首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clinical monitoring of organ-transplant recipients suggests that administration of cyclosporine (CsA) may increase the risk of atherosclerosis when compared with the general population. The purpose of this work is to demonstrate the utility of the in vitro Tamm-Horsfall protein (THP)-1 human monocyte cell culture model for determining drug-related atherosclerotic potential in macrophages. The effect of CsA on the mRNA expression of macrophage scavenger receptor genes including CD36, CD68, scavenger receptor (SR)-A, SR-BII, and lectin-like oxidized low-density lipoprotein receptor (LOX-1); the nuclear hormone receptors, including peroxisome-proliferator activated receptor (PPAR)gamma and liver-X-receptor (LXR)alpha; and the cholesterol efflux pump ABCA1 were investigated as markers of atherosclerotic progression. The THP-1 cells were cultured and differentiated into macrophages. The macrophages were then treated with CsA to assess gene expression. Time- (1, 2, 4, 8, and 24 hours) and dose- (concentrations [mg/L] corresponding to the trough [0.5], peak [1.25] and 4x peak [5]) dependency of CsA was assessed. The treated macrophage mRNA gene expression of CD36, CD68, and PPARgamma were up-regulated in the presence of CsA. Interestingly, SR-A, SR-BII, LOX-1, and LXRalpha expression appeared to be slightly down-regulated, and ABCA1 was relatively unchanged. Immunoblotting studies demonstrated that the protein expression of CD36 was unchanged or increased, PPARgamma was unchanged, and ABCA1 was unchanged or decreased at 4 and 8 hours. The results document CsA-induced mRNA and protein changes in receptors relevant to lipid-laden foam cell formation and demonstrate the utility of THP-1 macrophages for screening of atherosclerotic risk potential.  相似文献   

2.
Objective To investigate the effects of angiotensinⅡ(AngⅡ) on the expression of ATP-binding cassette transporter A1(ABCA1) in AngⅡ-infused rat model and cultured human podocytes, and to explore the role of ABCA1 in AngⅡ-induced cholesterol accumulation of podocytes. Methods Twelve Wistar rats were randomly subjected to normal saline infusion, or AngⅡ infusion at 400 ng?kg-1?min-1 (via subcutaneous osmotic minipumps) for 8 weeks. The expression of glomerular ABCA1 was analyzed by Western blotting and real-time fluorescent quantitative PCR. In vitro, conditionally immortalized human podocytes were divided into normal group, AngⅡ group, AngⅡ+scrambled siRNA group, AngⅡ+ABCA1 siRNA group. The expression of podocyte ABCA1 was assessed by immunofluorescence, Western blotting and real-time fluorescent quantitative PCR. Oil Red O staining was used to observe the lipid droplets in podocytes and cholesterol efflux assay kit was used to measure the cholesterol efflux rate of podocytes. Fluorescein isothiocyanate (FITC)-conjugated phalloidin was used to observe the podocyte cytoskeleton. Results In vivo, compared with normal group, the protein and mRNA expression of glomerular ABCA1 in AngⅡ-infused rats were decreased (P<0.05). In vitro, ABCA1 was distributed in the cytomembrane of podocytes, and compared with normal group, AngⅡtreatment down-regulated the expression of ABCA1 (P<0.05). Increased lipid droplets, decreased cholesterol efflux and cytoskeletal rearrangement were observed in AngⅡ-treated podocytes. When compared to AngⅡ group, podocytes stimulated by AngⅡand then transfected with ABCA1 siRNA had lower expression level of ABCA1 mRNA and protein (all P<0.05). More lipid droplets and lower cholesterol efflux rate could be observed in AngⅡ+ABCA1 siRNA group (P<0.05). Conclusion The reduced expression of ABCA1 may be involved in AngⅡ-induced cholesterol accumulation in podocytes.  相似文献   

3.
OBJECTIVE: To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. METHOD: Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. RESULTS: ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1-induced phosphorylation of Smad2/3 and ERK1/2 was reduced by ROSI over GW501516 but not by Wy14643 whereas stimulated PGE2 production was inhibited by Wy14643 over GW501516 but not by ROSI. The effect of PPAR agonists on PPAR target genes and TGF-beta1-induced aggrecan expression was reversed selectively by PPAR antagonists. CONCLUSION: In chondrocytes' beads, PPAR agonists reduced the stimulating effect of TGF-beta1 on PGs by inhibiting TGF-beta1-induced aggrecan expression in an isotype-selective manner. Thus, PPAR agonists could be deleterious in situation of cartilage repair although being protective in situation of cartilage degradation.  相似文献   

4.
5.
Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family regulate cellular neutral lipid stores. We have studied a new member of this family, PAT-1, and found that it is expressed in highly oxidative tissues. We refer to this protein as "OXPAT." Physiologic lipid loading of mouse liver by fasting enriches OXPAT in the lipid droplet tissue fraction. OXPAT resides on lipid droplets with the PAT protein adipophilin in primary cardiomyocytes. Ectopic expression of OXPAT promotes fatty acid-induced triacylglycerol accumulation, long-chain fatty acid oxidation, and mRNAs associated with oxidative metabolism. Consistent with these observations, OXPAT is induced in mouse adipose tissue, striated muscle, and liver by physiological (fasting), pathophysiological (insulin deficiency), pharmacological (peroxisome proliferator-activated receptor [PPAR] agonists), and genetic (muscle-specific PPARalpha overexpression) perturbations that increase fatty acid utilization. In humans with impaired glucose tolerance, PPARgamma agonist treatment induces adipose OXPAT mRNA. Further, adipose OXPAT mRNA negatively correlates with BMI in nondiabetic humans. Our collective data in cells, mice, and humans suggest that OXPAT is a marker for PPAR activation and fatty acid oxidation. OXPAT likely contributes to adaptive responses to the fatty acid burden that accompanies fasting, insulin deficiency, and overnutrition, responses that are defective in obesity and type 2 diabetes.  相似文献   

6.
Altered lipid metabolism has been implicated as a critical player in osteoarthritis (OA). Our study aimed to investigate the expression of genes regulating cholesterol efflux in human chondrocytes and to study the effect of an LXR agonist on cholesterol efflux and lipid accumulation in osteoarthritic chondrocytes. ATP‐binding‐cassette transporter A1 (ABCA1), apolipoprotein A1 (ApoA1), and liver X receptors (LXRα and LXRβ) mRNA expression levels were evaluated using real‐time polymerase chain reaction (PCR) and ApoA1 protein levels by Western blot analysis in normal and osteoarthritic articular cartilage samples. Cholesterol efflux was evaluated in osteoarthritic chondrocytes radiolabeled with [1,2(n)‐3H] cholesterol after LXR treatment, while intracellular lipid accumulation was studied after Oil‐red‐O staining. Cholesterol efflux gene expressions were significantly lower in osteoarthritic cartilage compared to normal. Treatment of osteoarthritic chondrocytes with the LXR agonist TO‐901317 significantly increased ApoA1 and ABCA1 expression levels, as well as cholesterol efflux. Additionally, osteoarthritic chondrocytes presented intracellular lipids deposits, while no deposits were found after treatment with TO‐901317. Our findings suggest that impaired expression of genes regulating cholesterol efflux may be a critical player in osteoarthritis, while the ability of the LXR agonist to facilitate cholesterol efflux suggests that it may be a target for therapeutic intervention in osteoarthritis. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1033–1039, 2010  相似文献   

7.
Therapeutic roles of peroxisome proliferator-activated receptor agonists   总被引:28,自引:0,他引:28  
Staels B  Fruchart JC 《Diabetes》2005,54(8):2460-2470
Peroxisome proliferator-activated receptors (PPARs) play key roles in the regulation of energy homeostasis and inflammation, and agonists of PPARalpha and -gamma are currently used therapeutically. Fibrates, first used in the 1970s for their lipid-modifying properties, were later shown to activate PPARalpha. These agents lower plasma triglycerides and VLDL particles and increase HDL cholesterol, effects that are associated with cardiovascular benefit. Thiazolidinediones, acting via PPARgamma, influence free fatty acid flux and thus reduce insulin resistance and blood glucose levels. PPARgamma agonists are therefore used to treat type 2 diabetes. PPARalpha and -gamma agonists also affect inflammation, vascular function, and vascular remodeling. As knowledge of the pleiotropic effects of these agents advances, further potential indications are being revealed, including roles in the management of cardiovascular disease (CVD) and the metabolic syndrome. Dual PPARalpha/gamma agonists (currently in development) look set to combine the properties of thiazolidinediones and fibrates, and they hold considerable promise for improving the management of type 2 diabetes and providing an effective therapeutic option for treating the multifactorial components of CVD and the metabolic syndrome. The functions of a third PPAR isoform, PPARdelta, and its potential as a therapeutic target are currently under investigation.  相似文献   

8.
9.
10.
11.
PPAR agonists modulate human osteoclast formation and activity in vitro   总被引:1,自引:0,他引:1  
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear steroid hormone superfamily and exist in three isoforms: PPARalpha, beta and gamma, each with specific functions. In this study, we have investigated the expression of PPARs by human osteoclast precursors and osteoclasts generated in vitro. In addition, the effects of fibrates and isoform-specific PPAR agonists on osteoclast formation and resorption in vitro were determined. Human peripheral blood mononuclear cells (PBMCs) were stimulated with human recombinant RANKL and M-CSF to generate osteoclasts. RNA was extracted at days 0, 7, 14 and 21 and RT-PCR for all three PPAR isoforms demonstrated their expression throughout this culture period. To determine the effect on osteoclast formation, PPAR agonists (10(-8) M to 10(-5) M) were added from the beginning of the culture until day 14 and the number of multinucleated osteoclasts counted. The effect of PPAR agonists on osteoclast function was similarly determined by treating mature, multinucleated osteoclasts cultured on dentine wafers with PPAR agonists (10(-8) M to 10(-5) M) for 7 days and quantifying resorption. Bezafibrate and fenofibrate, which non-discriminately activate all PPAR isoforms, significantly inhibited the formation of multinucleated osteoclasts from PBMC in vitro. Bezafibrate treatment of mature osteoclast resulted in 50% inhibition (at 10(-8) M and 10(-7) M) of resorption, yet fenofibrate had no significant effect. Activation of individual PPARs with isoform-specific agonist (GW9578, L165041 and ciglitizone which preferentially activate PPARalpha, beta and gamma respectively) resulted in significant dose-dependent inhibition of multinucleated osteoclast formation. Divergent effects on osteoclast resorption were observed; GW9578 had no significant effect on resorption, whereas ciglitizone and L165041 dose-dependently inhibited and stimulated resorption, respectively. These data show for the first time expression of all three PPAR isoforms throughout the development and maturation period of osteoclasts generated from human PBMCs. In addition, we demonstrate that isoform-specific PPAR agonists have strong effects on multinucleation and highly variable effects on bone resorption. In conclusion, this study highlights the potential of PPARs as therapeutic targets in diseases with accelerated osteoclast formation and resorption.  相似文献   

12.
Diabetes, whether it occurs before or after transplantation, plays an important role to decrease graft function and survival. In addition renal lipid accumulation has been suggested to play a role in the development and progression of chronic renal allograft rejection. Intracellular lipid accumulation is governed by a balance between the influx and efflux of lipid. Cholesterol transporters, such as scavenger receptor (SR)-A1, CD36, and ATP binding cassette (ABC) A1 and G1 (ABCG1), coordinate to regulate cellular lipid status. Therefore, in the present study, we examined whether high glucose caused lipid accumulation in mesangial cells as a result of altered cholesterol transporters. Mouse mesangial cells were stimulated with 30 mmol/L D-glucose (high glucose); 100 μmol/L oleic acid (OA) used as a positive control. Cellular lipid accumulation was measured by Oil Red O staining. Protein and mRNA expression of cholesterol influx (SR-A1 and CD36) and efflux (ABCA1 and ABCG1) transporters were evaluated using Western blot analysis and real-time quantitative polymerase chain reaction, respectively. High glucose was shown to significantly increase lipid accumulation in mesangial cells at 24 hours as was observed for OA. SR-A1 and CD36 mRNA expression levels were 1.5-fold and 3.5-fold higher, respectively, in high glucose-stimulated than control mesangial cell, whereas ABCG1 mRNA expression decreased to 60% of controls; however, there was no decrease in ABCA1 mRNA. Altered protein expression of each transporter in mesangial cells cultured under conditions of high glucose concentrations was consistent with mRNA expression. Osmotic control using mannitol did not significantly affect any of the measured parameters in the present study. These results demonstrated that high glucose, in itself, can induce mesangial lipid accumulation; this effect may be associated with an impaired balance between the influx and efflux of cholesterol.  相似文献   

13.
Changes in cellular cholesterol affect insulin secretion, and β-cell-specific deletion or loss-of-function mutations in the cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) result in impaired glucose tolerance and β-cell dysfunction. Upregulation of ABCA1 expression may therefore be beneficial for the maintenance of normal islet function in diabetes. Studies suggest that microRNA-33a (miR-33a) expression inversely correlates with ABCA1 expression in hepatocytes and macrophages. We examined whether miR-33a regulates ABCA1 expression in pancreatic islets, thereby affecting cholesterol accumulation and insulin secretion. Adenoviral miR-33a overexpression in human or mouse islets reduced ABCA1 expression, decreased glucose-stimulated insulin secretion, and increased cholesterol levels. The miR-33a-induced reduction in insulin secretion was rescued by cholesterol depletion by methyl-β-cyclodextrin or mevastatin. Inhibition of miR-33a expression in apolipoprotein E knockout islets and ABCA1 overexpression in β-cell-specific ABCA1 knockout islets rescued normal insulin secretion and reduced islet cholesterol. These findings confirm the critical role of β-cell ABCA1 in islet cholesterol homeostasis and β-cell function and highlight modulation of β-cell miR-33a expression as a means to influence insulin secretion.  相似文献   

14.
Anti-inflammatory effect of PPARgamma in cultured human mesangial cells   总被引:4,自引:0,他引:4  
Xiong Z  Huang H  Li J  Guan Y  Wang H 《Renal failure》2004,26(5):497-505
  相似文献   

15.
OBJECTIVE: To examine the effects of agonists of peroxisome proliferator-activated receptor (PPAR) gamma on proteoglycan degradation induced by interleukin (IL)-1beta or tumor necrosis factor (TNF)alpha in cartilage in vitro. DESIGN: Proteoglycan degradation was measured as release of radioactivity from rat cartilage explants previously labeled with (35)SO2-4. Western blots were used to examine tissue levels of aggrecan neoepitopes NITEGE and VDIPEN, generated by aggrecanases and matrix metalloproteinases (MMP), respectively. Production of MMP-2, -3 and -9 by cultured rat chondrocytes was measured by zymography and by fluorimetric assay. RESULTS: IL-1beta-induced proteoglycan degradation was likely due to aggrecanase, since it was associated with a strong increase of NITEGE signal. MMP-dependent VDIPEN signal increased only after further incubation with pro-MMP activator APMA. PPAR agonists 15d-PGJ(2) and GI262570 (10 microM) inhibited IL-1beta- and TNFalpha-induced proteoglycan degradation measured both before and after addition of APMA. The agonists also inhibited cytokine-induced MMP production by isolated chondrocytes. CONCLUSION: This study shows that PPARgamma agonists inhibit cytokine-induced proteoglycan degradation mediated by both aggrecanase and MMP. This effect is associated with inhibition of production of MMP-3 and -9. These results support the interest for PPARgamma agonists as candidate inhibitors of pathological cartilage degradation.  相似文献   

16.
目的 研究白细胞介素1β(IL-1β)对人肾小球系膜细胞株(HMCL)植物血凝素样氧化低密度脂蛋白受体1(LOX-1)以及腺苷三磷酸结合盒转运体A1(ABCA1)表达的影响,及其与细胞胆固醇稳态的关系。 方法 实时定量PCR和Western印迹法检测IL-1β对人肾小球系膜细胞LOX-1、ABCA1表达的影响。 结果 人肾小球系膜细胞表达LOX-1 mRNA和蛋白。IL-1β促进人肾小球系膜细胞LOX-1 mRNA和蛋白表达,5 μg/L IL-1β刺激细胞0~24 h,LOX-1 mRNA表达于6 h达高峰,为对照的6.87倍;LOX-1蛋白24 h达高峰,为对照的1.88倍。IL-1β降低脂质负荷的人肾小球系膜细胞 ABCA1 mRNA和蛋白表达。5 μg/L IL-1β刺激细胞0~48 h,48 h时ABCA1 mRNA和蛋白下降最明显,分别为对照的19.0%和50.62%。 结论 IL-1β促进人肾小球系膜细胞LOX-1表达,抑制ABCA1的表达,导致细胞内胆固醇的失衡,促使其变成泡沫细胞,可能加重肾小球硬化和肾病的进展。  相似文献   

17.
18.
BACKGROUND: Cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins, is induced in mesangial cells in response to proinflammatory cytokines. Recently, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), one of the natural ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), has been reported to have an anti-inflammatory effect. Therefore, we examined the effect of 15d-PGJ2 on COX-2 expression in cultured rat mesangial cells.METHODS: Mesangial cells were incubated with 15d-PGJ2 for 30 minutes and then exposed to interleukin-1beta (IL-1beta). The expression of COX-2 mRNA and proteins was determined by Northern blot and immunoblot analyses, respectively. Accumulation of prostaglandin E2 (PGE2) was measured by an enzyme-linked immunosorbent assay (ELISA). Activities of mitogen-activated protein kinases (MAPKs) were evaluated by an immunoblot analysis. DNA binding activities of activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) were examined by an electrophoretic mobility shift assay (EMSA). The activities of PPAR responsive elements (PPRE) and COX-2 promoter were measured by a luciferase reporter assay.RESULTS: 15D-PGJ2 significantly suppressed IL-1beta-induced COX-2 expression and PGE2 production, but thiazolidinediones, synthetic PPARgamma ligands, did not affect COX-2 expression. Moreover, the cells transfected with a PPRE luciferase reporter did not respond to 15d-PGJ2. IL-1beta rapidly activated extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK), which were involved in the up-regulation of COX-2 induction, but 15d-PGJ2 inhibited the activation of these kinases. 15d-PGJ2 inhibited the IL-1beta-induced increase in binding activities of nuclear proteins to consensus AP-1 site and AP-1-like site of COX-2 promoter but not of NF-kappaB. IL-1beta was unable to activate the COX-2 promoter when the AP-1-like site was mutated.CONCLUSIONS: These data suggest that 15d-PGJ2 inhibits IL-1beta-induced COX-2 expression, independent of PPARgamma activation, by suppression of ERK and JNK pathways and AP-1 activation in mesangial cells. Thus, 15d-PGJ2 may play an important role in the negative feedback mechanism of COX-2 expression in renal inflammation and may be useful as an anti-inflammatory agent.  相似文献   

19.
Tsuchida A  Yamauchi T  Takekawa S  Hada Y  Ito Y  Maki T  Kadowaki T 《Diabetes》2005,54(12):3358-3370
We examined the effects of activation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, and both of them in combination in obese diabetic KKAy mice and investigated the mechanisms by which they improve insulin sensitivity. PPARalpha activation by its agonist, Wy-14,643, as well as PPARgamma activation by its agonist, rosiglitazone, markedly improved insulin sensitivity. Interestingly, dual activation of PPARalpha and -gamma by a combination of Wy-14,643 and rosiglitazone showed increased efficacy. Adipocyte size in Wy-14,643-treated KKAy mice was much smaller than that of vehicle- or rosiglitazone-treated mice, suggesting that activation of PPARalpha prevents adipocyte hypertrophy. Moreover, Wy-14,643 treatment reduced inflammation and the expression of macrophage-specific genes in white adipose tissue (WAT). Importantly, Wy-14,643 treatment upregulated expression of the adiponectin receptor (AdipoR)-1 and AdipoR2 in WAT, which was decreased in WAT of KKAy mice compared with that in nondiabetic control mice. Furthermore, Wy-14,643 directly increased expression of AdipoRs and decreased monocyte chemoattractant protein-1 expression in adipocytes and macrophages. Rosiglitazone increased serum adiponectin concentrations and the ratio of high molecular weight multimers of adiponectin to total adiponectin. A combination of rosiglitazone and Wy-14,643 increased both serum adiponectin concentrations and AdipoR expression in WAT. These data suggest that PPARalpha activation prevents inflammation in WAT and that dual activation of PPARalpha and -gamma enhances the action of adiponectin by increasing both adiponectin and AdipoRs, which can result in the amelioration of obesity-induced insulin resistance.  相似文献   

20.
Interleukin-1 beta (IL-1 beta) and tumor necrosis factor (TNF) have been reported to stimulate human mesangial cells (HMC) to proliferate and synthesize eicosanoids. We have examined whether they also induce HMC to release cytokines. In this study we show that both IL-1 and TNF stimulate HMC to release IL-6 and IL-8. Cycling and quiescent HMC were stimulated with various concentrations of either recombinant IL-1 beta or TNF for 1 to 24 hours. IL-1 beta at doses as low as 6 pg/ml stimulated mesangial cells to synthesize mRNA for both IL-6 and IL-8 as assessed by Northern analysis; mRNA for tubulin remained constant, which demonstrated a specific increase in mRNA. Secretion of IL-6 and IL-8 into the culture medium increased (4.5 to 18 ng/ml and 4 to 40 ng/ml, respectively) measured by ELISAs. TNF had similar effects but only in high concentrations (greater than 100 ng/ml). IL-1 beta did not stimulate cells to proliferate, as measured by 3H thymidine incorporation. TNF caused proliferation but only in concentrations over 100 ng/ml. We conclude that IL-1 beta is a potent stimulator of human mesangial cell production of IL-6 and IL-8, both of which may influence injury in nephritis. TNF also stimulates mesangial cells but only in pharmacological doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号