首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material comprised fresh samples from 40 MSS tumors and 20 MSI tumors obtained from 60 Danish CRC patients. We identified five small genomic regions (<15 megabases) exhibiting recurrent copy number loss, which, to our knowledge, have not been reported in previously published aCGH studies of CRC: 3p25.3, 3p21.2-p21.31, 5q13.2, 12q24.23-q24.31, and 12q24.23-q24.31. These regions contain several potentially important tumor suppressor genes that may play a role in a significant proportion of both sporadic MSS CRC and MSI CRC. Furthermore, the generated aCGH data are in support of the recently proposed classification of sporadic CRC into MSS CIN+, MSI CIN-, MSI CIN+, and MSS CIN- cancers.  相似文献   

2.
3.
PURPOSE: The genomic instability in colon cancer can be divided into at least two major types, microsatellite instability (MSI) or chromosomal instability (CIN). Although initially felt to be mutually exclusive, recent evidence suggests that there may be overlap between the two. The aim of this study was to identify chromosomal alterations at high resolution in sporadic colon cancers with high-level microsatellite instability (MSI-H) and to compare them to those present in a set of matched microsatellite stable (MSS) tumors. EXPERIMENTAL DESIGN: Array-based comparative genomic hybridization was used to analyze a set of 23 sporadic MSI-H and 23 MSS colon cancers matched for location, gender, stage, and age. The arrays consisted of 2,464 bacterial artificial chromosome clones. RESULTS: MSI and MSS colon cancers differed significantly with respect to frequency and type of chromosomal alterations. The median fraction of genome altered was lower among MSI-H tumors than MSS tumors (2.8% versus 30.7%, P=0.00006). However, the MSI-H tumors displayed a range of genomic alterations, from the absence of detectable alterations to extensive alterations. Frequent alterations in MSI-H tumors included gains of chromosomes 8, 12, and 13, and loss of 15q14. In contrast, the most frequent alterations in MSS tumors were gains of 7, 13, 8q, and 20, and losses of 8p, 17p, and 18. A small, previously uncharacterized, genomic deletion on 16p13.2, found in 35% of MSI-H and 21% of MSS tumors, was confirmed by fluorescence in situ hybridization. CONCLUSION: MSI and CIN are not mutually exclusive forms of genomic instability in sporadic colon cancer, with MSI tumors also showing varying degrees of CIN.  相似文献   

4.
Genomic profiling: from molecular cytogenetics to DNA arrays   总被引:2,自引:0,他引:2  
Genetic instability results, in a large majority of solid tumors, in deep chromosomal rearrangements. However, because chromosomal instability produces highly complex caryotypes, rarely showing stereotypic aberrations, it has not been possible to characterize solid cancers according to specific patterns of chromosomal rearrangements. This contrasts with the situation in hematological malignancies, where cytogenetics has allowed to lay out the basis of a renewed classification. New insights have been brought by the development of comparative genomic hybridization (CGH). This molecular cytogenetics approach was originally devised to detect regions in the genome of tumor cells undergoing quantitative changes, i.e. gains or losses of copy numbers. The large body of studies based on CGH show that solid tumors undergo frequent gains and losses and that every chromosomes show at least one region of anomaly. Furthermore, different tumor types present distinct CGH patterns of gains and losses. These observations favor the idea that it may be possible to type human solid cancers according to their patterns of genomic aberrations. However, despite the fact that a number of CGH based studies present data suggesting that different tumor types or cancers at different stages of evolution show distinct patterns of gains and losses, it has proven difficult to be conclusive. This can be mainly attributed to the lack of spatial resolution of CGH. Indeed, CGH uses metaphase chromosomes as hybridization targets and therefore its resolution is at the level of chromosomal banding. The recent adaptation of DNA array technology to CGH will allow to pass this limitation. In DNA array based CGH (array-CGH) metaphase chromosomes have been replaced by spots of cloned DNA. These DNA clones may either be genomic (BACs, YACs or cosmids) or coding (cDNAs). The resolution of array-CGH is therefore determined by the size of the cloned DNA insert (100 Kb for BACs, 1-2 kb for cDNAs). Data corresponding to each of these clones is or will be in a near future linked to DNA sequence data. Hence, in a near future, array-CGH will allow to increase the resolution from a cytogenetic level to a molecular level. Finally, because array technology is highly adaptable to automation, going from classical CGH to array-CGH will produce a quantum leap in throughput.  相似文献   

5.
BACKGROUND: This study investigated whether patients with colorectal cancer (CRC) who have tumors with high microsatellite instability (MSI; MSI-H) had an altered expression of the folate and methyl-group metabolism. The gene expression levels of thymidylate synthase (TS), reduced folate carrier (RFC-1), folylpolyglutamate synthase (FPGS), and methylenetetrahydrofolate reductase (MTHFR) in mucosa and tumor were compared with patients with MSS. Furthermore, the influence of TS polymorphisms on TS gene expression levels and MSI-H was studied. PATIENTS AND METHODS: The microsatellite status (MSI-H, low instability [MSI-L], or stable [MSS]) and TS polymorphisms were analyzed in genomic DNA from 181 patients with CRC. Gene expression levels of TS, RFC-1, FPGS, and MTHFR in mucosa and tumors were quantified and the difference in TS expression between tumor and mucosa was designated DeltaTS. RESULTS: Significantly higher gene expression levels of TS (P < .0001) were detected in patients with CRC with MSI-H compared with MSS/MSI-L tumors. Gene expression of TS and FPGS were significantly higher in right-sided MSI-H tumors compared with right-sided MSS/MSI-L tumors (P < .0001, P = .041, respectively). A significant correlation between DeltaTS and the number of unstable markers was found (P < .0001). An inverse association between age and TS expression was found in MSI tumors (r = -0.57; P = .0004) and also in right-sided tumors (r = -0.25, P = .011) regardless of MSI status. No relation was detected between MSI status and the TS polymorphisms or between the TS polymorphisms and TS expression. CONCLUSION: This study has revealed, for the first time, that age and the frequency of unstable MSI markers were factors that were linked to the variability in TS gene expression in tumors.  相似文献   

6.
Array comparative genomic hybridization, with a genome-wide resolution of approximately 1 Mb, has been used to investigate copy number changes in 48 colorectal cancer (CRC) cell lines and 37 primary CRCs. The samples were divided for analysis according to the type of genomic instability that they exhibit, microsatellite instability (MSI) or chromosomal instability (CIN). Consistent copy number changes were identified, including gain of chromosomes 20, 13, and 8q and smaller regions of amplification such as chromosome 17q11.2-q12. Loss of chromosome 18q was a recurrent finding along with deletion of discrete regions such as chromosome 4q34-q35. The overall pattern of copy number change was strikingly similar between cell lines and primary cancers with a few obvious exceptions such as loss of chromosome 6 and gain of chromosomes 15 and 12p in the former. A greater number of aberrations were detected in CIN+ than MSI+ samples as well as differences in the type and extent of change reported. For example, loss of chromosome 8p was a common event in CIN+ cell lines and cancers but was often found to be gained in MSI+ cancers. In addition, the target of amplification on chromosome 8q appeared to differ, with 8q24.21 amplified frequently in CIN+ samples but 8q24.3 amplification a common finding in MSI+ samples. A number of genes of interest are located within the frequently aberrated regions, which are likely to be of importance in the development and progression of CRC.  相似文献   

7.
The goals of this study were to evaluate the potential of detecting cryptic amplification and deletion of cancer-related genes using array-based comparative genomic hybridization (CGH), and to identify candidate cancer genes by combined parallel analyses of copy number and gene expression profiles in nasopharyngeal carcinoma (NPC) cell lines. We established global DNA copy number and mRNA expression profiles on human NPC cell lines using a high-density cDNA microarray. The DNA copy number alterations detected by array CGH were compared to the DNA copy number variations identified by metaphase CGH. A cryptic amplification at 3q26 was detected by array CGH, which was not found by metaphase CGH. By amplicon mapping and parallel analyses of DNA copy number and mRNA expression levels, we identified several candidates which could be important mediators in tumor formation or progression. Taken together, the combination of copy number and gene expression profiling using cDNA microarrays provides an improved strategy for gene discovery in human cancer.  相似文献   

8.
9.
Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization (CGH) for copy number changes and single-copy number polymorphism (SNP) microarrays for allelic loss (LOH). Many array-based CGH changes were not found by LOH because they did not cause true reduction-to-homozygosity. Conversely, many regions of SNP-LOH occurred in the absence of copy number change, comprising an average per cell line of 2 chromosomes with complete LOH; 1-2 terminal regions of LOH (mitotic recombination); and 1 interstitial region of LOH. SNP-LOH detected many novel changes, representing possible locations of uncharacterized tumor suppressor loci. Microsatellite unstable (MSI+) lines infrequently showed gains/deletions or whole-chromosome LOH, but their near-diploid karyotypes concealed mitotic recombination frequencies similar to those of MSI- lines. We analyzed p53 and chromosome 18q (SMAD4) in detail, including mutation screening. Almost all MSI- lines showed LOH and/or deletion of p53 and 18q; some near-triploid lines had acquired three independent changes at these loci. We found consistent results in primary colorectal cancers. Overall, the distributions of mitotic recombination and whole-chromosome LOH in the MSI- cell lines differed significantly from random, with some lines having much higher than expected levels of these changes. Moreover, lines with more LOH changes had significantly fewer copy number changes. These data suggest that CIN is not synonymous with copy number change and some cancers have a specific tendency to whole-chromosome deletion and regain or to mitotic recombination.  相似文献   

10.
Array-based comparative genomic hybridization (CGH) allows for the simultaneous examination of thousands of genomic loci at 1-2 Mb resolution. Copy number alterations detected by array-based CGH can aid in the identification and localization of cancer causing genes. Here we report the results of array-based CGH in a set of 125 primary colorectal tumors hybridized onto an array consisting of 2463 bacterial artificial chromosome clones. On average, 17.3% of the entire genome was altered in our samples (8.5 +/- 6.7% gained and 8.8 +/- 7.3% lost). Losses involving 8p, 17p, 18p or 18q occurred in 37, 46, 49 and 60% of cases, respectively. Gains involving 8q or 20q were observed 42 and 65% of the time, respectively. A transition from loss to gain occurred on chromosome 8 between 41 and 48 Mb, with 25% of cases demonstrating a gain of 8p11 (45-53 Mb). Chromosome 8 also contained four distinct loci demonstrating high-level amplifications, centering at 44.9, 60, 92.7 and 144.7 Mb. On 20q multiple high-level amplifications were observed, centering at 32.3, 37.8, 45.4, 54.7, 59.4 and 65 Mb. Few differences in DNA copy number alterations were associated with tumor stage, location, age and sex of the patient. Microsatellite stable and unstable (MSI-H) tumors differed significantly with respect to the frequency of alterations (20 versus 5%, respectively, P < 0.01). Interestingly, MSI-H tumors were also observed to have DNA copy number alterations, most commonly involving 8q. This high-resolution analysis of DNA copy number alterations in colorectal cancer by array-based CGH allowed for the identification of many small, previously uncharacterized, genomic regions, such as on chromosomes 8 and 20. Array-based CGH was also able to identify DNA copy number changes in MSI-H tumors.  相似文献   

11.
Wilms' tumor (WT) is one of the most common solid tumors of childhood. The genetics of this disorder is complex and few studies have suggested allelic loss of chromosome 22 as a frequent aberration. To assess tumor- and possible germline-specific regions affected with gene copy number variations on this chromosome, we applied a high-resolution genomic clone-based chromosome 22 array to a series of 28 WT samples and the paired blood-derived DNA of the patients. The group of tumors was enriched for cases with metastases, relapse or fatal outcome, criteria that were expected to yield a higher number of alterations on chromosome 22. Overall, the array-based form of comparative genomic hybridization (array-CGH) analysis revealed genomic changes in 53% (15 out of 28) of cases. We identified hemizygous deletion of the whole arm of 22q in 3 tumors (11%). Furthermore, a complex amplifier genotype was detected in 8 samples, presenting regions of gain along the chromosome, which defined 7 distinct minimal overlapping segments. The distribution of aberrations in 4 additional cases displaying regional genomic imbalances delimited 2 tumor suppressor/oncogene candidate loci, 1 in the proximal and the other in the terminal part of 22q. Analysis of these regions revealed the presence of several candidate genes that may play a role in the development of WT. These findings demonstrate the power of array-CGH in the determination of DNA copy number alterations and further strength the notion that WT-associated genes exist on this chromosome.  相似文献   

12.
 目的 研究非特指型外周T细胞淋巴瘤(PTCL-NOS)的分子遗传学改变特征,从而为揭示其发生、发展的分子机制及治疗提供科学依据。方法 应用1Mb Array-CGH检测37例PTCL-NOS染色体改变, 并经Tile path Array-CGH 验证其结果。根据克隆性分析结果、形态学特征和提取DNA质量,最终确定31例为研究对象。结果 31例中的17例(55 %)存在染色体异常改变,包含重现性染色体片段的异常(≥4例)。其中最频发性染色体获得区域是1p36.13-1p36.32,7q22.1,7q36.1-7q36.3,7q32.1-7q32.3,7q22.1-7q34,9p11.2-9q12和9q33.3-9q34.3;最为频发性染色体缺失区域是1p12-1p21.1和13q14.11-13q14.3;另外,还发现多倍体和单倍体。结论 PTCL-NOS存在多发性重现性染色体畸变,其中携有染色体畸变频发(≥6个区域)的病例预后不良。  相似文献   

13.
Alterations in genomic content and changes in gene expression levels are central characteristics of tumors and pivotal to the tumorigenic process. We analyzed 23 non-small cell lung cancer (NSCLC) tumors by array comparative genomic hybridization (array CGH). Aberrant regions identified included well-characterized chromosomal aberrations such as amplifications of 3q and 8q and deletions of 3p21.31. Less frequently identified aberrations such as amplifications of 7q22.3-31.31 and 12p11.23-13.2, and previously unidentified aberrations such as deletion of 11q12.3-13.3 were also detected. To enhance our ability to identify key acting genes residing in these regions, we combined array CGH results with gene expression profiling performed on the same tumor samples. We identified a set of genes with concordant changes in DNA copy number and expression levels, i.e. overexpressed genes located in amplified regions and underexpressed genes located in deleted regions. This set included members of the Wnt/beta-catenin pathway, genes involved in DNA replication, and matrix metalloproteases (MMPs). Functional enrichment analysis of the genes both overexpressed and amplified revealed a significant enrichment for DNA replication and repair, and extracellular matrix component gene ontology annotations. We verified the changes in expressions of MCM2, MCM6, RUVBL1, MMP1, MMP12 by real-time quantitative PCR. Our results provide a high resolution map of copy number changes in non-small cell lung cancer. The joint analysis of array CGH and gene expression analysis highlights genes with concordant changes in expression and copy number that may be critical to lung cancer development and progression.  相似文献   

14.
In order to find common genetic abnormalities that may identify loci of genes involved in the development of adenoid cystic carcinoma (ACC), we investigated DNA copy number changes in 24 of these tumors by comparative genomic hybridization (CGH). Our results indicate that unlike many carcinomas, ACCs have relatively few changes in DNA copy number overall. Twenty tumors had DNA copy number changes, which were mostly restricted to a few chromosomal arms. A frequent novel finding was the loss of DNA copy number in chromosome 12q (eight tumors, 33%) with the minimal common overlapping region at 12q12--q13. Deletion in this region has not been reported to be frequent in other types of cancer analyzed by CGH. In addition, deletions in 6q23-qter and 13q21--q22 and gains of chromosome 19 were observed in 25% to 38% of ACCs. Deletion of 19q, previously reported in a small series of ACC, was not identified in the current group of carcinomas. The current CGH results for chromosomes 12 and 19 were confirmed by microsatellite allelotyping. These results indicate that DNA copy number losses in 12q may be important in the oncogenesis of ACC and suggest that the 12q12--q13 region may harbor a new tumor-suppressor gene.  相似文献   

15.
Genetic alterations have been recognized as important events in the carcinogenesis of oral squamous cell carcinoma (OSCC) and have been used as predictors of progression risk. In this study, we have designed an oral cancer-specific human bacterial artificial chromosome (BAC) array, called the oral cancer genomic regional array (OCGR), to detect and fine map copy number alterations in OSCC. This array contains a total of approximately 45 Mbp coverage of nine chromosomal regions reported to be involved in the progression of oral cancer. We demonstrate the detection of copy number alterations in 14 microdissected clinical specimens in each of the nine regions. These include both copy number increases and decreases. Although the number of regions selected for this first generation array is small, we observed multiple segmental changes. In some cases, we observed single BAC clone alterations at 7p11 and 11q13 which contain EGFR and cyclin D1 respectively highlighting the need for high resolution detection techniques. Array comparative genomic hybridization (CGH) complements traditional methods for detecting genetic alterations in OSCC (such as microsatellite and CGH analysis) by improving the detection of segmental copy number alterations to single BAC clone resolution. This work represents the first attempt at the construction of an oral cancer-specific CGH array.  相似文献   

16.
Conventional cytogenetic analysis of prostatic carcinoma (PC) is characterized by inefficient growth of tumor cells during in vitro culture, leading to a lack of aberrant karyotypes in many of investigated tumors. In this study we have combined a modified short-term tissue culture method for conventional banding analysis and comparative genomic hybridization (CGH) to examine genetic changes in PC, and to evaluate the effect of the in vitro culture on chromosomal changes by comparing results of the two methods. Cytogenetic analysis was performed on 34 PCs using both, conventional and molecular methods. Tumor tissues were obtained predominantly from untreated primary tumors from 48 patients. For karyotyping all tumor samples were short-term cultured using a feeder layer technique. Additionally DNA from uncultured tumor material from 17 of those patients was isolated and screened for copy number changes using CGH. Conventional banding analysis: clonal aberrations were detected in 65% of the tumor samples. Most of the chromosomal findings were numerical changes, including loss of chromosomes Y (32%), 18, 19 and 21 (each 12%). Less frequent, trisomy of chromosome 7 and monosomy of chromosomes 9, 12 and 22 (each 9%) was found. Additionally an inversion of chromosome 9p and a deletion at chromosome 7q was found in two cases. In 35% no clonal aberrations could be detected. CGH: DNA copy number changes were detected in 65% of the analyzed tumors. Predominantly losses of DNA sequences were found. The most common losses were found at chromosome regions 13q21q33 (29%), 6q11q23 (24%), 16q, and 18 (each 18%), and the most common gains at 19 (18%). In six tumors no copy number changes were found. Both methods showed a similar aneuploidy rate, suggesting that the feeder layer technique is quite a suitable method for in vitro culture of PC cells. However, the two techniques produced substantially differing results for most of the tumor samples, and in some cases the discrepancies are quite striking. Therefore eventual culture effects need to be taken into account when comparing results from conventional cytogenetics and CGH. Some contrary findings from the two methods are discussed.  相似文献   

17.
Comparative genomic hybridization (CGH) is a recent molecular cytogenetic method that detects and localizes gains or losses in DNA copy number across the entire tumor genome. We used CGH to examine 9 glioma cell lines and 20 primary and 10 recurrent glioblastoma tumors. More than 25% of the primary tumors had gains on chromosome 7; they also had frequent losses on 9p, 10, 13 and Y. The losses on chromosome 13 included several interstitial deletions, with a common area of loss at 13q21. The recurrent tumors not only had gains on chromosome 7 and losses on 9p, 10, 13 and Y but also frequent losses on 6 and 14. One recurrent tumor had a deletion of 10q22-26. Cell lines showed gains of 5p, 7 and Xp; frequent amplifications at 8q22-24.2, 7q2l-32 and 3q26.2-29 and frequent losses on 4, 10, 13, 14 and Y. Because primary and recurrent tumors and cell lines showed abnormalities of DNA copy number on chromosomes 7, 10, 13 and Y, these regions may play a fundamental role in tumor initiation and/or progression. The propensity for losses on chromosomes 6 and 14 to occur in recurrent tumors suggests that these aberrations play a role in tumor recurrence, the development of resistance to therapy or both. Analysis of common areas of loss and gain in these tumors and cell lines provides a basis for future attempts to more finely map these genetic changes.  相似文献   

18.
Pheochromocytomas (PCCs) are rare tumors among children and adolescents and therefore are not genetically well characterized. The most frequently observed chromosomal changes in PCC are losses of 1p, 3q and/or 3p, 6q, 17p, 11q, 22q, and gains of 9q and 17q. Aberrations involving chromosome 11 are more common in malignant tumors. Unfortunately information about gene aberrations in childhood PCC’s is limited. We used comparative genomic hybridization (CGH) and array comparative genomic hybridization (aCGH) to screen for copy number changes in four children suffering from pheochromocytoma or paraganglioma. Patients were diagnosed at the age 13 or 14 years. Bilateral pheochromocytoma was associated with von Hippel-Lindau syndrome (VHL). Multiple paraganglioma was associated with a germline mutation in SDHB. We found very good concordance between the results of CGH and aCGH techniques. Losses were observed more frequently than gains. All cases had a loss of chromosome 11 or 11p. Other aberrations were loss of chromosome 3 and 11 in sporadic pheochromocytoma, and loss of 3p and 11p in pheochromocytoma, which carried the VHL mutation. The deletion of chromosome 1p and other changes were observed in paragangliomas. We conclude that both array CGH and CGH analysis identified similar chromosomal regions involved in tumorigenesis of pheochromocytoma and paragangliomas, but we found 3 discrepancies between the methods. We didn’t find any, of the proposed, molecular markers of malignancy in our benign cases and therefore we speculate that molecular cytogenetic examination may be helpful in separating benign and malignant forms in the future.  相似文献   

19.
Identifying changes in DNA copy number can pinpoint genes that may be involved in tumor development. Here we have defined the smallest overlapping regions of imbalance (SORI) in testicular germ cell tumors other than the 12p region, which has been previously investigated. Definition of the regions was achieved through comparative genomic hybridization (CGH) analysis of a 4559 cDNA clone microarray. A total of 14 SORI were identified, which involved at least five of the 11 samples analysed. Many of these refined regions were previously reported using chromosomal or allelic imbalance studies. The SORI included gain of material from the regions 4q12, 17q21.3, 22q11.23 and Xq22, and loss from 5q33, 11q12.1, 16q22.3 and 22q11. Comparison with parallel chromosomal CGH data supported involvement of most regions. The various SORI span between one and 20 genes and highlight potential oncogenes/tumor suppressor genes to be investigated further.  相似文献   

20.
Genome-wide copy number profiles were characterized in 41 primary bladder tumors using array-based comparative genomic hybridization (array CGH). In addition to previously identified alterations in large chromosomal regions, alterations were identified in many small genomic regions, some with high-level amplifications or homozygous deletions. High-level amplifications were detected for 192 genomic clones, most frequently at 6p22.3 (E2F3), 8p12 (FGFR1), 8q22.2 (CMYC), 11q13 (CCND1, EMS1, INT2), and 19q13.1 (CCNE). Homozygous deletions were detected in 51 genomic clones, with four showing deletions in more than one case: two clones mapping to 9p21.3 (CDKN2A/p16, in nine cases), one at 8p23.1 (three cases), and one at 11p13 (two cases). Significant correlations were observed between copy number gain of clones containing CCNE1 and gain of ERBB2, and between gain of CCND1 and deletion of TP53. In addition, there was a significant complementary association between gain of CCND1 and gain of E2F3. Although there was no significant relationship between copy number changes and tumor stage or grade, the linked behavior among genomic loci suggests that array CGH will be increasingly important in understanding pathways critical to bladder tumor biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号