首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The co-expression of vanilloid receptor 1-like receptor (VRL-1), a newly cloned capsaicin-receptor homologue, with calbindin D-28k was examined in the rat sensory ganglia. The co-expression was rare in the dorsal root, trigeminal and jugular ganglia and abundant in the petrosal and nodose ganglia. In the dorsal root ganglion, none of VRL-1-immunoreactive (ir) neuron co-expressed calbindin D-28k-immunoreactivity (ir). Of the VRL-1-ir neurons, 9 and 5% showed calbindin D-28k ir in the trigeminal and jugular ganglia, respectively. On the other hand, 35 and 63% of VRL-1-ir neurons in the petrosal and nodose ganglia, respectively, co-expressed these substances. The retrograde tracing method indicated that petrosal neurons which co-expressed VRL-1-and calbindin D-28k-ir innervated taste buds in the circumvallate papilla. The present findings may suggest that VRL-1 is associated with chemosensory functions in visceral sensory neurons.  相似文献   

2.
The co-expression of calretinin with parvalbumin and calbindin D-28k was examined in the rat cranial and spinal sensory ganglia by triple immunofluorescence method. In the trigeminal and nodose ganglia, 9% and 5% of calretinin-immunoreactive neurons, respectively, also contained both parvalbumin- and calbindin D-28k immunoreactivity. These neurons had large cell bodies. In the trigeminal ganglion, they were restricted to the caudal portion. Such neurons were evenly distributed throughout the nodose ganglion. The co-expression could not be detected in the dorsal root, jugular or petrosal ganglia. Nerve fibers which co-expressed all the three calcium-binding proteins were observed in the inferior alveolar nerve but not the infraorbital nerve or palate. In the periodontal ligament, these nerve fibers formed Ruffini-like endings. These findings suggest that (1) the co-expression in trigeminal neurons is intimately related to their peripheral receptive fields; (2) the three calcium-binding proteins (calretinin, parvalbumin, calbindin D-28k) co-expressed in the trigeminal neurons may have mechanoreceptive function in the periodontal ligament.  相似文献   

3.
ASIC3-immunoreactivity (ir) was examined in the rat vagal and glossopharyngeal sensory ganglia. In the jugular, petrosal and nodose ganglia, 24.8%, 30.8% and 20.6% of sensory neurons, respectively, were immunoreactive for ASIC3. These neurons were observed throughout the ganglia. A double immunofluorescence method demonstrated that many ASIC3-immunoreactive (ir) neurons co-expressed calcitonin gene-related peptide (CGRP)- or vanilloid receptor subtype 1 (VRL-1)-ir in the jugular (CGRP, 77.8%; VRL-1, 28.0%) and petrosal ganglia (CGRP, 61.7%; VRL-1, 21.5%). In the nodose ganglion, however, such neurons were relatively rare (CGRP, 6.3%; VRL-1, 0.4%). ASIC3-ir neurons were mostly devoid of tyrosine hydroxylase in these ganglia. However, some ASIC3-ir neurons co-expressed calbindin D-28k in the petrosal (5.5%) and nodose ganglia (3.8%). These findings may suggest that ASIC3-containing neurons have a wide variety of sensory modalities in the vagal and glossopharyngeal sensory ganglia.  相似文献   

4.
Ichikawa H  Sugimoto T 《Brain research》2005,1038(1):107-112
Peptide 19 (PEP 19) is a 7.6-kDa polypeptide which binds to calmodulin and inhibits calcium-calmodulin signaling. In this study, PEP 19-immunoreactivity (PEP 19-IR) was examined in the rat vagal and glossopharyngeal sensory ganglia. Twenty-nine percent, 59%, and 41% of sensory neurons contained PEP 19-IR in the jugular, petrosal, and nodose ganglia, respectively. These neurons were of various sizes (jugular, mean +/- SD = 635.8 +/- 392.6 microm2, range = 105.9-1695.9 microm2; petrosal, mean +/- SD = 370.9 +/- 228.5 microm2, range = 57.7-1662.7 microm2; nodose, mean +/- SD = 380.5 +/- 157 microm2, range = 87.5-950.4 microm2) and scattered throughout these ganglia. Double immunofluorescence method revealed that PEP 19-IR neurons which had parvalbumin-IR were rare in the ganglia (jugular, 4%; petrosal, 10%; nodose, 8%). PEP 19-IR neurons which contained calbindin D-28k were abundant in the petrosal (20%) and nodose (22%) ganglia but not in the jugular ganglion (8%). Retrograde tracing method indicated that many PEP 19-IR neurons projected to the circumvallate papilla and soft palate. In the soft palate, taste buds were innervated by PEP 19-IR nerve fibers. The present study suggests that PEP 19-IR neurons include chemoreceptors in the vagal and glossopharyngeal sensory ganglia.  相似文献   

5.
Immunohistochemistry for delta-opioid receptor (DOR) was performed on the rat cranial sensory ganglia. The immunoreactivity was detected in 16%, 19% and 11% of neurons in the trigeminal, jugular and petrosal ganglia, respectively. The nodose ganglion was devoid of such neurons. DOR-immunoreactive (IR) neurons were mostly small to medium-sized (trigeminal, range = 62-851 microm(2), mean +/- SD = 359 +/- 175 microm(2); jugular, range = 120-854 microm(2), mean +/- SD = 409 +/- 196 microm(2); petrosal, range = 167-1146 microm(2), mean +/- SD = 423 +/- 233 microm(2)). Double immunofluorescence method revealed that all DOR-IR neurons were also immunoreactive for calcitonin gene-related peptide. The cutaneous and mucosal epithelia in the oro-facial region, tooth pulp, taste bud and carotid body were innervated by DOR-IR nerve fibers. In the brainstem, IR nerve terminals were located in the superficial medullary dorsal horn and dorsomedial part of the subnucleus oralis as well as the solitary tract nucleus. The present study suggests that DOR-IR neurons may be associated with nociceptive and/or chemoreceptive function in the cranial sensory ganglia.  相似文献   

6.
Immunoreactivity for the calcium binding protein, calretinin (calretinin-ir), was demonstrated in cell bodies of vagal and glossopharyngeal sensory ganglia (jugular, petrosal, and nodose ganglia) and in associated nerve fibers. In the jugular and petrosal ganglia, many calretinin-ir neurons were also immunoreactive for calcitonin gene-related peptide and substance P. In the nodose ganglion, most of the calretinin-ir neurons lacked these peptides. None of the calretinin-ir neurons in these ganglia were also immunoreactive for tyrosine hydroxylase.  相似文献   

7.
Co-localization of μ-opioid receptor (MOR)-like immunoreactivity (-LI) with substance P (SP)-LI, calcitonin gene-related peptide (CGRP)-LI and nitric oxide synthase (NOS)-LI in the nodose, petrosal and jugular ganglia was examined in the rat by a double immunofluorescence histochemical method. About 0.6%, 41% and 95% of neurons with MOR-LI, respectively, in the nodose, petrosal and jugular ganglia showed SP-LI; about 2%, 51% and 66% of MOR-like immunoreactive neurons displayed CGRP-LI in the nodose, petrosal and jugular ganglia, respectively. In addition, about 59% of MOR-like immunoreactive neurons in the nodose ganglia displayed NOS-LI, whereas no NOS-LI was detected in the petrosal or jugular ganglion. These data provide evidence for co-localization of MOR-LI with SP-LI, CGRP-LI and NOS-LI in the vagal and glossopharyngeal afferent neurons, and suggest that MOR may regulate the release of SP, CGRP and nitric oxide from the visceral primary afferent terminals in the nucleus of the solitary tract of the rat.  相似文献   

8.
The presence of the neurotrophin receptor, TrkA, in neurochemically identified vagal and glossopharyngeal sensory neurons of the adult rat was examined. TrkA was colocalized with calcitonin gene-related peptide (CGRP), parvalbumin, or calbindin D-28k in neurons of the nodose, petrosal and/or jugular ganglia. In contrast, no TrkA-immunoreactive (ir) neurons in these ganglia colocalized tyrosine hydroxylase-ir. About one-half of the TrkA-ir neurons in the jugular and petrosal ganglia contained CGRP-ir, whereas only a few of the numerous TrkA-ir neurons in the nodose ganglion contained CGRP-ir. Although 43% of the TrkA-ir neurons in the nodose ganglion contained calbindin D-28k-ir, few or no TrkA-ir neurons in the petrosal or jugular ganglia were also labeled for either calcium-binding protein. These data show distinct colocalizations of TrkA with specific neurochemicals in vagal and glossopharyngeal sensory neurons, and suggest that nerve growth factor (NGF), the neurotrophin ligand for TrkA, plays a role in functions of specific neurochemically defined subpopulations of mature vagal and glossopharyngeal sensory neurons.  相似文献   

9.
The co-expression of P2X3 receptor with the vanilloid receptor subtype I (VR1) and vanilloid receptor 1-like receptor (VRL-1) was examined in the rat trigeminal ganglion (TG) by a double immunofluorescence method. P2X3 receptor-immunoreactive (ir) neurons were predominantly small to medium-sized (range=93.8-1844.4 microm(2), mean+/-S.D.=503.8+/-286.5 microm(2)); 35% and 9% of P2X3 receptor-ir TG neurons were immunoreactive for VR1 and VRL-1, respectively. Small and medium-sized P2X3 receptor-ir neurons contained VR1-immunoreactivity (ir), whereas medium-sized and large P2X3 receptor-ir neurons showed VRL-1-ir. The retrograde tracing and immunohistochemical methods revealed that 30% of the TG neurons retrogradely labeled from the facial skin and tooth pulp exhibited P2X3 receptor-ir. The co-expression of P2X3 receptor and VR1 was detected in 16% of cutaneous TG neurons and 6% of tooth pulp neurons. On the other hand, the co-expression of P2X3 receptor and VRL-1 was common in tooth pulp neurons (23%) and rare in cutaneous TG neurons (8%). In the tooth pulp, 95% of P2X3 receptor-ir TG neurons contained VRL-1-ir. The present study indicates that P2X3 receptor-ir TG neurons, which co-express VR-ir, are abundant in the facial skin. The tooth pulp is probably innervated by TG neurons, which contain both P2X3-and VRL-1-ir.  相似文献   

10.
The presence and coexistence of calbindin D-28k-immunoreactivity (ir) and nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase activity (a marker of neurons that are presumed to convert L-arginine to L-citrulline and nitric oxide) were examined in the glossopharyngeal and vagal sensory ganglia (jugular, petrosal and nodose ganglia) of the rat. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Some calbindin D-28k-ir nerve cells were also observed in the jugular ganglion. NADPH-diaphorase positive nerve cells were localized to the jugular and nodose ganglia and were rare in the petrosal ganglion. A considerable portion (33–51%) of the NADPH-diaphorase positive neurons in these ganglia colocalized calbindin D-28k-ir. The presence and colocalization of calbindin D-28k-ir and NADPH-diaphorase activity in neurotransmitter-identified subpopulations of visceral sensory neurons were also studied. In all three ganglia, calcitonin gene-related peptide (CGRP)-ir was present in many NADPH-diaphorase positive neurons, a subset of which also contained calbindin D-28k-ir. In the nodose ganglion, many (42%) of tyrosine hydroxylase (TH)-ir neurons also contained NADPH diaphorase activity but did not contain calbindin D-28k-ir. These data are consistent with a potential co-operative role for calbindin D-28k and NADPH-diaphorase in the functions of a subpopulation of vagal and glossopharyngeal sensory neurons.  相似文献   

11.
The coexistence of S100β with calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), nicotinamide adenosine dinucleotide phosphate-diaphorase (NADPH-d), and tyrosine hydroxylase (TH) was examined in the glossopharyngeal and vagal sensory ganglia. S100β immunoreactive (-ir) neurons in the jugular and petrosal ganglia frequently colocalized CGRP- or SP-ir, whereas S100β-ir neurons in the nodose ganglion infrequently contained CGRP- or SP-ir. No S100β-ir neurons in the jugular and petrosal ganglia showed SOM-ir while the small number of SOM-ir neurons in the nodose ganglion colocalized S100β-ir. Many neurons in the nodose ganglion colocalized S100β-ir and NADPH-d activity, whereas S100β-ir neurons in the jugular and nodose ganglia infrequently contained NADPH-d activity. S100β- and TH-ir were frequently colocalized in nodose ganglion but not in petrosal or jugular ganglion neurons. These findings suggest relationships between S100β and specific putative transmitters in functions of subpopulations of vagal and glossopharyngeal sensory neurons.  相似文献   

12.
Visceral afferent neurons of the nodose and petrosal ganglia are immunoreactive (ir) for many neurotransmitters [e.g., substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), and dopamine (tyrosine hydroxylase-ir; TH)]. Coexistence of SP-ir with NKA-, CGRP-, or TH-ir was studied in individual neurons of the rat ganglia using fluorescence immunocytochemistry. SP- and NKA-ir were present in equal numbers of cells and were consistently colocalized. SP- and CGRP-ir were found to be similarly distributed in scattered cells, concentrated mostly in the rostral pole of the nodose ganglion and in the petrosal ganglion. SP-ir completely coexisted with CGRP-ir. However, there was at least twice the number of CGRP-ir neurons as SP-ir neurons, and thus CGRP-ir neurons that did not contain SP-ir were also present. In contrast, SP- and TH-ir had different distributions in both the nodose and the petrosal ganglia. SP-ir was located in the more rostral regions of both the nodose and petrosal ganglia, whereas TH-ir was detected throughout the entire nodose ganglion and only in the most caudal region of the petrosal ganglion. There was no coexistence of SP- and TH-ir. These data demonstrate the differential localization and coexistence of putative transmitters in visceral sensory neurons in the nodose and petrosal ganglia.  相似文献   

13.
Aspartate-immunoreactivity (ir) was examined in the mouse trigeminal ganglion (TG). The ir was detected in 34% of TG neurons and their cell bodies were of various sizes (mean +/- S.D. = 1,234 +/- 543 microm(2)). A triple immunofluorescence method revealed the co-expression of aspartate with calcitonin gene-related peptide (CGRP) and parvalbumin; 22% and 14% of aspartate-immunoreactive (ir) neurons were also immunoreactive for CGRP and parvalbumin, respectively. The co-expression of aspartate with both CGRP and parvalbumin was very rare in the TG. By retrograde tracing method, half and 66% of TG neurons which innervate the vibrissa and palate, respectively, contained aspartate-ir. The co-expression of aspartate with CGRP was more common among palatal neurons (36%) compared to vibrissal neurons (22%). Aspartate-ir neurons which co-expressed parvalbumin-ir were numerous in the vibrissa (17%) but not in the palate (4%). These findings may suggest that the function of aspartate-containing TG neurons is correlated with their peripheral receptive fields.  相似文献   

14.
The co-expression of osteocalcin (OC) with the capsaicin receptor (VR1) and vanilloid receptor 1-like receptor (VRL-1) was examined in the dorsal root (DRG) and trigeminal ganglia (TG). Virtually all OC-immunoreactive (ir) DRG neurons were devoid of VR1- and VRL-1-immunoreactivity (ir). In the TG, 14.1% of OC-ir neurons were also immunoreactive for VR1. Only 1.7% of OC-ir TG neurons co-expressed VRL-1-ir. The distribution of OC-ir was also examined in the spinal cord and trigeminal sensory nuclei. In the spinal cord, the superficial laminae of the dorsal horn were devoid of OC-ir. The neuropil was weakly stained in other regions of the spinal horns. The medullary dorsal horn (MDH) contained numerous OC-ir varicose fibers in laminae I and II. These fibers were occasionally observed originating from the spinal trigeminal tract. The neuropil was weakly stained in deeper laminae of the MDH, and the rostral parts of the trigeminal sensory nuclei. The present study suggests that OC-ir TG nociceptors send their unmyelinated axons to the superficial laminae of the MDH.  相似文献   

15.
Immunohistochemistry for osteocalcin (OC) was performed on the rat vagal and glossopharyngeal sensory ganglia. OC-immunoreactive (IR) neurons were detected in the jugular (10%), petrosal (11%) and nodose ganglia (6%). The cell size analysis demonstrated that OC-IR neurons were predominantly small to medium-sized in the jugular ganglion (mean+/-S.D.=356.3+/-192.2 microm(2), range=86.5-831.5 microm(2)). On the other hand, such neurons were medium-sized to large in the petrosal (mean+/-S.D.=725.6+/-280.7 microm(2), range=124.7-1540.4 microm(2)) and nodose ganglia (mean+/-S.D.=857.5+/-330.2 microm(2), range=367.1-1608.0 microm(2)). In the circumvallate papilla, OC-IR nerve fibers were located in the vicinity of taste buds. Some taste bud cells were also immunoreactive for the calcium-binding protein (CaBP). In the carotid body, however, OC-IR nerve fibers could not be detected. Retrograde tracing with fluorogold revealed that OC-IR nerve fibers in the circumvallate papilla mainly originated from the petrosal ganglion. These findings may suggest that OC-IR petrosal neurons have chemoreceptive function in the tongue.  相似文献   

16.
The presence and coexistence of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) were studied in the petrosal and jugular neurons innervating the carotid body and carotid sinus of the rat. The retrograde labeling of the carotid sinus nerve with Fluoro-gold (FG) demonstrated that most (94.5%) FG-labeled ganglionic neurons were observed in the petrosal ganglion. Fewer (5.2%) FG-labeled neurons were seen in the jugular ganglion and very few (0.3%) were observed in the nodose ganglion. Immunohistochemistry revealed that subpopulations of TH-, VIP-, CGRP-, SP- and GAL-immunoreactive (-ir) neurons in the petrosal ganglion projected to the carotid sinus nerve. Approximately 4% of FG-labeled neurons contained TH-ir and were predominantly found in the caudal portion of the petrosal ganglion. Nearly 90% of total TH-ir neurons in the petrosal ganglion were labeled with FG. Less than 1% of FG-labeled neurons were immunoreactive for VIP in this ganglion. In the petrosal ganglion, 25% of FG-labeled neurons contained CGRP-ir, and 16.7% of FG-labeled neurons contained SP-ir. 30% of CGRP-ir or SP-ir neurons in the petrosal ganglion were labeled with FG. In the jugular ganglion, no TH- or VIP-ir neurons projected to the carotid sinus nerve and only small populations of CGRP- or SP-ir neurons projected to the carotid sinus nerve. Many FG-labeled and GAL-ir neurons were observed in the petrosal and jugular ganglia. The double-immunofluorescence method revealed the coexistence of CGRP- and SP-ir in carotid sinus nerve-projecting neurons in the petrosal and jugular ganglia. Likewise, GAL-ir coexisted with CGRP- and SP-ir in these ganglionic neurons. There was no coexistence of TH-ir and VIP-ir in carotid sinus nerve projections. The present study demonstrates the presence of multiple putative transmitters in baro- and chemoreceptor afferent neurons of the carotid sinus nerve. These neurochemicals are likely to contribute to transmission of signals from the carotid body and carotid sinus to neurons of the brainstem.  相似文献   

17.
Ichikawa H  Sugimoto T 《Brain research》2004,1017(1-2):244-247
The distribution and origin of neurocalcin-immunoreactive (NC-ir) nerve fibers in the taste bud and carotid body were examined by an immunofluorescence method. In the circumvallate papilla of the tongue, NC-ir nerve fibers made subepithelial nerve plexuses and occasionally penetrated the taste bud. However, the carotid body was devoid of ir nerve fibers. In the petrosal ganglion, 32% of neurons were immunoreactive for NC. Such neurons were mostly medium-sized to large, and scattered throughout the ganglion. In the superior cervical and intralingual ganglia, numerous ir varicose fibers surrounded postsynaptic neurons. However, NC-ir could not be detected in cell bodies of these neurons. The retrograde tracing method indicated that NC-ir petrosal neurons innervated taste buds in the circumvallate papilla. NC-ir neurons may have a gustatory function in the petrosal ganglion.  相似文献   

18.
The response of chick sensory neurons to brain-derived neurotrophic factor   总被引:16,自引:0,他引:16  
To determine the spectrum of activity of brain-derived neurotrophic factor (BDNF) among first-order sensory neurons, explants of the nine distinct populations of sensory neurons from embryonic chicks of 3-14 d incubation (E3-E14) were grown in collagen gels with and without BDNF in the culture medium. The explants responded to BDNF with profuse neurite outgrowth and comprised those in which neurons are derived from neural crest (the dorsomedial part of the trigeminal ganglion, rostromedial part of the trigeminal mesencephalic nucleus, jugular ganglion, and lumbosacral dorsal root ganglia) and from epibranchial placodes (the ventrolateral part of the trigeminal ganglion and the geniculate, petrosal, and nodose ganglia). This response was first clearly observed in the ventrolateral trigeminal and nodose ganglia as early as E4, but did not appear until later in other explants. The dorsomedial trigeminal, jugular, and geniculate ganglia were the latest to develop a response, which was not apparent until E8. In all explants the response was maximal between E10 and E12, and there was a decline in the magnitude of the response from E12 to E14. Although explants of the vestibular ganglion failed to respond to BDNF, the survival and growth of vestibular neurons in dissociated neuron-enriched cultures were promoted by BDNF. To investigate whether all first-order sensory neurons respond to BDNF or whether BDNF-responsive neurons comprise a distinct subset, we studied the influence of BDNF and NGF on the survival and growth of the placode-derived and the neural crest-derived neurons of the trigeminal ganglion in dissociated neuron-enriched culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Immunohistochemistry for two nociceptive transducers, the vanilloid receptor 1 (VR1) and vanilloid receptor 1-like receptor (VRL-1), was performed on the vagal sensory ganglia. In the jugular ganglion, VR1-immunoreactive (IR) neurons were small to medium-sized (range 49.7–1125.6 μm2, mean±S.D. 407.7±219.7 μm2), whereas VRL-1-IR neurons were medium-sized to large (range 223.6–1341.1 μm2, mean±S.D. 584.3±253.5 μm2). In the nodose ganglion, VR1- and VRL-1-IR neurons were mostly small to medium-sized (VR1: range 148.5–1464.4 μm2, mean±S.D. 554.3±207.4 μm2; VRL-1: range 161.7–1166.2 μm2, mean±S.D. 541.9±186.2 μm2). The double immunofluorescence method revealed that co-expression of VR1-immunoreactivity among VRL-1-IR neurons was more abundant in the nodose ganglion (63%) than in the jugular ganglion (4%). The present study suggests that co-expression of VR1 and VRL-1 may be more common in visceral sensory neurons than in somatic sensory neurons.  相似文献   

20.
Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10–100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号