首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic Ca(2+) response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure Ca(2+) release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated Ca(2+) entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the Ca(2+)- induced Ca(2+)-release pathway by directly measuring Ca(2+) release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with Ca(2+) stimulated Ca(2+) release from the SR. Caffeine and ryanodine also induced Ca(2+) release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and Ca(2+) failed to trigger Ca(2+) release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate Ca(2+) release from the SR by cytosolic Ca(2+) elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.  相似文献   

2.
3.
1. Multiple sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) and two types of sarcoplasmic reticulum Ca2+ channels, the ryanodine receptor and the inositol 1,4,5 triphosphate (IP3) receptor are expressed. The heterogeneity of the Ca2+ pumps and Ca2+ channels in vascular cells will be discussed. 2. An age-related change in expression of the SERCA isoforms is observed in smooth muscle cells. 3. The sarcoplasmic reticulum Ca(2+)-uptake rate and the level of SERCA 2 mRNA are different in thoracic than in abdominal aortas and in aortas from spontaneously hypertensive rats than from normotensive rats. 4. Proliferation of vascular smooth muscle cells is associated with major changes in intracellular Ca(2+)-handling mechanisms.  相似文献   

4.
1. The interaction of Ca2+ transport in the plasmalemma and the sarcoplasmic reticulum (SR) was investigated in smooth muscle of the rabbit inferior vena cava. We tested the possibility of direct refilling of the SR with extracellular Ca2+ and of the existence of a vectorial Ca2+ extrusion pathway from the SR lumen to the extracellular space suggested by earlier results. 2. After depletion with caffeine the SR was loaded with Ca2+ to increasing levels by incubation in a high potassium 1.5 mM Ca2+ solution and a 10 mM Ca2+ zero Na+ solution, respectively. Thapsigargin, 2 microM, (a specific SR Ca(2+)-ATPase blocker) completely blocked refilling of the SR in either of the above solutions, indicating that the SR Ca(2+)-ATPase is essential for this process. 3. Three different agents, caffeine, ryanodine and thapsigargin, which inhibit Ca2+ accumulation by the SR, increased the steady state intracellular Ca2+ concentration in the rabbit inferior vena cava. 4. Measurements of Mn2+ induced quenching of the intracellular fura-2 signal during pharmacological manipulation of the SR content showed that these three agents did not stimulate divalent cation entry. 5. On the other hand, stimulation with noradrenaline caused a marked increase in Mn2+ influx, which was blocked by 2 mM Ni2+. Mn2+ entry stimulated by high K+ solution was blocked by 1 microM diltiazem. 6. We conclude that the SR refilling has to be mediated by the SR Ca(2+)-ATPase. Inhibition of Ca2+ accumulation by the SR causes an increase in the steady state intracellular Ca2+ concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Effects of xanthone and its derivative, 1,3,6,7-tetrahydroxyxanthone (norathyriol), on Ca2+ release and ryanodine binding were studied in isolated sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle. 2. Both xanthone and norathyriol dose-dependently induced Ca2+ release from the actively loaded SR vesicles which was blocked by ruthenium red, a specific Ca2+ release inhibitor, and Mg2+. 3. Xanthone and norathyriol also dose-dependently increased apparent [3H]-ryanodine binding. Norathyriol, but not xanthone, produced a synergistic effect on binding activation when added concurrently with caffeine. 4. In the presence of Mg2+, which inhibits ryanodine binding, both caffeine and norathyriol, but not xanthone, could restore the binding to the level observed in the absence of Mg2+. 5. Xanthone activated the Ca(2+)-ATPase activity of isolated SR vesicles dose-dependently reaching 70% activation at 300 microM. 6. When tested in mouse diaphragm, norathyriol potentiated the muscle contraction followed by twitch depression and contracture in either a Ca(2+) -free bathing solution or one containing 2.5 mM Ca2+. These norathyriol-induced effects on muscle were inhibited by pretreatment with ruthenium red or ryanodine. 7. These data suggest that xanthone and norathyriol can induce Ca2+ release from the SR of skeletal muscle through a direct interaction with the Ca2+ release channel, also known as the ryanodine receptor.  相似文献   

6.
1. Previous patch clamp studies of oesophageal circular muscle cells showed that nitric oxide (NO) modulated the opening of Ca2(+)-activated K+ channels involved in mediating the inhibitory junction potentials (i.j.ps). This study clarified the role of Ca2+ release from the superficial sarcoplasmic reticulum (SR) in the mechanism of i.j.ps or hyperpolarizing responses to NO-releasing compounds. Electrical and mechanical activities were simultaneously recorded by intracellular microelectrode or double sucrose gap techniques. 2. The NO-donors, sydnonimine (SIN-1) and sodium nitroprusside, each at 500 microM, hyperpolarized oesophageal circular muscle cells by 15-20 mV, like i.j.ps. 3. The selective inhibitors of SR Ca2(+)-ATPase (cyclopiazonic acid 10-30 microM and thapsigargin 5 microM) and the SR Ca2+ release channel activator (ryanodine 30 microM) caused depolarization and spontaneous contractions which were diminished after prolonged (> 30 min) incubation with these agents in Ca2(+)-containing medium. Moreover, these agents inhibited both the i.j.p. and NO-donor hyperpolarizations, suggesting that a functional SR Ca2+ uptake is necessary for the response to endogenous or exogenous NO. 4. These results, along with our previous findings of the dependence of i.j.ps and NO-donor hyperpolarizations on K+ channel activation and cyclic GMP elevation, support the hypothesis that subplasmalemmal (Ca2+)i elevation, via vectorial Ca2+ release from superficial SR toward the plasmalemma, may be an important mechanism by which NO, from NO-liberating compounds or released from inhibitory neurones induces relaxation and i.j.ps in opossum oesophagus.  相似文献   

7.
Smooth muscle is activated by plasma-membrane-acting agonists that induce inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] to release Ca(2+) from the intracellular sarcoplasmic reticulum (SR) Ca(2+) store. Increased concentrations of agonist evoke a concentration-dependent graded release of Ca(2+) in a process called 'quantal' Ca(2+) release. Such a graded release seems to be incompatible with both the finite capacity of the SR store and the positive-feedback Ca(2+)-induced Ca(2+) release (CICR)-like process that is operative at Ins(1,4,5)P(3) receptors, which - once activated - might be expected to deplete the entire store. Proposed explanations of quantal release include the existence of multiple stores, each with different sensitivities to Ins(1,4,5)P(3), or Ins(1,4,5)P(3) receptor opening being controlled by the Ca(2+) concentration within the SR. Here, we suggest that the regulation of Ins(1,4,5)P(3) receptors by the Ca(2+) concentration within the SR explains the quantal Ca(2+)-release process and the apparent existence of multiple Ca(2+) stores in smooth muscle.  相似文献   

8.
Pharmacomechanical coupling in vascular smooth muscle cells--an overview   总被引:3,自引:0,他引:3  
In vascular smooth muscles, neurotransmitters or autacoids produce contraction through activation of Ca2(+)-influx and release of Ca2+ from intracellular store sites. These agonists appear to activate Ca2(+)-influxes in both voltage-dependent and voltage-independent manners. The release of Ca2+ is though to be linked to the action of inositol 1,4,5-trisphosphate. The phosphorylation of myosin light chain may be the mechanism for the Ca2(-+)-induced contraction in smooth muscles. Some agonists only transiently increase cellular Ca2+ and the phosphorylation of myosin, but they produce a sustained contraction in various vascular tissues. Hence, additional high Ca2(+)-sensitive mechanisms are no doubt involved in the contraction of vascular smooth muscle. In the present article, attention will be directed to the mechanisms and agonist-induced contraction in arterial smooth muscle.  相似文献   

9.
Because the net Ca2+ uptake in the sarcoplasmic reticulum (SR) of cardiac muscle is a result of the activity of Ca(2+)-ATPase and of the SR Ca(2+)-release channel, an abnormal Ca2+ uptake may be the result of the dysfunction of either or both structures. The site or sites of action for oxygen-derived free radicals (OFR) damage are unknown, although previous studies on the SR have focused on damage to the Ca2+ pump. Direct effects of OFR on SR Ca(2+)-release channels may be important in understanding their potential contribution to myocardial ischemia/reperfusion injury. We confirmed that superoxide anion radical (O2.-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles. Electron spin resonance study showed that hydroxyl radicals are generated in addition to O2.- from hypoxanthine-xanthine oxidase reaction, and data indicate that O2.- is responsible for the observed effect. Current fluctuations through single Ca(2+)-release channels have been also monitored after incorporation into planar phospholipid bilayers. We directly demonstrate that activation of the channel by O2.- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2.-.  相似文献   

10.
1. The present review describes the mechanisms involved in controlling Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle, which ultimately regulates contraction. 2. Comparisons are made between cardiac and skeletal muscle with respect to: (i) the role of the dihydropyridine receptors (DHPR) as Ca2+ channels and voltage-sensors; (ii) the regulation of the ryanodine receptor (RyR)/Ca2+-release channels in the SR; and (iii) the importance of Ca2+-induced Ca2+ release. 3. It is shown that the key differences of the skeletal muscle Ca2+-release channel (RyR1), namely the increase in its stimulation by ATP and its inhibition by Mg2+, are critical for its direct regulation by the associated DHPR and, consequently, for the fast, accurate control of skeletal muscle contraction.  相似文献   

11.
12.
The role of cGMP-dependent protein kinase in the regulation of intracellular Ca2+ levels in vascular smooth muscle cells was examined by studying the effects of cGMP on the phosphorylation of the Ca(2+)-ATPase regulatory protein phospholamban. Cultured rat aortic smooth muscle cells incubated with atrial natriuretic peptide II or sodium nitroprusside responded with increased phosphorylation of the 6000-Da subunit of phospholamban. The identity of phospholamban was confirmed using immunoprecipitation methods. Phosphorylation was associated with an increase in the activation of membrane-associated ATPase by Ca2+. These results indicated that at least one site of action of cGMP in smooth muscle cells is the sarcoplasmic reticulum, where phosphorylation of proteins regulating Ca2+ fluxes occurs. Studies using confocal laser scanning microscopy to define the cellular distribution of cGMP-dependent protein kinase suggested that the enzyme was localized to the same cellular region(s) as was phospholamban. Phosphorylation of proteins by cGMP in broken cell fractions from rabbit aorta was also performed. Phospholamban and other proteins were phosphorylated in the presence of cGMP but not cAMP, suggesting that only cGMP-dependent protein kinase was associated with smooth muscle membrane fractions containing phospholamban. These results suggest that one mechanism of action of cGMP in the reduction of intracellular Ca2+ is the activation of sarcoplasmic reticulum Ca(2+)-ATPase via phosphorylation of phospholamban. The data also support the concept that compartmentalization of protein kinases with substrates in the intact cell is an important factor involved in protein phosphorylation.  相似文献   

13.
Vascular effects of insulin   总被引:1,自引:0,他引:1  
Insulin as a vascular hormone, apart from its effect on intermediary metabolism, has been considered to play an important role in cardiovascular regulation and pathophysiology of cardiovascular diseases such as essential hypertension, congestive cardiac failure and atherosclerosis. Insulin induces pressor effects by mechanisms of increased sympathetic activity, renal sodium retention and proliferation of vascular smooth muscle cells. On the other hand, accumulating evidence indicates that insulin decreases vascular resistance and increases organ blood flow especially in skeletal muscle tissue, indicating that insulin is a vasodilator. Several mechanisms underlying insulin-induced vasodilation have been proposed. Insulin enhances calcium efflux from vascular smooth muscle cells by activating the plasma membrane Ca(2+)-ATPase and causes hyperpolarization by stimulating Na+, K(+)-ATPase and sodium/potassium pump. Insulin also stimulates nitric oxide (NO) synthase and increases release of NO from vascular endothelium to cause vasodilation. An increase in cyclic AMP levels is induced by insulin, via activation of insulin receptors, beta-adrenoceptors and calcitonin gene-related peptide receptors. However, main cause of mechanisms mediating the vasodilation remain obscure. Hypertension is associated with insulin resistance and hyperinsulinemia. Insulin resistance may contribute to hypertension by sympathetic overactivity, endothelium dysfunction and decreased vasodilator action of insulin. Therefore, insulin must be considered a vasoactive peptide and more investigations are needed to better understand the full significance of the hemodynamic effect of insulin.  相似文献   

14.
1. In smooth muscle, both Ca2+ release from the sarcoplasmic reticulum (SR) and Ca2+ influx across the plasma membrane are responsible for the increase in the cytosolic Ca2+ level ([Ca2+]i). To understand further the role of SR on smooth muscle contraction, the effects of an inhibitor of the SR Ca2+ pump, cyclopiazonic acid (CPA 10 microM), an inhibitor of the Ca(2+) -induced Ca2+ release, ryanodine, (10 microM), and an activator of the Ca(2+) -induced Ca2+ release, caffeine (20 mM), on [Ca2+]i and contractile force were examined in the ferret portal vein loaded with a photoprotein, aequorin. 2. CPA induced a small increase in the aequorin signal reaching a maximum at 7 min. Several minutes after the increase in the aequorin signal, muscle tension increased reaching a maximum at 21.5 min. In contrast, ryanodine changed neither the aequorin signal nor contraction. In the presence of ryanodine, caffeine induced a sustained increase in the aequorin signal and transient contraction. After washing ryanodine and caffeine, the aequorin signal and muscle tone returned to their respective control levels. After treatment with ryanodine and caffeine, the second addition of caffeine was almost ineffective whereas CPA still increased the aequorin signal and muscle tension. 3. In the presence of external Ca2+, noradrenaline (NA, 10 microM) induced a transient increase followed by a sustained increase in the aequorin signal and sustained contraction. In contrast, KCl (70 mM) induced sustained increases in the aequorin signal and sustained contraction. In Ca(2+) -free solution, NA induced a small transient increase in the aequorin signal and a small transient contraction. These changes were inhibited in the presence of CPA or on pretreatment of the muscle with ryanodine and caffeine. These results suggest that CPA or ryanodine and caffeine depleted Ca2+ in SR. High K+ was ineffective in the absence of external Ca2+. 4. In the presence of external Ca2+ and CPA, NA and high K+ induced larger aequorin signals than in the absence of CPA, whereas the magnitude and shape of the contractions did not change. In contrast, pretreatment with ryanodine and caffeine did not have such an effect. In the muscle pretreated with ryanodine and caffeine, CPA changed the responses to high K+ and NA in a similar manner to that in the muscle without the pretreatment with ryanodine and caffeine. 5. Dissociation of contraction from [Ca2+]i as measured with aequorin suggests that NA and high K+ increase Ca2+ in two compartments: a compartment containing contractile elements (contractile compartment) and another compartment unrelated to contractile elements (non-contractile compartment). Because CPA augmented the stimulant-induced increase in aequorin signal without changing contraction, the non-contractile compartment may be located near the SR and the CPA-sensitive SR Ca2+ pump may regulate the Ca2+ level in this compartment. However, because CPA changed neither the magnitude nor shape of the contractions in the presence of external Ca2+, the SR Ca2+ pump may have little effect on regulation of Ca2+ level in the contractile compartment. Furthermore, the release of Ca2+ from SR seems to have little effect on the increase in the contractile Ca2+ because ryanodine and caffeine changed neither the aequorin signals nor contractions induced by NA and high K+ in the presence of external Ca2+ in the ferret portal vein.  相似文献   

15.
1. Previously, we found that contractions in response to receptor-dependent (i.e. a(1)-adrenoceptor agonist phenylephrine) and -independent (i.e. cyclopiazonic acid) stimuli are decreased in rat aorta during late diabetes. The aim of the present study was to further investigate the changes of intracellular Ca(2+) homeostasis in diabetic aortic smooth muscle cells. Functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores of the sarcoplasmic reticulum (SR) were evaluated using Fluo-3 acetoxymethyl ester fluorescence, western blot and organ bath techniques. 2. In aortic smooth muscle cells from diabetic rats, the Ca(2+) release and Ca(2+) influx caused by both 10 mmol/L phenylephrine (depletion of IP(3)-sensitive Ca(2+) stores) and 1 mmol/L ryanodine (depletion of ryanodine-sensitive Ca(2+) stores) were both significantly decreased compared with control. Moreover, protein expression levels of IP(3) (260 kDa) and ryanodine receptors (500 kDa) were reduced by 31.8 +/- 7.7 and 69.2 +/- 8.4%, respectively, in aortas from diabetic rats compared with those from control rats. 3. In diabetic rat aorta, phenylephrine-induced contractility was decreased to approximately two-thirds of that in controls, whereas ryanodine alone did not cause obvious contraction in aortas from either control or diabetic rats. 4. The present results suggest that the hyporeactivity of aortic smooth muscle to vasoconstrictors in diabetes results mainly from changes to the IP(3)-sensitive Ca(2+) release pathway. The SR Ca(2+) signalling pathway plays a crucial role in the development of diabetic vascular complications.  相似文献   

16.
1. We have investigated the effect of propofol, an intravenous anaesthetic, on the intracellular calcium concentration ([Ca2+]i), Ca2+ entry pathways and on inositol phosphate formation in vascular smooth muscle cells. [Ca2+]i and Ca2+ flux were monitored with the Ca(2+)-sensitive fluorescent dye, fura-2, and by 45Ca2+ uptake. Production of labelled inositol phosphates was analysed by anion-exchange chromatography. 2. Treatment of the cells with endothelin-1 (ET-1) increased formation of inositol phosphates and elevated [Ca2+]i due to both release of Ca2+ from intracellular pools and prolonged entry of Ca2+ from outside the cell. Propofol reduced production of inositol phosphates mediated by ET-1 and arginine vasopressin which activate phospholipase C. 3. The sustained Ca2+ entry stimulated by ET-1 was found to occur through the activation of L-type Ca channels. This was inhibited by propofol in a dose-dependent manner. 4. Activation of protein kinase C (PKC) by phorbol esters activated a pharmacologically-similar channel and produced a similar change in [Ca2+]i due to Ca2+ entry. The entry was blocked by an L-type channel antagonist, nicardipine and by the anaesthetic drug, propofol. 5. Treatment of the cells with thapsigargin, a selective inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, also elevated [Ca2+]i by inducing the release of intracellular Ca2+ and the continued entry of extracellular Ca2+ through a nicardipine-insensitive Ca channel. Neither release nor entry induced by thapsigargin was affected by propofol. 6. These findings suggest that propofol selectively inhibits Ca2+ entry through the L-type channel induced by ET-1 and phorbol esters but has no effects on Ca2+ entry via the nicardipine-insensitive channel and on Ca2+ release from intracellular pools initiated by thapsigargin. This may represent one of the mechanisms responsible for propofol-induced vasodilatation.  相似文献   

17.
The interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated in order to study the mechanism of cyclopiazonic acid inhibition of the Ca2+-ATPase (Goeger et al., Biochem Pharmacol 37: 978-981, 1988). Cyclopiazonic acid at 25 microM prevented the binding of Ca2+ to the high affinity binding site of mixed (light and heavy) SR vesicles and inhibited, in a dose-dependent manner, the Ca2+-dependent phosphorylation of SR vesicles by ATP. Binding of Ca2+ to the high affinity site of the CA2+-ATPase is necessary for both Ca2+ transport and for phosphorylation of the Ca2+-ATPase. We conclude that inhibition of Ca2+ binding to the high affinity site may be responsible, at least in part, for the activity of cyclopiazonic acid. The mechanism of inhibition remains unclear. The inhibition was not reduced after dialysis and was only partially reversed by gel filtration of SR vesicles treated with cyclopiazonic acid. Neither 1 mM glutathione nor dithiothreitol pretreatment had any effect on the inhibition of the Ca2+-ATPase. In addition to its inhibition of Ca2+ uptake and the Ca2+-ATPase, cyclopiazonic acid had significant effects on Ca2+ efflux from both passively and actively loaded SR vesicles. Cyclopiazonic acid impeded the efflux of Ca2+ from passively loaded SR vesicles (in the presence of ruthenium red) when compared to either untreated vesicles or those treated with mersalyl acid, a mercurial which also inhibits the Ca2+-ATPase and is known to induce Ca2+ release by both ruthenium red-sensitive and -insensitive pathways. Treatment of actively loaded vesicles with cyclopiazonic acid resulted in a decreased rate of Ca2+ efflux when compared to SR vesicles in which the Ca2+-ATPase activity was inhibited by ATP depletion with hexokinase and glucose. The results are consistent with the hypothesis that, in mixed SR vesicles, cyclopiazonic acid inhibits both the Ca2+ pump and Ca2+ efflux.  相似文献   

18.
This review examines the ionic mechanisms underlying acetylcholine (Ach) depolarization of airway smooth muscle and suggests that multiple mechanisms are involved. Increased chloride and nonspecific cation conductance, and decreased or rapidly inactivating potassium conductances seem to be involved. Chloride ions also seem to play an important role in determining whether Ca2+ remains inside or is replenished in the sarcoplasmic reticulum (SR). The physiological role of Ach-induced depolarization is analysed and is suggested to be the promotion of the refilling of Ca2+ stores, partly through a direct refilling of SR-Ca2+ stores by way of an L-type Ca2+ channel. This refilling is promoted by Ca2+ channel agonists and is independent of the transmembrane potential. Ca(2+)-release by a variety of agonists leads to depolarization and stable membrane oscillations which depend on the action of the Ca(2+)-store uptake mechanisms in order to function. These oscillations may play a role in prolonged bronchoconstriction. Better knowledge of the control mechanisms of Cai2+ is likely to reveal new targets for the therapy of asthma and provide a better understanding of the function of airway smooth muscle.  相似文献   

19.
Ca2+ sparks are the elementary units of intracellular Ca2+ signaling in striated muscle cells revealed as localized Ca2+ release events from sarcoplasmic reticulum (SR) by confocal microscopy. While Ca2+ sparks are well defined in cardiac muscle, there has been a general belief that these localized Ca2+ release events are rare in intact adult mammalian skeletal muscle. Several laboratories determined that Ca2+ sparks in mammalian skeletal muscle could only be observed in large numbers when the sarcolemmal membranes are permeabilized or the SR Ca2+ content is artificially manipulated, thus the cellular and molecular mechanisms underlying the regulation of Ca2+ sparks in skeletal muscle remain largely unexplored. Recently, we discovered that membrane deformation generated by osmotic stress induced a robust Ca2+ spark response confined in close spatial proximity to the sarcolemmal membrane in intact mouse muscle fibers. In addition to Ca2+ sparks, prolonged Ca2+ transients, termed Ca2+ bursts, are also identified in intact skeletal muscle. These induced Ca2+ release events are reversible and repeatable, revealing a plastic nature in young muscle fibers. In contrast, induced Ca2+ sparks in aged muscle are transient and cannot be re-stimulated. Dystrophic muscle fibers display uncontrolled Ca2+ sparks, where osmotic stress-induced Ca2+ sparks are not reversible and they are no longer spatially restricted to the sarcolemmal membrane. An understanding of the mechanisms that underlie generation of osmotic stress-induced Ca2+ sparks in skeletal muscle, and how these mechanisms are altered in pathology, will contribute to our understanding of the regulation of Ca2+ homeostasis in muscle physiology and pathophysiology.  相似文献   

20.
1. We have reported previously that isolated single smooth muscle cells from guinea-pig taenia caecum respond to acetylcholine (ACh) in an all-or-none manner. 2. To clarify the roles of intracellular Ca(2+) stores in the all-or-none response of isolated smooth muscle cells from guinea-pig taenia caecum to ACh, we examined the inositol 1,4,5-trisphosphate (IP(3))-induced contractile response in Staphylococcus aureus alpha-toxin-permeabilized smooth muscle cells and the effect of depletion of intracellular Ca(2+) stores on the all-or-none response to ACh in intact smooth muscle cells. 3. alpha-Toxin-permeabilized smooth muscle cells responded to 3-30 nmol/L or 0.3-3 nmol/L IP(3) in the presence of 0.2 micromol/L Ca(2+) with 1 mmol/L EGTA or 0.1 mmol/L EGTA, respectively, in an all-or-none manner. These results suggest that Ca(2+) release induced by IP(3) is Ca(2+) dependent and is evoked in an all-or-none manner. 4. In the presence of the Ca(2+) ionophore A23187 (0.1 micromol/L) or the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid (1 micromol/L), the shortening of intact smooth muscle cells induced by increasing concentrations of ACh showed a graded response, but not an all-or-none response. 5. In conclusion, the results suggest that Ca(2+) release from Ca(2+) stores induced by IP(3) plays an important role in the all-or-none response of intact smooth muscle cells to ACh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号