFA); triglyceride and total cholesterol:high-density lipoprotein cholesterol (T-C:HDL-C) ratio decreased in those with the −174 C allele. In black women, with increasing total fat intake, triglycerides and T-C:HDL-C ratio increased in those with the IVS4 +869 G allele. This study is the first to show that dietary fat intake modulates the relationship between the IL-6 −174 G>C, IVS3 +281 G>T and IVS4 +869 A>G polymorphisms on obesity and serum lipids in black and white SA women.  相似文献   

18.
Concentrations of 12 perfluorinated compounds (PFCs) were measured in 21 representive water, sediment and soil samples from Guanting Reservoir and vicinity. Perfluorooctanoic acid (PFOA) was the predominant PFCs with concentrations of 0.55–2.3 ng/L, <LOQ to 0.68 ng/g dw and <LOQ to 2.8 ng/g dw in water, sediment and soil, respectively. Perfluorododecanoic acid (PFDoA) was frequently detected in solid matrices, with concentrations of <LOQ to 0.18 ng/g dw in sediment and 0.13–0.26 ng/g dw in soil. PFCs were detected in all environmental matrices sampled, but concentrations found throughout the watershed were less than those reported from other locations.  相似文献   

19.
The major beds of oyster along the central-west coast of India are exposed to different anthropogenic activities and are severely exploited for human consumption. In this viewpoint, tissues of oyster Crassostrea madrasensis, C. gryphoides and Saccostrea cucullata were analyzed for Cu, Ni, Cd and Pb concentrations (dry weight) from Chicalim Bay, Nerul Creek and Chapora Bay in pre-monsoon, monsoon and post-monsoon seasons. A higher concentration of Cu (134.4–2167.9 mg kg?1) and Cd (7.1–88.5 mg kg?1) was found, which is greater than the recommended limits in all the three species (and sites). Moreover, significant (p?<?0.05) variations were observed for all the metals concentrations among the species, seasons and sites. The high concentrations of Cd and Cu in tissues of edible oyster pose a threat to human health. Therefore, continuous monitoring, people awareness and a stringent government policy should be implemented to mitigate the metal pollution along the studied sites.  相似文献   

20.
Butyltin (Bts) and phenyltin compounds (Pts) were measured in water, sediment, plankton, and mussels collected from eight stations in the harbor area of the Port of Osaka in 1996, and were compared with those of Otsuchi Bay. The levels of tributyltin (TBT) compounds in all samples from the Port of Osaka were slightly high in marinas and mooring areas of small and medium-hull vessels. Of total Bts, the ratio of TBT was under 50% in water and was dominant in sediment, plankton, and mussels. Triphenyltin (TPT) compounds in water were not detected. TPT was present at lower levels than TBT in sediment, plankton, and mussels. Of total Pts, monophenyltin (MPT) compounds and diphenyltin (DPT) compounds represented a high proportion in sediment, while TPT was dominant in plankton and mussels. The concentrations of TBT in water from the Port of Osaka were lower than those from Otsuchi Bay, however TBT concentrations in sediment, plankton, and mussels from the Port of Osaka were higher than those from Otsuchi Bay. The difference of TBT concentration among stations in the Port of Osaka was slight. In contrast, the levels of TBT in Otsuchi Bay were markedly higher at a station near the shipyard. Though TPT in water from the Port of Osaka was not detected, trace amounts of TPT was found in seawater from Otsuchi Bay. The levels and detected frequencies of TPT in sediment, plankton, and mussels from the Port of Osaka were lower than in those from Otsuchi Bay. The partition coefficients of Bts to sediment, plankton, and mussels from the Port of Osaka were higher than those of dibutyltin (DBT) compounds and MBT and those of TBT to plankton and mussels were higher than those in sediment. The partition coefficients of TBT to sediment and biological samples from the Port of Osaka were higher level than those in Otsuchi Bay. Received: 11 December 1997/Accepted: 2 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号