首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The working memory (WM) system is vital to performing everyday functions that require attentive, non-automatic processing of information. However, its interaction with long term memory (LTM) is highly debated. Here, we used fMRI to examine whether a popular complex WM span task, thought to force the displacement of to-be-remembered items in the focus of attention to LTM, recruited medial temporal regions typically associated with LTM functioning to a greater extent and in a different manner than traditional neuroimaging WM tasks during WM encoding and maintenance. fMRI scans were acquired while participants performed the operation span (OSPAN) task and an arithmetic task. Results indicated that performance of both tasks resulted in significant activation in regions typically associated with WM function. More importantly, significant bilateral activation was observed in the hippocampus, suggesting it is recruited during WM encoding and maintenance. Right posterior hippocampus activation was greater during OSPAN than arithmetic. Persitimulus graphs indicate a possible specialization of function for bilateral posterior hippocampus and greater involvement of the left for WM performance. Recall time-course activity within this region hints at LTM involvement during complex span.  相似文献   

2.
Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding.  相似文献   

3.
Functional brain imaging studies of working memory (WM) in schizophrenia have yielded inconsistent results regarding deficits in the dorsolateral prefrontal (DLPFC) and parietal cortices. In spite of its potential importance in schizophrenia, there have been few investigations of WM deficits using auditory stimuli and no functional imaging studies have attempted to relate brain activation during auditory WM to positive and negative symptoms of schizophrenia. We used a two-back auditory WM paradigm in a functional MRI study of men with schizophrenia (N = 11) and controls (N = 13). Region of interest analysis was used to investigate group differences in activation as well as correlations with symptom scores from the Brief Psychiatric Rating Scale. Patients with schizophrenia performed significantly worse and were slower than control subjects in the WM task. Patients also showed decreased lateralization of activation and significant WM related activation deficits in the left and right DLPFC, frontal operculum, inferior parietal, and superior parietal cortex but not in the anterior cingulate or superior temporal gyrus. These results indicate that in addition to the prefrontal cortex, parietal cortex function is also disrupted during WM in schizophrenia. Withdrawal-retardation symptom scores were inversely correlated with frontal operculum activation. Thinking disturbance symptom scores were inversely correlated with right DLPFC activation. Our findings suggest an association between thinking disturbance symptoms, particularly unusual thought content, and disrupted WM processing in schizophrenia.  相似文献   

4.
Walter H  Vasic N  Höse A  Spitzer M  Wolf RC 《NeuroImage》2007,35(4):1551-1561
Studies on working memory (WM) dysfunction in schizophrenia have reported several functionally aberrant brain areas including the lateral prefrontal cortex, superior temporal areas and the striatum. However, less is known about the relationship of WM-dysfunction, cerebral activation, task-accuracy and diagnostic specificity. Using a novel WM-task and event-related functional magnetic resonance imaging (fMRI), we studied healthy control subjects (n=17) and partially remitted, medicated inpatients meeting DSM-IV criteria for schizophrenia (n=19) and major depressive disorder (n=12). Due to the event-related technique, we excluded incorrectly performed trials, thus controlling for accuracy-related activation confounds. Compared with controls, patients with schizophrenia showed less activation in frontoparietal and subcortical regions at high cognitive load levels. Compared with patients with depression, schizophrenic patients showed less prefrontal activation in left inferior frontal cortex and right cerebellum. In patients with schizophrenia, a lack of deactivation of the superior temporal cortex was found compared to both healthy controls and patients with depression. Thus, we could not confirm previous findings of impaired lateral prefrontal activation during WM performance in schizophrenic patients after the exclusion of incorrectly performed or omitted trials in our functional analysis. However, superior temporal cortex dysfunction in patients with schizophrenia may be regarded as schizophrenia-specific finding in terms of psychiatric diagnosis specificity.  相似文献   

5.
Achim AM  Lepage M 《NeuroImage》2005,24(4):1726-1121
Post-retrieval monitoring is a process that contributes to episodic memory retrieval by allowing people to evaluate the relevance of retrieved information in relation to the task requirements. Previous studies have suggested that post-retrieval monitoring is supported by the dorsolateral prefrontal cortex (DLPFC). In this study, we used functional magnetic resonance imaging (fMRI) to evaluate involvement of the DLPFC in post-retrieval monitoring in two different recognition tests (item recognition and associative recognition). The item recognition memory test required subjects to make old/new judgments and the associative recognition memory test required them to make intact/rearranged judgments. Because the post-retrieval monitoring demand increases during old (hits) relative to new (correct rejections) item recognition trials, and also during rearranged (correct rejections) relative to intact (hits) associative recognition trials, we evaluated the brain activation associated with the interaction of Memory test (item versus associative) by Recognition trial (hit versus correct rejection). As expected, the DLPFC was activated in this interaction as well as for both old relative to new item recognition trials and rearranged relative to intact associative recognition trials. This study provides strong evidence that DLPFC activation supports post-retrieval monitoring across different types of recognition tasks.  相似文献   

6.
目的比较缺陷型、非缺陷型精神分裂症患者与执行控制功能有关的脑区激活情况,探讨精神分裂症执行功能障碍的表现规律与相应脑机制。方法缺陷型、非缺陷型精神分裂症患者各6名及与之匹配的正常对照组,在执行参量设计的倒数n项实验时进行全脑BOLD-fMRI扫描。数据处理时采用单因素方差分析进行差异检测,分离出激活强度随记忆负荷增加而增强的脑区(执行加工相关脑区)。结果正常组执行加工相关脑区主要为左侧前额叶及顶叶后部皮层,两精神分裂症组前额叶激活体积相对较小,而且涉及更多皮层下结构。其中非缺陷型组双侧前额皮层均显著激活,且背外侧前额叶(BA9/46区)激活数目较正常组明显增多。而缺陷型组无论是前额皮层激活的脑区分布范围还是体积均显著减少于其他两组。结论精神分裂症患者存在以前额叶功能失调为基础的执行功能障碍。不同亚型的患者前额叶功能失调的机制不同:缺陷型患者前额叶可能存在特异性损伤,而非缺陷型患者主要表现为前额叶的生理低效能。  相似文献   

7.
Differential working memory load effects after mild traumatic brain injury.   总被引:12,自引:0,他引:12  
The objective of this study was to explore the effects of increasing working memory (WM) processing load on previously observed abnormalities in activation of WM circuitry shortly after mild traumatic brain injury (MTBI). Brain activation patterns in response to increasing WM processing load (auditory n-back: 0-, 1-, 2-, and 3-back conditions) were assessed with fMRI in 18 MTBI patients within 1 month of their injury and in 12 healthy controls. Performance accuracy on these tasks was also measured. Brain activation patterns differed between MTBI patients and controls in response to increasing WM processing loads. Controls maintained their ability to increase activation in regions of WM circuitry with each increase in WM processing load. MTBI patients showed disproportionately increased activation during the moderate processing load condition, but very little increase in activation associated with the highest processing load condition. Task performance did not differ significantly between groups on any task condition. MTBI patients showed a different pattern of allocation of processing resources associated with a high processing load condition compared to healthy controls, despite similar task performance. This suggests that injury-related changes in ability to activate or modulate WM processing resources might underlie some of the memory complaints after MTBI.  相似文献   

8.
It has traditionally been held that the hippocampus is not part of the neural substrate of working memory (WM), and that WM is preserved in Temporal Lobe Epilepsy (TLE). Recent imaging and neuropsychological data suggest this view may need revision. The aim of this study was to investigate the neural correlates of WM in TLE using functional MRI (fMRI). We used a visuo-spatial 'n-back' paradigm to compare WM network activity in 38 unilateral hippocampal sclerosis (HS) patients (19 left) and 15 healthy controls. WM performance was impaired in both left and right HS groups compared to controls. The TLE groups showed reduced right superior parietal lobe activity during single- and multiple-item WM. No significant hippocampal activation was found during the active task in any group, but the hippocampi progressively deactivated as the task demand increased. This effect was bilateral for controls, whereas the TLE patients showed progressive unilateral deactivation only contralateral to the side of the hippocampal sclerosis and seizure focus. Progressive deactivation of the posterior medial temporal lobe was associated with better performance in all groups. Our results suggest that WM is impaired in unilateral HS and the underlying neural correlates of WM are disrupted. Our findings suggest that hippocampal activity is progressively suppressed as the WM load increases, with maintenance of good performance. Implications for understanding the role of the hippocampus in WM are discussed.  相似文献   

9.
Although emotional dysfunction is considered a fundamental symptom of schizophrenia, studies investigating the neural basis of emotional dysfunction in schizophrenia are few. Using functional magnetic resonance imaging (fMRI) and a task viewing affective pictures, we aimed to examine automatic emotional response and to elucidate the neural basis of impaired emotional processing in schizophrenia. Fifteen healthy volunteers and 15 schizophrenics were studied. During the scans, the subjects were instructed to indicate how each of the presented pictures made them feel. Whole brain activities in response to the affective pictures were measured by fMRI. Controls recruited the neural circuit including amygdaloid-hippocampal region, prefrontal cortex, thalamus, basal ganglia, cerebellum, midbrain, and visual cortex while viewing unpleasant pictures. Despite an equal behavioral result to controls, the patients showed less activation in the components of the circuit (right amygdala, bilateral hippocampal region, medial prefrontal cortex (MPFC), basal ganglia, thalamus, cerebellum, midbrain, and visual cortex). This study demonstrated functional abnormalities in the neural circuit of emotional processing in schizophrenia. In particular, decreased activation in the right amygdala and MPFC appears to be an important finding related to dysfunctional emotional behavior in schizophrenia.  相似文献   

10.
Previous neuroimaging studies have shown that neural activity changes with task practice. The types of changes reported have been inconsistent, however, and the neural mechanisms involved remain unclear. In this study, we investigated the influence of practice on different component processes of working memory (WM) using a face WM task. Event-related functional magnetic resonance imaging (fMRI) methodology allowed us to examine signal changes from early to late in the scanning session within different task stages (i.e., encoding, delay, retrieval), as well as to determine the influence of different levels of WM load on neural activity. We found practice-related decreases in fMRI signal and effects of memory load occurring primarily during encoding. This suggests that practice improves encoding efficiency, especially at higher memory loads. The decreases in fMRI signal we observed were not accompanied by improved behavioral performance; in fact, error rate increased for high WM load trials, indicating that practice-related changes in activation may occur during a scanning session without behavioral evidence of learning. Our results suggest that practice influences particular component processes of WM differently, and that the efficiency of these processes may not be captured by performance measures alone.  相似文献   

11.
Lee KM  Wade AR  Lee BT 《NeuroImage》2006,32(1):307-315
Temporal processing underlies many aspects of human perception, performance and cognition. The present study used fMRI to examine the functional neuroanatomy of a temporal discrimination task and to address two questions highlighted by previous studies: (1) the effect of task difficulty on neuronal activation and (2) the involvement of the dorsolateral prefrontal cortex (DLPFC) in timing. Twenty healthy subjects were scanned while either judging whether the second in a pair of tones was shorter or longer in duration than the standard tone or simply responding to the presentation of two identical tones as a control condition. Two levels of difficulty were studied. Activation during the less difficult condition was observed only in the cerebellum and superior temporal gyrus. As difficulty increased, additional activation of the supplementary motor area, insula/operculum, DLPFC, thalamus and striatum was observed. These results suggest the cerebellum plays a critical role in timing, particularly in gross temporal discrimination. These results also suggest that recruitment of frontal and striatal regions during timing tasks is load-dependent. Additionally, robust activation of the dorsolateral prefrontal cortex under conditions of minimal working memory involvement supports the specific involvement of this region in temporal processing rather than a more general involvement in working memory.  相似文献   

12.
Alterations of connectivity are central to the systems-level pathophysiology of schizophrenia. One of the best-established genome-wide significant risk variants for this highly heritable disorder, the rs1344706 single nucleotide polymorphism in ZNF804A, was recently shown to modulate connectivity in healthy carriers during working memory (WM) in a pattern mirroring that which was found in overt disease. However, it was unclear whether this finding is specific to WM or if it is present regardless of cognitive state. Therefore, we examined genotype effects on connectivity in healthy carriers during rest and an emotion processing task without WM component. 111 healthy German subjects performed a battery of functional imaging tasks. Functional connectivity with the right dorsolateral prefrontal cortex during rest and an implicit emotion recognition task was determined using the seed voxel method and compared to results during WM. During rest and during the emotional task, a pattern of reduced interhemispheric prefrontal connectivity with increasing number of rs1344706 risk alleles could be seen that was close to identical to that during WM, suggesting a state-independent influence of the genetic variant on interhemispheric processing, possibly through structural effects. By contrast, the abnormal prefronto-hippocampal connectivity was only seen during the WM task, indicating a degree of task specificity in agreement with prior results in patients with schizophrenia. Our findings confirm a key role for disturbed functional connectivity in the genetic risk architecture of schizophrenia and identify cognitive state-dependent and independent components with regard to WM function.  相似文献   

13.
Plailly J  d'Amato T  Saoud M  Royet JP 《NeuroImage》2006,29(1):302-313
Impairments of olfactory processing in patients with schizophrenia (SZ) have been reported in various olfactory tasks such as detection, discrimination, recognition memory, identification, and naming. The purpose of our study was to determine whether impairments in odor familiarity and hedonicity judgments observed in SZ patients during a previous behavioral study are associated with modifications of the activation patterns in olfactory areas. Twelve SZ patients, and 12 healthy comparison (HC) subjects, were tested using the H2(15)O-PET technique and 48 different odorants delivered during 8 scans. In addition to an odorless baseline condition, they had either to detect odor, or to judge odor familiarity or hedonicity, giving their responses by pressing a button. Regional cerebral blood flows during olfactory conditions were compared with those for baseline condition. Between-group analyses were then performed, and completed by regions of interest analyses. Both groups had equivalent ability for the detection of suprathreshold odorants, but patients found odors less familiar, and pleasant odors less pleasant than HC subjects. These behavioral results were related to functional abnormalities in temporo-limbic and orbital olfactory regions lateralized in the left hemisphere: the posterior part of the piriform cortex and orbital regions for familiarity judgments, the insular gyrus for hedonicity judgments, and the left inferior frontal gyrus and anterior piriform cortex/putamen region for the three olfactory tasks. They mainly resulted from a lack of activation during task conditions in the SZ patients. These data could explain olfactory disturbances and other clinical features of schizophrenia such as anhedonia.  相似文献   

14.
Language comprehension relies on processing of context. Working memory (WM) evoked by linguistic cues for spatial and nonspatial aspects of a visual scene was investigated by correlating fMRI BOLD signal (or 'activation') with reaction times (RTs). Subjects were asked to indicate either the relative positions or ages of people or objects (referenced by the personal pronouns "he/she/it") in a previously shown image. Good performers of a particular task showed shorter RTs than poor performers. Task-specific activation that is greater in good performers than poor ones is taken to indicate involvement of a given region in performance of the task. Our results indicate that dorsoposterior precuneus supports spatial WM during linguistic processing while a network of areas including the caudate support nonspatial WM in categorization of age. We argue that within-subjects variation of RTs across trials reflects effort. Good performers have higher activity in precuneus as a function of effort compared to poor performers during the spatial task, whereas the opposite is found for the nonspatial task, providing further evidence for specifically spatial WM in dorsoposterior precuneus. Task-independent performance-related modulations of activity were found in Broca's area and amygdala. Broca's area activity increased with effort in both tasks, with a greater increase in good performers than in poor performers, consistent with the region's general role in verbal WM. By contrast, activation in amygdala decreased with effort, with a greater decrease in good performers. We take this deactivation to reflect performance-mediating emotional control. These findings indicate that multiple parallel memory systems are available during language processing, appropriate for different tasks, with performance reflecting which system is selected trial-by-trial and subject-by-subject.  相似文献   

15.
The profile of cognitive dysfunction observed in patients with major depressive disorder (MDD) may be partially attributed to a deficit in the central executive component of working memory (WM). This could be the consequence of a functional deficit in regions of cortex that are associated with WM function in healthy adults. In order to investigate this assertion, ten patients with a diagnosis of MDD and ten matched healthy controls undertook a parametric WM task (i.e. the n-back task) during the acquisition of blood oxygen level dependent echo planar magnetic resonance images (BOLD EPI fMRI). There was no significant difference in the behavioral performance of depressed patients and controls. This was true for both accuracy and reaction time on the n-back task. Random effects analysis of the functional imaging data (using SPM99) revealed a significant difference in load-dependent activation in the medial orbitofrontal cortex/rostral anterior cingulate between patients and controls (cluster size (K(E))/volume = 128/1024 mm3, P(corrected) = 0.025). While both participant groups exhibited a significant decrease in activation in this region with increased task difficulty, the magnitude of this decrease was smaller in patients with MDD than in controls. Therefore, this study implies that the performance of WM tasks is associated with a dysfunctional activation of the medial orbitofrontal and rostral anterior cingulate cortex in MDD. The study thus offers a rationale for explaining depressive cognitive impairment by the abnormal fronto-limbic activation found in clinical depression.  相似文献   

16.
Previous studies have shown that non‐invasive stimulation of the dorsolateral prefrontal cortex (DLPFC) could modulate experimentally induced pain and working memory (WM) in healthy subjects. However, the two aspects have never been assessed concomitantly. The present study was set up to investigate the effects of transcranial direct current stimulation (tDCS) of the DLPFC on thermal pain and WM in the same population of healthy volunteers. In a randomized and balanced order of different sessions separated by 1 week, 20 min of 2 mA anodal, cathodal or sham tDCS were applied to the left or right DLPFC in two separate experiments. Twelve healthy volunteers were enrolled for each stimulated hemisphere. Warm and cold detection thresholds, heat and cold pain thresholds as well as heat pain tolerance thresholds were measured before, during and following tDCS. WM was assessed by a 2‐back task applied once during cortical stimulation. Anodal tDCS of the right DLPFC led to an increase of tolerance to heat pain. The 2‐back task revealed fewer outliers during cathodal tDCS of the left DLPFC. The present data show an involvement of the DLPFC in the processing of pain and WM. There was no correlation between these findings, suggesting that the analgesic effects of cortical stimulation are not associated with cognitive processing. However, this conclusion is difficult to affirm because of some limitations of the study regarding the parameters of stimulation or a ceiling effect of the 2‐back task for instance.  相似文献   

17.
Neuroimaging studies have identified a common network of brain regions involving the prefrontal and parietal cortices across a variety of working memory (WM) tasks. However, previous studies have also reported category-specific dissociations of activation within this network. In this study, we investigated the development of category-specific activation in a WM task with digits, letters, and faces. Eight-year-old children and adults performed a 2-back WM task while their brain activity was measured using functional magnetic resonance imaging (fMRI). Overall, children were significantly slower and less accurate than adults on all three WM conditions (digits, letters, and faces); however, within each age group, behavioral performance across the three conditions was very similar. FMRI results revealed category-specific activation in adults but not children in the intraparietal sulcus for the digit condition. Likewise, during the letter condition, category-specific activation was observed in adults but not children in the left occipital–temporal cortex. In contrast, children and adults showed highly similar brain-activity patterns in the lateral fusiform gyri when solving the 2-back WM task with face stimuli. Our results suggest that 8-year-old children do not yet engage the typical brain regions that have been associated with abstract or semantic processing of numerical symbols and letters when these processes are task-irrelevant and the primary task is demanding. Nevertheless, brain activity in letter-responsive areas predicted children's spelling performance underscoring the relationship between abstract processing of letters and linguistic abilities. Lastly, behavioral performance on the WM task was predictive of math and language abilities highlighting the connection between WM and other cognitive abilities in development.  相似文献   

18.
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.  相似文献   

19.
We aimed to investigate changes in the verbal recognition memory network in patients with early Parkinson's disease (PD) without overt recognition memory alteration. Verbal recognition memory was assessed in 24 PD patients in early stages of the disease and a control group of 24 healthy subjects during fMRI data acquisition. Participants were presented with a list of 35 words before imaging, and later during fMRI scanning they were required to recognize these previously presented words. Both model-based (FEAT) and model-free (MELODIC) analyses of the fMRI data were carried out with FSL software. Memory was also assessed by means of Rey's Auditory Verbal Learning Test (RAVLT). PD patients showed no difference in the fMRI recognition memory task and recognition memory assessed by the RAVLT compared to healthy controls. Model-based analysis did not show significant differences between groups. On the other hand, model-free analysis identified components that fitted the task-model and were common to all the participants, as well as components that differed between PD and healthy controls. PD patients showed decreased task-related activations in areas involved in the recognition memory network and decreased task-related deactivations in the default mode network in comparison with controls. In conclusion, model-free fMRI analysis detected alterations in functional cerebral networks involved in a verbal memory task in PD patients without evident recognition memory deficit.  相似文献   

20.
目的采用fMRI技术探讨精神分裂症患者空间工作记忆损害的神经机制。方法收集18例精神分裂症患者和18名正常受试者进行空间n-back任务的fMRI扫描。采用SPM 8进行数据预处理和统计分析,单样本t-检验用于分析两组各自脑激活结果,双样本t-检验用于工作记忆相关脑激活的组间比较。采用FDR方法进行多重比较校正。利用SPSS 17.0软件对工作记忆任务中的行为学结果 (正确率和反应时间)进行组间比较。结果与对照组相比,精神分裂症患者空间工作记忆任务反应时间延长(882.00±50.31)ms,正确率下降(83.60±2.90)%(P0.05)。精神分裂症患者在n-back空间工作记忆任务时所激活的脑区分布与对照组基本一致,主要包括双侧前额皮层、颞顶叶皮层及部分基底核团。但组间比较显示精神分裂症患者多个脑区激活强度及范围明显增加,包括双侧前额皮层背外侧、双侧后顶叶皮层、右侧中央前回、左侧颞中回、右扣带回和双侧小脑(FDR校正,P0.05)。结论执行空间工作记忆任务时精神分裂症患者脑区激活增加,但行为学表现下降,提示患者脑区活动效率低下,可能是工作记忆能力损害的神经基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号