首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Obesity and osteoporosis remain two major public health concerns. Soft tissue composition and bone are interrelated; however, it is still not well understood how changes in adiposity during adolescence affect bone development. The aim of this study was to assess how changes in DXA-derived total body lean mass (TBLM) and total body fat mass (TBFM) associate with 2-year changes in bone outcomes at the 20% femur, 66% tibia, 66% radius, and 4% tibia, as measured by pQCT, during the years surrounding the onset of menarche in a cohort of 9- to 12-year-old (baseline) adolescent girls (70% Hispanic). From baseline to 2-year follow-up, girls showed statistically significant increases in all bone outcomes, except radial endosteal circumference. In separate linear regression models, change in TBLM and change in TBFM were both positively associated with 2-year changes in bone outcomes at all measured bone sites, after controlling for relevant covariates. However, when change in TBLM and change in TBFM were included in the same model, change in TBLM was the predominant predictor of bone outcomes, explaining 4% to 14% of the variance in bone strength outcomes. Change in TBFM remained a positive predictor of tibia polar strength strain index (SSIp) (2% variance explained). A significant interaction between change in TBFM and menarcheal status was identified at the radius for SSIp and indicated that greater gains in TBFM were beneficial for SSIp in girls that were premenarcheal at baseline but detrimental for girls who were postmenarcheal at baseline. The overall findings suggest that changes in TBLM during the peripubertal years have a greater influence on bone outcomes than changes in TBFM. While gains in TBFM might benefit the weight bearing 66% tibia, greater gains in TBFM may be detrimental to bone development at the non-weight bearing 66% radius after the onset of menarche. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

2.
We studied the characteristics of bone mineral density (BMD) and soft tissue composition in obese Japanese women using dual-energy X-ray absorptiometry. Eighty-nine women, aged 45–85 years, were divided into three groups according to their body mass index (BMI): a thin group (n = 38; BMI < 21), a standard weight group (n = 31; BMI, 21–25), and an obese group (n = 20; BMI ≥ 25). The mean BMD of the second to fourth lumbar vertebrae and BMD of the lumbar spine, thoracic spine, pelvis, legs, and ribs of the thin group were significantly lower than those of the standard weight group or the obese group (P < 0.05), whereas no significant difference in total body BMD was observed among the three groups. There was a significant difference in total and regional fat mass among the three groups (P < 0.05). Lean mass of legs and total lean mass showed a significant difference between the thin group and the obese group (P < 0.05). The results showed that obesity was associated with higher BMD of weight bearing-bones and ribs, high total and regional fat mass, and high lean mass of bilateral legs and total lean mass. We suggest that obesity may contribute to the prevention of bone loss of weight-bearing bones and ribs and muscular atrophy of the legs. Received: Sept. 30, 1998 / Accepted: Dec. 10, 1998  相似文献   

3.
Associations between lean mass, fat mass, and bone mass have been reported earlier; however, most of those studies have been done in Caucasian populations, and data from Asian countries, especially those in South Asia, are limited. We examined the associations between lean mass, fat mass, bone mineral density (BMD), and bone mineral content (BMC), determined by dual-energy X-ray absorptiometry technology, in a group of healthy, middle-aged, premenopausal female volunteers. The mean (SD) age of the women (= 106) was 42.1 (6.1) years and the mean (SD) body mass index was 24.3 (3.6) kg/m2. Total body BMD, total body BMC, and BMD in total spine, total hip, and femoral neck showed statistically significant partial correlations (adjusted for age) with total fat mass (r = 0.19–0.43, < 0.05) and lean body mass (r = 0.28–0.54, < 0.05). Truncal fat mass correlated positively with total body BMC and BMD at total hip and femoral neck (r = 0.33–0.40, < 0.001). When a stepwise regression model was fitted, lean mass remained the strongest predictor of total body BMD, total body BMC, and total spine BMD (regression coefficients = 0.004–0.008 g/cm2 per 1-kg change in lean mass, < 0.001). Similarly, crude BMD and BMC increased across the tertiles of lean mass (P trend < 0.05). We show that lean mass is the strongest predictor of total body BMC and BMD at different sites, although positive correlations with fat mass also exist.  相似文献   

4.
 We investigated the relationship of upper body fat distribution to regional bone mineral density (BMD). Subjects were 361 regularly menstruating premenopausal women with right-side dominance. Age, height, and weight were recorded. Regional (arms, L2–L4 of the lumbar spine, and legs) BMD, regional (arms, trunk, and legs) lean mass, and the ratio of trunk fat mass to leg fat mass amount (trunk–leg fat ratio) were measured by dual-energy X-ray absorptiometry. Body fat distribution was assessed by trunk–leg fat ratio. Trunk–leg fat ratio was positively correlated with regional BMD (r = 0.120–0.216; P < 0.05–P < 0.001) and regional lean mass (r = 0.162–0.229; P < 0.01–P < 0.001). Regional lean mass was more positively correlated with regional BMD (r = 0.319–0.475; P < 0.001). These relationships remained significant after adjusting for age and height. However, correlation of trunk–leg fat ratio with regional BMD disappeared after additionally adjusting for regional lean mass. In premenopausal women, upper body fat distribution is associated with higher regional BMD via greater regional lean mass irrespective of age and height. Received: July 15, 2002 / Accepted: October 29, 2002 Offprint requests to: T. Douchi  相似文献   

5.
To clarify the characteristics of total body and regional bone mineral density (BMD) and soft tissue composition in patients with atraumatic vertebral fractures (AVF), we measured total body and regional BMD, lean mass, and fat mass using dual-energy X-ray absorptiometry. Sixty-four women, aged 55–75 years, were divided into two groups: women with AVF (fracture group, n = 30) and women without AVF (nonfracture group, n = 34). Mean BMD of the second to fourth lumbar vertebrae (L2–4BMD), regional BMD, and soft tissue mass were measured. Regional BMD was measured in the head, arms, legs, ribs, thoracic vertebrae, lumbar vertebrae, and pelvis. Lean mass and fat mass of head, arms, legs, and trunk were measured. L2–4BMD, total body BMD, and BMD of the lumbar spine, thoracic spine, and pelvis of the fracture group were significantly lower than those of the nonfracture group (P < 0.001). Total lean and fat mass of the fracture group tended to be lower than that of the nonfracture group. The results suggest that BMD of weight-bearing bones, except for that of the bones of the legs of the fracture group, is significantly lower than that of the nonfracture group, and that total body lean and fat mass may be a predictor for AVF. Received: September 27, 1999 / Accepted: January 7, 2000  相似文献   

6.
Being overweight is associated with increased bone mineral content, bone mineral density (BMD), and bone strength in adults. However, the effect of being overweight on bone strength during adolescence is poorly understood. The aim of this study was to compare femoral neck geometry in overweight and normal weight adolescent girls. This study included 22 overweight (BMI > 25 kg/m2) adolescent girls (15.4 ± 2.4 years old) and 20 maturation-matched (15.2 ± 1.9 years old) controls (BMI < 25 kg/m2). Body composition and BMD were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate bone geometry, DXA scans were analyzed at the femoral neck by the hip structure analysis (HSA) program. Cross-sectional area (CSA), an index of axial compression strength, section modulus (Z), an index of bending strength, cross-sectional moment of inertia (CSMI), cortical thickness (CT), and buckling ratio (BR) were measured from bone mass profiles. Lean mass, body weight, fat mass, and BMI were higher in overweight girls compared to controls (P < 0.001). CSA, Z, and CSMI were higher in overweight girls compared to controls (P < 0.05; P < 0.01 and P < 0.01, respectively). CT and BR were not significantly different between the two groups. After adjustment for body weight, lean mass, or fat mass, using a one-way analysis of covariance (ANCOVA), there were no differences between the two groups (overweight and controls) regarding the HSA variables (CSA, Z, CSMI, CT, and BR). In conclusion, this study suggests that overweight adolescent girls have greater indices of bone axial and bending strength in comparison to controls at the femoral neck.  相似文献   

7.
 We investigated the relative contribution of lean body mass (LBM) and body fat mass to bone mineral density (BMD) in 93 healthy Japanese male volunteers (mean age, 33.1 ± 6.9 years; range, 18–54 years). Age, height (Ht), weight (Wt), and body mass index (BMI, Wt/Ht2) were recorded. Body fat mass, percentage of body fat, body fat mass/Ht2, LBM, LBM/Wt, LBM/Ht2, and lumbar spine (L2–L4) and total body BMD (TBBMD) were measured by dual-energy X-ray absorptiometry. On the Pearson correlation test, LBM was positively correlated with L2–L4 BMD. LBM, LBM/Wt, and LBM/Ht2 were positively correlated with TBBMD. However, body fat mass and body fat mass/Ht2 were not correlated with lumbar spine and total body BMD. On the partial correlation test, LBM was still correlated with lumbar spine (r = 0.307, P < 0.05) and total body BMD (r = 0.545, P < 0.0001), irrespective of age and height, whereas body fat mass was not correlated with BMD of these sites (r = −0.069 and −0.169, respectively). We concluded that, in males, LBM is one of the significant determinants of BMD whereas body fat mass is a negligible BMD determinant. Received: February 15, 2002 / Accepted: July 5, 2002 Offprint requests to: T. Douchi  相似文献   

8.
Background The aim of this study was to provide normative data of bone mineral density (BMD; g/cm2) of the forearm and the calcaneus, evaluated by peripheral dual X ray absorbtiometry (DXA), in children aged 6 to 7 years of age and to evaluate the association with anthropometrics and sex. Material and methods 368 boys and 326 girls with a mean age of 6.7 ± 0.4 years participated. BMD was measured by DXA in the forearms and the os calcanei, with average values presented in this report. Measurements of weight, height, skinfolds, the width of distal radius and ulna, and the femur condyles were collected and body composition estimated from skinfolds measurements. Results There was no difference in calcaneus BMD when comparing boys and girls, whereas the boys had 4.5% (0.013 g/cm2) higher forearm BMD than the girls (P < 0.001). Calcaneal BMD (mean 0.318 g/cm2) was 11% higher than forearm BMD (mean 0.283 g/cm2). Linear relationship was found between calcaneus BMD and weight (partial r = 0.50), Fat free mass (FFM) (partial r = 0.50), Fat mass (FM) (partial r = 0.45), % body fat (partial r = 0.29) and knee width (partial r = 0.46), all P < 0.000 respectively. Adjusted for weight the relationship between calcaneus BMD and FFM, FM, %body fat and knee width disappeared. There were significant relationships between the forearm BMD and weight (partial r = 0.37), FFM (partial r = 0.39), FM (partial r = 0.28), %body fat (partial r = 0.14) and wrist width (partial r = 0.24), all P < 0.000 respectively. Adjusted for body weight, the relationship remained between forearm BMD and FFM (r = 0.10), FM (R = −0.10) and % body fat (r = −0.12), all P < 0.000 respectively. Children measured in the spring had 3.5% (P < 0.01) higher calcaneus BMD than children measured in the winter. Conclusion Seven year old boys have higher BMD in the forearm but not in the calcaneus in comparison with girls of a similar age. Body weight is the best predictor of calcaneus BMD, accounting for 25% of the variance whereas body weight and FFM are the best predictors of forearm BMD, each accounting for 17% of the variance, respectively.  相似文献   

9.
To elucidate the possible skeletal benefits of the muscular contractions and the nonweight-bearing loading pattern associated with kayaking, we investigated the bone mineral density (BMD, g/cm2) of 10 elite kayakers, six males and four females, with a median age of 19 years. Each subject was compared with the mean value of two matched controls. BMD of the total body, head, ribs, humerus, legs, proximal femur (neck, wards, trochanter), spine, lumbar spine, and bone mineral content (BMC, g), of the arms was obtained using a dual energy X-ray absorptiometer (DXA). Body composition was also assessed. The kayakers had a significantly (P < 0.05–0.01) greater BMD in most upper body sites: left and right humerus (10.4% and 11.7%), respectively, ribs (6.4%), spine (10.9%), and a greater BMC of the left and right arm (15.7% and 10.6%, respectively). No significant differences in the BMD of the total body, head, or any of the lower body sites were found, except for the pelvis, which was significantly greater in kayakers (5.1%). The controls had a significantly lesser lean body mass (10.4%) and greater percentage of body fat (19.5%) than the kayakers. Bivariate correlation analysis in the controls demonstrated significant and strong relationships between BMD in upper body sites and lean body mass, weight, and fat; the effects of training seem to outweigh most such relationships in kayakers. In conclusion, it seems that the loading pattern and muscular contractions associated with kayaking may result in site-specific adaptations of the skeleton. Received: 21 April 1998 / Accepted: 1 October 1998  相似文献   

10.
The influence of habitual and low-impact physical activity (PA) on bone health and soft tissue including bone-free lean (BFL) and fat mass is less elucidated than the influence of high-impact activities. This study examines the interactive effects of PA and soft tissue on bone mineral density (BMD) and content (BMC) in healthy Caucasian women, aged 68.6 ± 7.1 years, with body mass index (BMI) of 26.0 ± 3.8 kg/m2 evaluated at baseline and every 6 months for 3 years. Measurements/assessments included BMD/BMC and soft tissue (by dual-energy X-ray absorptiometry), anthropometrics, dietary intake, and PA. Activities assessed were past activity, present heavy housework, gardening, do-it-yourself activities, stair-climbing, walking, walking pace, sports/recreation, and total activity. Baseline analyses revealed significant positive associations between past activity, heavy housework, faster-paced walking, BFL, and BMD/BMC of various skeletal sites. Prospective analyses showed subjects with more walking hours/week had significantly higher BMD/BMC of several skeletal sites (P < 0.05). Stratification by cumulative (over 3 years) median for heavy housework, walking, sports/recreational, and total activities revealed higher BMD and BMC in the femur and spine (P = 0.01) in subjects with those activities above median. Multivariate analysis of covariance results revealed that weight had the strongest influence on BMD and BMC, followed by BFL. Various modes of PA were negatively associated with BMI and fat but not with BFL. In conclusion, heavy housework, walking (faster pace), sports/recreational activities, and overall total participation in low-impact PA were beneficial for bone and for achieving more favorable body weight and fat but were not associated with BFL. The results indicate that even habitual activities engaged in by older women could benefit their bone and diminish body fat.  相似文献   

11.
A number of recent findings seem to indicate that fat and bone metabolism are strictly connected. We investigated the relationship between lipid profile and bone mineral density (BMD) in 236 either pre- or postmenopausal women, aged 35–81 years, attending our osteoporosis center (clinic group). In order to verify the consistency of the results, 265 men and 481 women aged 68–75, participating in a population-based epidemiological investigation (community cohort), were also studied. Lumbar spine, femoral neck, total hip and total body BMD, total body fat, % fat mass and lean mass were measured using dual energy X-ray absorptiometry (DXA). In the clinic group, lumbar spine and hip BMD Z score values were both strongly related to all measured serum lipids: the relationship was negative for HDL cholesterol (P < 0.05) and Apo A lipoprotein (P < 0.000) and positive for LDL cholesterol (P < 0.05), Apo B lipoprotein (P < 0.001) and triglycerides (P < 0.05). When BMD values were adjusted for body weight and BMI, most relationships remained statistically significant. In the community cohort, total body and hip BMD values were strongly related in both men and women to age, body weight, height, BMI, fat mass, lean mass, % fat mass. Total body and hip BMD were significantly related to serum lipids in both women and men. The relationship was negative for HDL cholesterol and positive for total cholesterol, triglycerides and LDL cholesterol. Most of these relationships (triglycerides, HDL cholesterol, LDL/HDL cholesterol ratio in women, and all measured lipids in men) remained statistically significant (P values ranging from 0.000 to 0.03) when the BMD values were adjusted also for anthropometric measures (body weight, height, fat mass). This study demonstrates for the first time that the lipid profile is strictly related to bone mass in both men and women. The interpretation of this association remains hypothetical but it might open new perspectives for understanding the mechanisms controlling bone metabolism.  相似文献   

12.
The purpose of this study was to examine the difference in lifestyle and morphometric factors that affect bone mineral and the attainment of peak bone mass in 168 healthy Asian (n = 58) and Caucasian (n = 110) Canadian, prepubertal girls and boys (mean age 8.9 ± 0.7) living in close geographical proximity. DXA (Hologic 4500) scans of the proximal femur (with regions), lumbar spine, and total body (TB) were acquired. We report areal bone mineral densities (aBMD g/cm2) at all sites and estimated volumetric density (νBMD, g/cm3) at the femoral neck. Dietary calcium, physical activity, and maturity were estimated by questionnaire. Of these prepubertal children, all of the boys and 89% of the girls were Tanner stage 1. A 2 × 2 ANOVA demonstrated no difference between ethnicities for height, weight, body fat, or bone mineral free lean mass. Asian children consumed significantly less dietary calcium (35%) on average and were significantly less active (15%) than their Caucasian counterparts (P < 0.001). There were significant ethnicity main effects for femoral neck bone mineral content (BMC) and αBMD (both P < 0.001) and significant sex by ethnicity interactions (P < 0.01). The Asian boys had significantly lower femoral neck BMC (11%), aBMD (8%), and νBMD (4.4%). At the femoral neck, BMFL mass, sex, and physical activity explained 37% of the total variance in aBMD (P < 0.05). In summary, this study demonstrated differences in modifiable lifestyle factors and femoral neck bone mineral between Asian and Caucasian boys. Received: 21 July 1998 / Accepted: 30 September 1999  相似文献   

13.
Bone Mineral Content and Density in Professional Tennis Players   总被引:5,自引:0,他引:5  
Total and regional bone mineral content (BMC) as well as lean and fat mass were measured in nine male professional tennis players (TPs) and 17 nonactive subjects; dual-energy X-ray absorptiometry (DXA) was used for measuring. The mean (±SD) age, body mass, and height were 26 ± 6 and 24 ± 3 years, 77 ± 10 and 74 ± 9 kg, and 180 ± 6 and 178 ± 6 cm for the TP and the control group (CG), respectively. The whole body composition for BMC, lean mass, and fat of the TP was similar to that observed in the CG. The tissue composition of the arms and legs was determined from the regional analysis of the whole-body DXA scan. The arm region included the hand, forearm, and arm, and was separated from the trunk by an inclined line crossing the scapulo-humeral joint. In the TP, the arm tissue mass (BMC + fat + lean mass) was about 20% greater in the dominant compared with the contralateral arm because of a greater lean (3772 ± 500 versus 3148 ± 380 g, P < 0.001) and BMC (229.0 ± 43.5 versus 188.2 ± 31.9 g, P < 0.001). In contrast, no significant differences were observed either in BMC or BMD between arms in the CG. Total mass, lean mass, and BMC were greater in the dominant arm of the TP than in the CG (all P < 0.05). In the TP, BMD was similar in both legs whereas in the CG, BMD was greater in the right leg. Lumbar spine (L2–L4) BMD, adjusted for body mass and height, was 15% greater in the TP than in the CG (P < 0.05). Femoral neck BMDs (femoral neck, Ward's triangle, greater trochanter, and intertrochanteric regions) adjusted for body mass and height were 10–15% greater in the TP (all P < 0.05). Ward's triangle BMD was correlated with the maximal leg extension isometric strength (r = 0.77, P < 0.05) even when adjusted for body mass (r = 0.76, P < 0.05) and height (r = 0.77, P < 0.05). In summary, the participation in tennis is associated with increased BMD in the lumbar spine and femoral neck. These results may have implications for devising exercise strategies in young and middle-aged persons to prevent involutional osteoporosis later in life. Received: 29 April 1997 / Accepted: 14 November 1997  相似文献   

14.
This study investigated the relative contribution of fat mass and lean mass to bone mineral density (BMD) in young and premenopausal healthy Chinese women. The study was performed in 282 young and premenopausal healthy women with regular menstrual cycles. The BMD at lumbar spine (L2–L4), total hip and total body, together with fat mass and lean mass were assessed by dual-energy X-ray absorptiometry (DXA); body height, weight, waist and hip circumference were also measured, and body mass index (BMI) and waist-hip ratio were calculated. Fat mass was a major determinant for BMI, BMI and lean mass were positively related to L2–L4, total hip and total body bone density (P<0.001 for all), lean mass was the only independent factor contributing to BMD at L2–L4 (standardized coefficient =0.282, P<0.001), total hip (=0.336, P<0.001) and total body (=0.361, P<0.001) in multiple stepwise regression analysis. The correlation between BMI and BMD was improved after adjustment for fat mass, while decreased or even lost when lean mass was adjusted. These data suggested that in the Chinese population, lean mass is an important factor determining BMD in young and premenopausal women.  相似文献   

15.
We conducted a cross-sectional study in a cohort of Japanese adolescent schoolgirls (12–18 years of age) and their mothers (387 pairs). Age, lumbar bone mineral density (BMD), birth and menarche-related status, height, body weight and lifestyles were surveyed in the participants. The values of BMD, height and body weight were converted to standard deviation (SD) by age. There were 49 (12.7%) pre-menarche and 338 (87.3%) post-menarche daughters. BMD-SD, height-SD, vitamin D intake and vitamin K intake were significantly correlated between the pre-menarche daughters and mothers (P < 0.05), while BMD-SD, birth weight, age at menarche and all lifestyle-related factors were significantly correlated between the post-menarche daughters and mothers (P < 0.05). BMD-SD in the pre-menarche daughters was affected by BMD-SD in mothers (R 2 = 0.069, P = 0.033) and their own height-SD (R 2 = 0.199, P = 0.001) (model R 2 = 0.340), independently. BMD-SD in the post-menarche daughters was affected by BMD-SD in mothers (R 2 = 0.073, P < 0.001) as well as by their own age at menarche (R 2 = 0.020, P = 0.001), height-SD (R 2 = 0.022, < 0.001), body weight-SD (R 2 = 0.081, P < 0.001) and intensity of exercise (R 2 = 0.015, P = 0.045) (model R 2 = 0.372), independently. The results suggest that BMD is strongly correlated between daughters and mothers and that a greater age at menarche leads to lower peak bone mass. It was also suggested that maintaining high-intensity physical activity and adequate body weight is important in achieving maximum BMD as factors amenable to intervention in post-menarche daughters.  相似文献   

16.
Neuropeptide Y (NPY) is a physiological candidate gene for the regulation of body weight and has more recently been implicated in regulating bone mass. The current study sought to test if inherited variation in NPY might influence BMD in a population of African-ancestry men who have high bone mineral density (BMD). We genotyped 17 tagging single-nucleotide polymorphisms (SNPs) across the NPY gene region in 1,113 randomly selected men of African ancestry aged ≥40 years and tested for association with anthropometric characteristics and proximal femur BMD. The homozygous rare genotype of four SNPs was associated with a 0.92–1.59% decrease in stature (corrected P < 0.05). No SNP was associated with body mass index or body weight. Two SNPs in a 5-kb linkage disequilibrium block encompassing exons 3 and 4 were associated with proximal femur BMD, adjusted for age, body weight, and height (corrected P < 0.05). These results suggest that genetic variation at the NPY locus may contribute to bone density, independently of body weight.  相似文献   

17.
The aim of this study was to compare bone mass between two groups of jockeys (flat: n = 14; national hunt: n = 16); boxers (n = 14) and age, gender and BMI matched controls (n = 14). All subjects underwent dual energy X-ray absorptiometry (DXA) scanning for assessment of bone mass, with measurements made of the total body, vertebra L2–4 and femoral neck. Body composition and the relative contribution of fat and lean mass were extrapolated from the results. Data were analysed in accordance with differences in body composition, in particular, height, lean mass, fat mass and age. Both jockey groups were shown to display lower bone mass than either the boxers or control group at a number of sites including total body bone mineral density (BMD) (1.019 ± 0.06 and 1.17 ± 1.05 vs. 1.26 ± 0.01 and 1.26 ± 0.06 g cm−2 for flat, national hunt, boxer and control, respectively), total body bone mineral content (BMC) less head, L2–4 BMD and femoral neck BMD and BMC (p < 0.05). Regression analysis revealed that lean mass and height were the primary predictors of total body BMC, although additional group-specific influences were present which reduced bone mass in the flat jockey group and enhanced it in the boxers (R 2 = 0.814). Reduced bone mass in jockeys may be a consequence of reduced energy availability in response to chronic weight restriction and could have particular implications for these athletes in light of the high risk nature of the sport. In contrast, the high intensity, high impact training associated with boxing may have conveyed an osteogenic stimulus on these athletes.  相似文献   

18.
Variation in soft tissue composition is a potential cause of error in dual X-ray absorptiometry (DXA) measurements of bone mineral density (BMD). We investigated the effect of patients' change of weight on DXA scans in 152 women enrolled in a 2-year trial of cyclical etidronate therapy. Scans of the spine, hip, and total body were performed at baseline, 1 and 2 years on a Hologic QDR-2000. The study was completed by 135 subjects (64 on etidronate, 71 on placebo). Results were expressed as the percentage change in BMD (spine, femoral neck, total body) or bone mineral content (BMC) (total body only) at 2 years. Total body scans were analyzed using the manufacturer's `standard' and `enhanced' algorithms. Analysis was performed using multivariate regression with percentage change in BMD or BMC as the dependent variable, and treatment group and percentage change in weight as the independent variables. Weight change varied between −14.4% and +16.7%. All DXA variables showed a statistically significant treatment effect. Standard total body BMD and BMC and enhanced total body BMC all showed a significant dependence on weight change (P < 0.01, P < 0.001 and P < 0.01, respectively). No effect of weight change was seen on spine, femoral neck, or enhanced total body BMD. In order to investigate the effects of weight on long-term precision, patients were allocated to two groups according to baseline body mass index (BMI <25 and >25 kg/m2, respectively). For femoral neck BMD the root mean square (RMS) residual percentage change was statistically significantly larger in the high BMI group (P < 0.05) but all other bone density variables showed no significant difference. With patients allocated to two groups according to their absolute percentage change in weight (<5% and >5%, respectively) the RMS residual percentage changes in the bone density variables were statistically significantly larger in the large weight change group for femoral neck BMD (P < 0.05) and for standard and enhanced total body BMC (P < 0.01 and P < 0.05, respectively). With the exception of the standard total body algorithm, weight change in a longitudinal study of postmenopausal women was not found to cause systematic errors in the results of DXA studies but may adversely affect precision. Received: 22 November 1996 / Accepted: 30 April 1997  相似文献   

19.
Summary The effect of intense physical training on the bone mineral content (BMC) and soft tissue composition, and the development of these values after cessation of the active career, was studied in 40 nationally or internationally ranked male weight lifters. Nineteen were active and 21 had retired from competition sports. Fifty-two age- and sexmatched nonweight lifters served as controls. The bone mineral density (BMD) in total body, spine, hip, and proximal tibial metaphysis was measured with a Lunar Dual-energy X-ray absorptiometry (DXA) apparatus and the BMD of the distal forearm was measured with single photon absorptiometry (SPA). Seventeen of the lifters had been measured earlier with SPA in the forearm and 23 in the tibial condyle during their active career in 1975. The BMD was significantly higher in the weight lifters compared with the controls (10% in the total body P<0.001, 12% in the trochanteric region P<0.001, and 13% in the lumbar spine P<0.001). All measured regions except the head showed significant higher bone mass in the weight lifters compared with the controls. In older lifters, the difference from the controls seemed to increase in total body and lumbar vertebrae (BMD), but remained unchanged in the hip. Significant correlation was found between the SPA measurements in 1975 and the corresponding measurements 15 years later in both the forearm (r=0.51, P<0.05 at the 1-cm level and r=0.87, P<0.001 at the 6-cm level) and in the tibial condyle (r=0.61, P<0.01). There was no difference in BMD for any region between active and retired weight lifters that was not explained by difference in age. The weight lifters were on average 5 cm shorter but of the same weight as the controls. In the weight lifters, the body mass index (BMI) was increased as was the lean body mass, but not the fat content.  相似文献   

20.
The purpose of this study was to examine the relationships among bone mineral density (BMD), body composition, and isokinetic strength in young women. Subjects were 76 women (age: 20 ± 2 yr, height: 164 ± 6 cm, weight: 57 ± 6 kg, body fat: 27 ± 4%) with a normal body mass index (18–25 kg/m2). Total body, nondominant proximal femur, and nondominant distal forearm BMD were measured with dual-energy x-ray absorptiometry. Isokinetic concentric (CON) and eccentric (ECC) strength of the nondominant thigh and upper arm were measured at 60 deg/sec. Fat-free mass (FFM) correlated (P < 0.001) with BMD of the total body (r = 0.56) and femoral neck (r = 0.52), whereas fat mass (FM) did not relate to BMD at any site. Leg FFM, but not FM, correlated with BMD in all regions of interest at the proximal femur. Weak associations were observed between arm FFM and forearm BMD. Isokinetic strength did not relate to BMD at any site after correcting for regional FFM. In conclusion, strong, independent associations exist between BMD and FFM, but not FM or isokinetic strength, in young women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号