首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p38 MAPK signaling pathway has been implicated in various pathological conditions of neuronal and non-neuronal cells. Here we report the differential induction of p38 MAPK isoforms, p38alpha and p38beta, in the adult gerbil brain following transient global ischemia. The p38alpha and p38beta kinase activities were gradually enhanced with the peak activity occurring around 2-4 days after ischemic insult. Immunohistochemical analysis revealed that p38alpha expression was increased as early as 4 h after ischemic insult and enhanced further reaching maximum induction around 4 days after ischemia. The induced p38alpha was concentrated in microglia in hippocampus as well as in frontal and parietal cortices of the brain, where significant neuronal damage was occurred. By contrast, immunostaining with anti-p38beta antibody indicated that p38beta was markedly induced in astrocytes in hippocampus around 4 days after ischemic insult, which lasted for the next several days. The differential induction of p38 MAPK isoforms following transient global ischemia, especially the induction of p38alpha and p38beta MAPKs in microglia and astrocytes, respectively, in different time points after ischemic insult suggest distinct roles of p38 MAPK isoforms in post-ischemic brain.  相似文献   

2.
OBJECTIVES: Focal cerebral ischemia activates intracellular signaling pathways including the mitogen-activated protein kinase p38, which may be involved in the process of ischemic brain injury. In this study, the effect of pretreatment with the p38-inhibitor SB203580 on infarct size and blood-brain barrier (BBB) breakdown was investigated with magnetic resonance imaging (MRI). MATERIALS AND METHODS: Rats were given SB203580 (n = 6) or vehicle (n = 6) in the right lateral ventricle prior to transient (90 min) middle cerebral artery occlusion (MCAO) on the left side. The rats were examined with serial MRI during MCAO, at reperfusion and after 1 and 4 days. RESULTS: The mean infarct size on T2-weighted images after 1 day was significantly higher in the SB203580-treated group than in controls (300 +/- 95 mm3 vs 126 +/- 75 mm3; P < 0.01). Vascular gadolinium leakage, indicating BBB breakdown, was significantly larger in the SB203580-treated group than in controls after 1 day (median leakage score 18.5; range 15-21 vs 6.5; 4-17; P < 0.05) and 4 days (11; 6-15 vs 3.5; 1-9; P < 0.05), although no significant difference was seen initially. CONCLUSION: Pretreatment with SB203580 may aggravate ischemic brain injury and cerebral vascular leakage in the present model of transient ischemia.  相似文献   

3.
This study describes the involvement of the p38 mitogen-activated protein kinase (MAPK) during interferon-gamma (IFN-gamma) signaling in fetal brain astrocytes. In some pathological conditions of brain, p38 MAPK transduces stress-related signals, increases expression of proinflammatory cytokines, and induces cellular damage or apoptosis. In astrocytes, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression level was increased by IFN-gamma. AG490, a JAK inhibitor, blocked TRAIL expression induced by IFN-gamma. SB203580, a specific p38alpha and p38beta2 MAPK inhibitor, decreased the TRAIL expression induced by IFN-gamma. The phosphorylation of the Ser727 site of STAT1, but not the Tyr701 site, was inhibited by SB203580. These results suggest that p38 MAPK modulates STAT1 phosphorylation in IFN-gamma signaling in fetal brain astrocytes.  相似文献   

4.
The incidence of neonatal stroke is high and currently there are no strategies to protect the neonatal brain from stroke or reduce the sequelae. Agents capable of modifying inflammatory processes hold promise. We set out to determine whether delayed administration of one such agent, minocycline, protects the immature brain in a model of transient middle cerebral artery (MCA) occlusion in 7-day-old rat pups. Injury volume in minocycline (45 mg/kg/dose, beginning at 2 h after MCA occlusion) and vehicle-treated pups was determined 24 h and 7 days after onset of reperfusion. Accumulation of activated microglia/macrophages, phosphorylation of mitogen-activated protein kinase (MAPK) p38 in the brain, and concentrations of inflammatory mediators in plasma and brain were determined at 24 h. Minocycline significantly reduced the volume of injury at 24 h but not 7 days after transient MCA occlusion. The beneficial effect of minocycline acutely after reperfusion was not associated with changed ED1 phenotype, nor was the pattern of MAPK p38 phosphorylation altered. Minocycline reduced accumulation of IL-1beta and CINC-1 in the systemic circulation but failed to affect the increased levels of IL-1beta, IL-18, MCP-1 or CINC-1 in the injured brain tissue. Therefore, minocycline provides early but transient protection, which is largely independent of microglial activation or activation of the MAPK p38 pathway.  相似文献   

5.
ObjectivesThis study was aimed at exploring whether klotho improved neurologic function in rats with cerebral infarction by inhibiting P38 mitogen-activated protein kinase (MAPK) activation and thus down-regulating aquaporin 4 (AQP4).MethodsIn this study, we induced intracerebral Klotho overexpression in 6-week-old Sprague Dawley rats by injecting lentivirus carrying full-length rat Klotho cDNA into the lateral ventricle of the brain, followed by middle cerebral artery occlusion (MCAO) surgery after three days. Neurologic function was evaluated by neurological deficit scores. Infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. The expressions of Klotho, AQP4, and P38 MAPK were detected by Western blot and Immunofluorescence.Resultswhen rats were subjected to cerebral ischemia, their neurologic function was impaired, the protein expressions of klotho downregulated, the protein expressions of AQP4 and P38 MAPK increased, and the ratios of AQP4 and P-P38-positive area were significantly increased compared with the sham group rats. LV-KL-induced Klotho overexpression greatly improved neurobehavioral deficits and reduced infarct volume in MCAO rats. Klotho overexpression significantly reduced AQP4 and P38 MAPK pathway-related protein expression levels and the ratios of P-P38 and AQP4-positive area in MCAO rats. In addition, SB203580, a P38 MAPK signal pathway inhibitor, improved neurobehavioral deficits, reduced infarct volume, downregulated the expressions levels of AQP4 and P38 MAPK, and reduced the size of P-P38 and AQP4-positive area in MCAO rats.ConclusionKlotho could alleviate the infraction volume and neurological dysfunction in MCAO rats, and its mechanism may involve AQP4 expression downregulation by suppressing P38-MAPK activation.  相似文献   

6.
Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated in pathological changes in inflammatory and apoptotic processes in various cell types including neurons. Here we report the delayed induction of p38 MAPKs in the brain of mice following kainic acid (KA)-induced seizure. The immunoreactivities of p38alpha and p38beta MAPKs were markedly increased in the brain 4 days after KA administration, especially in the areas undergoing selective neuronal loss. In particular, p38beta was dramatically increased in reactive astrocytes of CA3 and CA1 regions of hippocampus with its enriched localization in the nucleus of astrocytes. The induction of p38beta was sustained for more than 10 days after KA-treatment. Pre-administration of the selective neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI), which suppressed the delayed neuronal death as well as astrogliosis in hippocampus of seizure-experienced animals, dramatically repressed the delayed induction of p38beta MAPK in astrocytes. The repression was reversed by the co-injection with L-arginine (L-arg), a substrate for NOS, which coincided with the aggravation of neuronal death. Together, these data suggested a role of p38 MAPK signal pathway in delayed neuronal death and/or in reactive gliosis in mice with KA-induced seizure.  相似文献   

7.
Kim SW  Yu YM  Piao CS  Kim JB  Lee JK 《Brain research》2004,1007(1-2):188-191
The activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in the pathological changes accompanying inflammatory and apoptotic processes of various cell types including neurons. In a kainic acid (KA)-induced mouse seizure model, p38 MAPK is induced in reactive astrocytes in the CA3 region of the hippocampus where severe neuronal loss occurs. Here we report the delayed and protracted activation of p38 MAPK in the CA3 region of the hippocampus of mice treated with KA. In this model, the inhibition of p38 MAPK isoforms by SB203580, a specific inhibitor, attenuated neuronal loss in the CA3 and CA1 regions of the hippocampus, which was accompanied by the suppression of the p38 MAPK activation as well as astrogliosis. Thus, the delayed and sustained induction of p38 MAPK plays a crucial role in the neuronal damage of KA-induced brain seizures.  相似文献   

8.
The mechanism contributing to blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-21 (miR-21)-mediated mechanism in the disruption of BBB following cerebral ischemia-reperfusion (I/R) injury. Rats with cerebral I/R injury were prepared after middle cerebral artery occlusion and subsequent reperfusion. The underlying regulatory mechanisms of miR-382 were investigated with treatment of miR-382 mimics, miR-382 inhibitors, or SB203580 (an inhibitor of the MAPK signaling pathway) prior to I/R modeling. Compared with sham-operated rats, rats following I/R showed increased Longa’s scores, ischemic hemisphere volume, cerebral infarct volume, EB content in brain tissues, enhanced levels of p38, iNOS, and MMP-9. The ectopic expression of miR-21 by mimics and MAPK signaling inhibition by SB203580 reduced Longa’s scores, ischemic hemisphere volume, cerebral infarct volume, EB content in brain tissues, decreased levels of p38, MAP2K3, iNOS, and MMP-9. The luciferase activity determination showed miR-21 bound to MAP2K3 in its 3′UTR. miR-21 downregulation mediated by inhibitors appeared to yield an opposed trend. We also found that MAPK signaling inhibition by SB203580 could rescue rats with treatment of miR-382 inhibitors. The study highlights the neuroprotective role of MiR-21 during cerebral I/R injury and its preventive effect against BBB disruption by blocking the MAPK signaling pathway via targeted inhibition of MAP2K3, potentially opening a novel therapeutic avenue for the treatment of cerebral ischemia.  相似文献   

9.
Cui Y  Chen Y  Zhi JL  Guo RX  Feng JQ  Chen PX 《Brain research》2006,1069(1):235-243
Compelling evidence has suggested that spinal glial cells were activated by chronic morphine treatment and involved in the development of morphine tolerance. However, the mechanisms of glial activation were still largely unknown in morphine tolerance. In present study, we investigated the role of p38 mitogen-activated protein kinase (p38 MAPK) in the spinal cord in the development of chronic morphine antinociceptive tolerance. We found that intrathecal administration of morphine (15 microg) daily for 7 consecutive days significantly induced an increase in number of phospho-p38 (p-p38) immunoreactive cells in the spinal cord compared with chronic saline or acute morphine treated rats. Double immunofluorescence staining revealed that p-p38 immunoreactivity was exclusively restricted in the activated spinal microglia, not in astrocytes or neurons. Repeated intrathecal administration of 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) (10 microg or 2 microg), a specific p38 inhibitor, 30 min before each morphine injection for 7 consecutive days significantly attenuated tolerance to morphine analgesia assessed by tail flick test. However, a single intrathecal administration of SB203580 (10 microg) did not antagonize the established tolerance to morphine analgesia. Taken together, these findings suggested that p38 MAPK activation in the spinal microglia was involved in the development of morphine antinociceptive tolerance. Inhibition of p38 MAPK by SB203580 in the spinal cord attenuated but not reversed the tolerance to morphine analgesia. The present study provides the first evidence that p38 activation in spinal microglia played an important role in the development of tolerance to morphine analgesia.  相似文献   

10.
Piao CS  Yu YM  Han PL  Lee JK 《Brain research》2003,976(1):120-124
Here we report the dynamically regulated expression of p38beta MAPK isoform in specific subsets of cells in postischemic brain. The activity of p38beta MAPK in the postischemic brain revealed biphasic induction at 30 min and 4 days after 1 h MCAO. During the early surge period, p38beta MAPK was preferentially localized in the nucleus and dendrites of neurons in the future infarction area, while during the delayed surge p38beta MAPK was heavily induced in reactive astrocytes in penumbra. The temporally and spatially regulated pattern of p38beta MAPK expression in the postischemic brain suggests distinct roles of p38beta MAPK in neuronal death and in the astrocyte activation.  相似文献   

11.
In vitro exposure of microglial cells to hypoxia induces cellular activation. Also, in vivo studies of glial activation following ischemic hypoxia have shown that neuronal cell death is followed by microglial activation. Thus, it is likely that toxic inflammatory mediators produced by activated microglial cells under hypoxic conditions may exacerbate neuronal injury following cerebral ischemia. Nitric oxide (NO), which is known to be produced by activated microglia, may participate in this process. In the current work, we sought to determine whether and how the production of NO and the expression of inducible NO synthase (iNOS) are triggered by hypoxia in microglial cells. Exposure of established microglial cell lines as well as primary mouse microglial cultures to mild hypoxia (8 h) followed by reoxygenation (24 h) induced the production of NO and TNFalpha, indicating that hypoxia could lead to the inflammatory activation of microglia. Hypoxic induction of NO was accompanied by iNOS induction. Moreover, hypoxia induced the activation of p38 MAPK, but not ERK or JNK/SAPK, in BV-2 mouse microglial cells. SB203580, a specific inhibitor of p38 MAPK, blocked the hypoxic induction of NO and iNOS. Taken together, our results indicated that hypoxia could induce inflammatory activation of microglia, and the hypoxic induction of NO production in microglia is mediated through p38 MAPK pathway. Thus, during cerebral ischemia, hypoxia may not only directly damage neurons, but may also promote neuronal injury indirectly via microglial activation.  相似文献   

12.
The aim of the present study was to evaluate p38 MAPK activation following focal stroke and determine whether SB 239063, a novel second generation p38 inhibitor, would directly attenuate early neuronal injury. Following permanent middle cerebral artery occlusion (MCAO), brains were dissected into ischemic and non-ischemic cortices and Western blots were employed to measure p38 MAPK activation. Neurologic deficit and MR imaging were utilized at various time points following MCAO to monitor the development and resolution of brain injury. Following MCAO, there was an early (15 min) activation of p38 MAPK (2.3-fold) which remained elevated up to 1 h (1.8-fold) post injury compared to non-ischemic and sham operated tissue. Oral SB 239063 (5, 15, 30, 60 mg/kg) administered to each animal 1 h pre- and 6 h post MCAO provided significant (P<0.05) dose-related neuroprotection reducing infarct size by 42, 48, 29 and 14%, respectively. The most effective dose (15 mg/kg) was further evaluated in detail and SB 239063 significantly (P<0.05) reduced neurologic deficit and infarct size by at least 30% from 24 h through at least 1 week. Early (i.e. observed within 2 h) reductions in diffusion weighted imaging (DWI) intensity following treatment with SB 239063 correlated (r=0.74, P<0.01) to neuroprotection seen up to 7 days post stroke. Since increased protein levels for various pro-inflammatory cytokines cannot be detected prior to 2 h in this stroke model, the early improvements due to p38 inhibition, observed using DWI, demonstrate that p38 inhibition can be neuroprotective through direct effects on ischemic brain cells, in addition to effects on inflammation.  相似文献   

13.
Using the specific inhibitor of p38MAPK, SB203580, we show a direct involvement of this protein kinase in short- and long-term memory. When given into the CA1 region of the rat dorsal hippocampus immediately, but not 30 or 120 min after training in a one-trial inhibitory avoidance task, SB203580 blocked short- and long-term memory formation. The SB203580 inactive analog, SB202474, had no effect whatsoever. Learning of the avoidance task was accompanied by an immediate and transient increase in hippocampal p38MAPK phosphorylation. No change in p38MAPK phosphorylation was detected in control animals that only received the electric foot-shock associated with the learning paradigm. Therefore, formation of short and long-term memory for inhibitory avoidance requires p38MAPK activation in the rat hippocampus.  相似文献   

14.
Free radicals and inflammatory mediators are involved in transient focal cerebral ischemia (FCI). Preadministration of N-acetylcysteine (NAC) has been found to attenuate the cerebral ischemia-reperfusion injury in a rat model of experimental stroke. This study was undertaken to investigate the neuroprotective potential of NAC administered after ischemic events in experimental stroke. FCI was induced for 30 min by occluding the middle cerebral artery (MCA). NAC (150 mg/kg) was administered intraperitoneally at the time of reperfusion followed by another dose 6 hr later. Animals were sacrificed after 24 hr of reperfusion. The cerebral infarct consistently involved the cortex and striatum. Infarction was assessed by staining the brain sections with 2,3,5-triphenyltetrazolium chloride. Animals treated with NAC showed a significant reduction in infarct area and infarct volume and an improvement in neurologic scores and glutathione level. Reduction in infarction was significant even when a single dose of NAC was administered at 6 hr of reperfusion. Immunohistochemical and quantitative real-time PCR studies demonstrated a reduction in the expression of proinflammatory cytokines such as tumor necrosis factor alpha (TNFalpha) and interleukin 1beta (IL-1beta) and inducible nitric oxide synthase (iNOS) in NAC compared to that in vehicle-treated animals. The expression of activated macrophage/microglia (ED1) and apoptotic cell death in ischemic brain was also reduced by NAC treatment. These results indicate that in a rat model of experimental stroke, administration of NAC even after ischemia onset protected the brain from free radical injury, apoptosis, and inflammation, with a wide treatment window.  相似文献   

15.
Our previous work has shown that peri-sciatic administration of recombinant rat TNF-α (rrTNF) induces mechanical allodynia and up-regulation of TNF-α in the spinal dorsal horn of rats; however, the underlying mechanisms remain unknown. In the current study, we found that the levels of phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were significantly increased in bilateral lumbar spinal dorsal horn on day 3 after rrTNF administration. Double immunofluorescence staining revealed that p-SFKs and p-p38 MAPK were nearly restricted to the microglia. Intrathecal delivery of SFKs inhibitor PP2 or p38 MAPK inhibitor SB203580, started 30 min before rrTNF administration and given once daily thereafter for 7 days, blocked mechanical allodynia in bilateral hind paws and increase of TNF-α expression in the spinal dorsal horn. Moreover, PP2 inhibited the up-regulation of p-p38 MAPK induced by rrTNF. We also found that intrathecal injection of TNF-α neutralization antibody alleviated mechanical allodynia in bilateral hind paws and suppressed up-regulation of p-SFKs and p-p38 MAPK. These results suggest that activation of the SFKs/p38 MAPK pathway in microglia and subsequent TNF-α expression in the spinal dorsal horn may contribute to the mechanical hyperalgesic state induced by peri-sciatic administered rrTNF.  相似文献   

16.
Tumor-necrosis factor-α (TNF-α) is critical to the development of cerebral vasospasm after subarachnoid hemorrhage (SAH). Hence, therapeutic strategies targeting TNF-α can attenuate cerebral vasospasm. This study investigated the effects of SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor, on TNF-α concentration in the cerebral arteries and the cerebrospinal fluid (CSF) after SAH and on subsequent cerebral vasospasm. Twenty-three rabbits were divided into four groups: (i) control (without SAH), (ii) SAH (SAH only), (iii) dimethylsulfoxide (DMSO, vehicle), and (iv) SB203580. The severity of vasospasm and the immunoreactivities of TNF-α and phosphorylated p38 MAPK in the brain vessels were determined in all animals, and the concentrations of TNF-α in the CSF were also assessed. Severe vasospasm was observed in the rabbits from the SAH and DMSO groups. SB203580 reversed vasospasm after SAH. Lower immunoreactivities of TNF-α and phosphorylated p38 MAPK were found in the basilar artery in the SB203580 group than in the DMSO group. The concentration of TNF-α in the CSF increased after SAH, but treatment with SB203080 after SAH suppressed this increase. Our data show that SB203580 reversed cerebral vasospasm by inhibiting the phosphorylation of p38 MAPK in the basilar artery and by suppressing the increase in TNF-α in the basilar artery and CSF after SAH. SB203580 could therefore potentially be used for the treatment of cerebral vasospasm after SAH.  相似文献   

17.
The present study investigated the role of microglia and p38 MAPK in the development of mechanical allodynia in rats with compression of the trigeminal ganglion. Male Sprague-Dawley rats weighing 250-260 g were used. Under pentobarbital sodium anesthesia, the animals were mounted onto a stereotaxic frame and given injections of 4% agar solution (10 μL) to compress the trigeminal ganglion. The air-puff thresholds significantly decreased after compression of the trigeminal ganglion. On postoperative day 14, immunoreactivity to both OX-42 and p-p38 MAPK was up-regulated in the medullary dorsal horn as compared to the sham group. P-p38 MAPK was found to be co-localized with OX-42, but not with NeuN, a neuronal cell marker, or with GFAP, an astroglial cell marker. Intracisternal administration of 100 μg of minocycline significantly inhibited both mechanical allodynia and activation of microglia produced by compression of the trigeminal ganglion. Intracisternal administration of 0.1, 1, or 10 μg of SB203580, a p38 MAPK inhibitor, also significantly decreased mechanical allodynia and p38 MAPK activation in the trigeminal ganglion-compressed group. These results suggest that activation of p38 MAPK in the microglia is an important step in the development of mechanical allodynia in rats with compression of the trigeminal ganglion and that the targeted blockade of microglial p38 MAPK pathway is a potentially important new treatment strategy for trigeminal neuralgia-like nociception.  相似文献   

18.
The p38 mitogen-activated protein kinase (MAPK) is induced in response to environmental stress. Although p38 MAPK has been implicated in diverse cellular processes, including cell proliferation, differentiation, and survival of differentiated cells in the central nervous system (CNS), the expression profile and roles of p38 MAPK in the developing brain remain largely unknown. In the present study, we demonstrate that p38 MAPK is expressed predominantly in nestin-positive cells in the cerebral cortex in embryonic day 10 (E10) brain and that expression of the protein decreases gradually during development. To investigate the roles of p38 MAPK in the embryonic brain, two selective p38 MAPK inhibitors, SB202190 and SB203580, were added to the primary neuronal cultures from E10-E14 brains. After 7 days of exposure to these inhibitors, but not SB202474, a negative analog of SB203580, numerous large neurospheres were present. MAPK inhibitors also selectively increased the growth rate of neural stem cells (NSCs) purified from secondary neurospheres and the number of bromodeoxyuridine-positive NSCs. Thus, p38 MAPK inhibitors are potent stimulators of NSC proliferation, and p38 MAPK may be an intrinsic negative regulator of NSC proliferation during early brain development.  相似文献   

19.
Several lines of evidence have suggested that activated glia contributes to morphine-induced reward (conditioned place preference, CPP). Compared to well-defined roles of astrocyte in morphine CPP, the role of microglia in the nucleus accumbens (NAc) remains poorly characterized. The aim of the present study was to investigate the distinct role of microglia in morphine-induced CPP. Systemic administration of morphine (7.5 mg/kg for 5 days) induced significant preference for the morphine-paired compartment in rats, which lasted for at least 6 days after cessation of morphine treatment. Immunohistochemistry results showed that activation of p38 in the NAc microglia induced by chronic morphine treatment maintained on day 11. Bilateral intra-NAc injection of minocycline, a putative microglia inhibitor, or SB203580, an inhibitor of p38, prior to morphine administration not only inhibited p38 activation in the microglia but impaired the acquisition of CPP. On the day following the acquisition of morphine CPP, a single injection of minocycline or SB203580 failed to block the expression of CPP. Notably, pretreatment with minocycline or SB203580 for 5 days following the acquisition of morphine CPP significantly suppressed the activation of p38 and attenuated the maintenance of morphine CPP. Collectively, our present study indicates that the p38 signaling in the NAc microglia may play an important role in the acquisition and maintenance but not the expression of morphine CPP, and provides new evidence that microglia might be a potential target for the therapy of morphine addiction.  相似文献   

20.
目的研究精氨酸加压素(AVP)对星形胶质细胞水孔蛋白-4(AQP4)表达的调节,以及p38 MAPK信号通路在AQP4表达过程的作用,明确AVP及AQP4在脑水肿发生过程中的作用。方法大鼠大脑皮质分离星形胶质细胞,星形胶质细胞经分别用AVP、V1a受体(V1aR)拮抗剂和SB 203580进行处理,采用免疫组织化学技术及RT-PCR对AQP4 mRNA进行检测,Western blot检测p38 MAPK信号通路在AVP诱导AQP4表达中的活化程度。结果500nmol/L的AVP处理6h后,AQP4 mRNA表达开始升高(P<0.01),到12h达高峰(P<0.01),24h后仍维持在较高的水平(P<0.05)。加入p38 MAPK抑制剂SB 203580干预后,AQP4 mRNA表达水平与对照组比较差异不显著(P>0.05);AVP处理15min后p38 MAPK磷酸化水平开始增加,30min达高峰,持续到60min开始下降。V1aR拮抗剂处理后p38 MAPK磷酸化水平整个时间段均未出现明显变化。结论AVP通过激活V1aR引起p38MAPK信号通路活化从而诱导AQP4 mRNA高表达,从基因水平对AQP4进行调节,可能在脑水肿发生中,尤其是在星形胶质细胞水肿形成中起重要作用。V1aR拮抗剂及p38 MAPK抑制剂能抑制AQP4 mRNA的表达,避免星形胶质细胞肿胀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号