首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Therapeutic angiogenesis offers promise as a novel treatment for ischemic heart disease, particularly for patients who are not candidates for current methods of revascularization. The goal of treatment is both relief of symptoms of coronary artery disease and improvement of cardiac function by increasing perfusion to the ischemic region. Protein-based therapy with cytokines including vascular endothelial growth factor and fibroblast growth factor demonstrated functionally significant angiogenesis in several animal models. However, clinical trials have yielded largely disappointing results. The attenuated angiogenic response seen in clinical trials of patients with coronary artery disease may be due to multiple factors including endothelial dysfunction, particularly in the context of advanced atherosclerotic disease and associated comorbid conditions, regimens of single agents, as well as inefficiencies of current delivery methods. Gene therapy has several advantages over protein therapy and recent advances in gene transfer techniques have improved the feasibility of this approach. The safety and tolerability of therapeutic angiogenesis by gene transfer has been demonstrated in phase I clinical trials. The utility of therapeutic angiogenesis by gene transfer as a treatment option for ischemic cardiovascular disease will be determined by adequately powered, randomized, placebo-controlled Phase II and III clinical trials. Cell-based therapies offer yet another approach to therapeutic angiogenesis. Although it is a promising therapeutic strategy, additional preclinical studies are warranted to determine the optimal cell type to be administered, as well as the optimal delivery method. It is likely the optimal treatment will involve multiple agents as angiogenesis is a complex process involving a large cascade of cytokines, as well as cells and extracellular matrix, and administration of a single factor may be insufficient. The promise of therapeutic angiogenesis as a novel treatment for no-option patients should be approached with cautious optimism as the field progresses.  相似文献   

2.
3.
Therapeutic angiogenesis for ischemic diseases   总被引:2,自引:0,他引:2  
The clinical consequences of peripheral arterial disease include pain on walking, pain at rest and loss of tissue integrity in the distal ischemic limbs. Although development of beneficial drugs and intervention devices do contribute to the treatment of this disease, critical limb ischemia is estimated to develop in 500 to 1,000 individuals per million per year. As angiogenic growth factors can stimulate the development of collateral arteries, a concept called "therapeutic angiogenesis" is now evaluated in the clinical fields. Recent progress in molecular biology has led to the development of gene therapy as a new strategy to treat a variety of cardiovascular diseases using angiogenic growth factors such as vascular endothelial growth factor (VEGF). Therapeutic angiogenesis using angiogenic growth factors is expected to be a new treatment for patients with severe ischemic heart or peripheral arterial disease.  相似文献   

4.
Despite improvements in its medical and surgical management, ischemic coronary disease remains responsible for significant morbidity, mortality, and economic burden in developed nations. Therapeutic myocardial angiogenesis is an attractive treatment option for patients with end-stage coronary disease who have failed percutaneous and surgical methods of revascularization. Over the past decade, our understanding of the biology of new blood vessel formation has improved significantly, and consequently, the use of growth factors to induce myocardial angiogenesis has been attempted in preclinical and clinical trials. Although growth factor therapy had demonstrated tremendous success in animal models, clinical trials have shown limited benefit in patients with coronary disease. Vascular endothelial growth factors and fibroblast growth factors are perhaps the most potent inducers of angiogenesis that have been used in animal models, and the only ones that have been used in clinical trials. This review outlines the biology of new vessel formation and the effects of these growth factors in the context of myocardial angiogenesis with an emphasis on the effects on the endothelium. It also provides a brief overview of delivery strategies and summarizes the preclinical and clinical evidence relating to exogenous growth factor delivery for myocardial angiogenesis. Lastly, we discuss the limitations and future challenges of angiogenic therapy.  相似文献   

5.
Hepatocyte growth factor is a mesenchyme-derived pleiotropic factor that regulates the growth, motility and morphogenesis of various types of cells, and is also a member of the angiogenic growth factors. Hepatocyte growth factor is secreted by vascular endothelial cells and smooth muscle cells, and the hepatocyte growth factor receptor, c-met, was also observed in these vascular cells. Treatment of human aortic endothelial cells with recombinant hepatocyte growth factor resulted in a significant increase in cell proliferation, accompanied by mitogen-activated protein kinase and Akt/protein kinase B phosphorylation. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As preclinical study of gene therapy using hepatocyte growth factor to treat peripheral arterial disease, naked hepatocyte growth factor plasmid was intramuscularly injected into the ischemic hind limb of rabbits in order to evaluate its angiogenic activity. Intramuscular injection of hepatocyte growth factor plasmid once on day 10 following surgery, produced significant augmentation of collateral vessel development in the ischemic limb on day 30. In the clinical setting, the authors further investigated the safety and efficacy of hepatocyte growth factor plasmid DNA in patients with critical limb ischemia, in a prospective open-labeled trial. Intramuscular injection of naked plasmid DNA was performed in the ischemic limbs of six patients with critical limb ischemia with arteriosclerosis obliterans (n = 3) or Buerger disease (n = 3) graded as Fontaine III or IV. In the efficacy evaluation, a reduction of pain scale of more than 1 cm on a visual analog pain scale was observed in five out of six patients. An increase in ankle pressure index of more than 0.1 was observed in five out of five patients. The long diameter of eight out of 11 ischemic ulcers in four patients was reduced by more than 25%. Intramuscular injection of naked hepatocyte growth factor plasmid is safe, feasible and can achieve successful improvement of ischemic limbs. Although the present data were obtained to demonstrate safety in a Phase I/early Phase II trial, the initial clinical outcome with hepatocyte growth factor gene transfer seems to indicate its usefulness as sole therapy for critical limb ischemia. Randomized placebo-controlled clinical trials of alternative dosing regimens of gene therapy will be required to define the efficiency of this therapy.  相似文献   

6.
Hepatocyte growth factor is a mesenchyme-derived pleiotropic factor that regulates the growth, motility and morphogenesis of various types of cells, and is also a member of the angiogenic growth factors. Hepatocyte growth factor is secreted by vascular endothelial cells and smooth muscle cells, and the hepatocyte growth factor receptor, c-met, was also observed in these vascular cells. Treatment of human aortic endothelial cells with recombinant hepatocyte growth factor resulted in a significant increase in cell proliferation, accompanied by mitogen-activated protein kinase and Akt/protein kinase B phosphorylation. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As preclinical study of gene therapy using hepatocyte growth factor to treat peripheral arterial disease, naked hepatocyte growth factor plasmid was intramuscularly injected into the ischemic hind limb of rabbits in order to evaluate its angiogenic activity. Intramuscular injection of hepatocyte growth factor plasmid once on day 10 following surgery, produced significant augmentation of collateral vessel development in the ischemic limb on day 30. In the clinical setting, the authors further investigated the safety and efficacy of hepatocyte growth factor plasmid DNA in patients with critical limb ischemia, in a prospective open-labeled trial. Intramuscular injection of naked plasmid DNA was performed in the ischemic limbs of six patients with critical limb ischemia with arteriosclerosis obliterans (n = 3) or Buerger disease (n = 3) graded as Fontaine III or IV. In the efficacy evaluation, a reduction of pain scale of more than 1 cm on a visual analog pain scale was observed in five out of six patients. An increase in ankle pressure index of more than 0.1 was observed in five out of five patients. The long diameter of eight out of 11 ischemic ulcers in four patients was reduced by more than 25%. Intramuscular injection of naked hepatocyte growth factor plasmid is safe, feasible and can achieve successful improvement of ischemic limbs. Although the present data were obtained to demonstrate safety in a Phase I/early Phase II trial, the initial clinical outcome with hepatocyte growth factor gene transfer seems to indicate its usefulness as sole therapy for critical limb ischemia. Randomized placebo-controlled clinical trials of alternative dosing regimens of gene therapy will be required to define the efficiency of this therapy.  相似文献   

7.
Therapeutic angiogenesis for critical limb ischemia: invited commentary.   总被引:3,自引:0,他引:3  
Lower extremity arterial occlusive disease results in tissue ischemia of the legs and is relatively common in the elderly. Clinically, it may be asymptomatic, cause muscle pain during exercise, or progress to a severe degree of ischemia that may result in limb loss. Although bypass surgery and angioplasty have increased the rate of limb salvage in these patients, amputation of the affected limb remains a common outcome for many patients. Therapeutic angiogenesis is the administration of angiogenic factors, or genes encoding these factors, to promote neovascularization and thereby increase blood flow to the ischemic leg. We have developed an animal model of hindlimb ischemia in which to study therapeutic angiogenesis. We chose nitric oxide as the angiogenic factor for our experiments because of its ability to induce angiogenesis, vasodilation, and inhibit inflammation. In this review, we will discuss our experience with our model of hindlimb ischemia, as well as discuss our results of gene therapy for therapeutic angiogenesis using nitric oxide.  相似文献   

8.
Currently, no effective pharmacological treatment is available for vascularisation defects in lower limbs. Many patients presenting with persistent pain and ischaemic ulcers are not suitable candidates for surgical or endovascular approaches. Further refinement of the available methods will undoubtedly lead to a more active approach towards treatment of peripheral arterial occlusive disease (PAOD). Recently, therapeutic angiogenesis, in the form of recombinant growth factor administration or gene therapy, has emerged as a novel tool to treat these patients. However, improved gene transfer methods and better understanding of blood vessel formation are required to bring therapeutic angiogenesis to clinical practice. Here we review the clinical problem (PAOD), mechanisms of blood vessel formation (angiogenesis, vasculogenesis and arteriogenesis), experimental evidence and clinical trials for therapeutic angiogenesis in critically ischaemic lower limbs. Also, angiogenic growth factors, including vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs), delivery methods, and vectors for gene transfer in skeletal muscle, are discussed. In addition to vascular growth, gene transfer of growth factors may enhance regeneration, survival, and innervation of ischaemic skeletal muscle. Nitric oxide (NO) appears to be a key mediator in vascular homeostasis and growth, and a reduction in its production by age, hypercholesterolemia or diabetes leads to the impairment of ischaemic disorders.  相似文献   

9.
Therapeutic angiogenesis for the treatment of ischemic disease can be attained through the delivery of recombinant growth factor proteins, through gene transfer or cell transplantation. Gene transfer associated with adenovirus or naked plasmid DNAs has been extensively studied in clinical trials. An investigational product, beperminogene perplasmid, is the naked plasmid DNA encoding the cDNA of human HGF, which has potent angiogenic activity. In several clinical trials, beperminogene perplasmid showed favorable safety and efficacy profile in the treatment of critical limb ischemia. This article reviews the results of pre-clinical and clinical studies of beperminogene perplasmid in the treatment of critical limb ischemia caused by peripheral arterial disease and Buerger’s disease.  相似文献   

10.
Therapeutic angiogenesis using angiogenic growth factor is expected to be a new treatment for with patients with critical limb ischemia. The first human clinical trial treating peripheral vascular disease was started in 1994 using vascular endothelial growth factor (VEGF). To date, other potent angiogenic growth factors, such as fibroblast growth factor(FGF) or hepatocyte growth factor(HGF), have been also estimated in clinical trials for peripheral arterial disease. Several results from phase 1 or 2 trials using VEGF, FGF and HGF gene were encouraging. Phase 3 trials are now ongoing and their results are expected.  相似文献   

11.
12.
Peripheral artery disease is a progressive disease. Primary ischemic leg symptoms are muscle fatigue, discomfort or pain during ambulation, known as intermittent claudication. The most severe manifestation of peripheral artery disease is critical limb ischemia (CLI). The long-term safety of gene therapy in peripheral artery disease remains unclear. This four center peripheral artery disease registry was designed to evaluate the long-term safety of the intramuscular non-viral fibroblast growth factor-1 (NV1FGF), a plasmid-based angiogenic gene for local expression of fibroblast growth factor-1 versus placebo in patients with peripheral artery disease who had been included in five different phase I and II trials. Here we report a 3-year follow-up in patients suffering from CLI or intermittent claudication. There were 93 evaluable patients, 72 of them in Fontaine stage IV (47 NV1FGF versus 25 placebo) and 21 patients in Fontaine stage IIb peripheral artery disease (15 NV1FGF versus 6 placebo). Safety parameters included rates of non-fatal myocardial infarction (MI), stroke, death, cancer, retinopathy and renal dysfunction. At 3 years, in 93 patients included this registry, there was no increase in retinopathy or renal dysfunction associated with delivery of this angiogenic factor. There was also no difference in the number of strokes, MI or deaths, respectively, for NV1FGF versus placebo. In the CLI group, new cancer occurred in two patients in the NV1FGF group. Conclusions that can be drawn from this relatively small patient group are limited because of the number of patients followed and can only be restricted to safety. Yet, data presented may be valuable concerning rates in cancer, retinopathy, MI or strokes following angiogenesis gene therapy in the absence of any long-term data in angiogenesis gene therapy. It may take several years until data from larger patient populations will become available.  相似文献   

13.
Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double-blind placebo-controlled trials could not confirm the initial high efficacy of either the growth factor protein or the gene therapy approaches observed in earlier small trials. The clinical studies so far have all been without any gene-related serious adverse events. Future trials will focus on whether an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies.  相似文献   

14.
Arteriosclerosis of the extremities is a disease of the blood vessels characterized by hardening and/or narrowing of the arteries that supply the legs and feet. This causes a decrease in blood flow that can injure nerves and other tissues. Therapeutic angiogenesis using angiogenic growth factor is expected to be a new treatment for patients with critical limb ischemia. The first human clinical trial treating peripheral vascular disease was started in 1994 using vascular endothelial growth factor. To date, other potent angiogenic growth factors, such as hepatocyte growth factor(HGF), have been also estimated in clinical trials for peripheral arterial disease. Several results from phase 1 or 2 trials using HGF gene were encouraging. Phase 3 trials are now ongoing and their results are expected.  相似文献   

15.
Due to the lack of an adequate conventional therapy against lower limb ischemia, gene transfer for therapeutic angiogenesis is seen as an attractive alternative. However, the possibility of side effects, due to the expression of large amounts of angiogenic factors, justifies the design of devices that express synergistic molecules in low controlled doses. We have developed an internal ribosome entry site (IRES)–based bicistronic vector expressing two angiogenic molecules, fibroblast growth factor 2 (FGF2), and Cyr61. Through electrotransfer into the ApoE−/− mice hindlimb ischemic muscle model, we show that the IRES-based vector gives more stable expression than either monocistronic plasmid. Furthermore, laser Doppler analysis, arteriography, and immunochemistry clearly show that the bicistronic vector promotes a more abundant and functional revascularization than the monocistronic vectors, despite the fact that the bicistronic system produces 5–10 times less of each angiogenic molecule. Furthermore, although the monocistronic Cyr61 vector accelerates B16 melanoma growth in mice, the bicistronic vector is devoid of such side effects. Our results show an active cooperation of FGF2 and Cyr61 in therapeutic angiogenesis of hindlimb ischemia, and validate the use of IRES-based bicistronic vectors for the coexpression of controlled low doses of therapeutic molecules, providing perspectives for a safer gene therapy of lower limb ischemia.  相似文献   

16.
17.
Lawall H 《Hamostaseologie》2006,26(3):247-254
Therapeutic angiogenesis is a novel promising strategy that uses angiogenic factors and stem cell transplantation to increase blood perfusion in ischaemic lower limbs. In preliminary studies short term safety and feasibility of gene therapy by recombinant protein administration or gene transfer were proven. Early reports mostly fail to show an convincing efficacy. In the largest placebo-controlled study of therapeutic angiogenesis in severe PAD reported to date, the plasmid-based fibroblast growth factor was safe and significantly reduced amputation rates. The data suggest the efficacy of the angiogenic therapy and provide the basis for further larger trials to confirm these first results.  相似文献   

18.
Arterial obstructive syndromes result in heart disease, stroke and limb loss, disability, and mortality. Currently available therapeutics for patients with these conditions are inadequate or fail in a significant number of patients. The development of novel therapies for severe coronary arterial disease (CAD), peripheral arterial disease (PAD), and cerebral vascular disease (CVD) is a major goal for modern medicine. Molecular and cell-based therapies for arterial obstructive syndromes have the potential to become clinically useful in the near future. Molecular therapy employs angiogenic proteins and genes in order to initiate the development of new blood vessels that by-pass an arterial occlusion. The induction of a collateral artery system is termed therapeutic angiogenesis or neovascularization. Proteins have been delivered either directly into the ischemic area or via a vector encoding an angiogenic gene. Both protein and gene therapies have been associated with promising preclinical and early phase human trial results in patients with PAD as well as CAD. However, to date, efficacy has not been demonstrated in placebo-controlled, large trails. Today's cell-based therapy is focused on stem cells (SCs) for the treatment of patients after acute myocardial infarction (AMI) or for patients with severe left ventricular dysfunction. Stem cells have shown to increase cardiac performance in uncontrolled, early phase human studies. This improvement is believed to have its origin in myogenesis and neovascularization. In the following review, we will cover current state of molecular- and cellular-based treatments for PAD and CAD that have reached the clinical arena.  相似文献   

19.
Therapeutic angiogenesis using angiogenic growth factors is expected to be a new treatment of patients with severe ischemic diseases. Indeed, human gene therapy for peripheral arterial disease(PAD) using VEGF gene demonstrated the beneficial effects. In contrast, we have reported the potent angiogenic activity of hepatocyte growth factor (HGF) in animal study and we planned gene therapy for ASO and Buerger disease using HGF gene (TREAT-HGF). In a prospective, open-labeled clinical trial, we investigated the safety and biological efficiency of this gene therapy in patients with peripheral arterial disease(PAD) who had failed conventional therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号