首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cells expressing an invariant TCR alpha chain and NK cell markers are expected to exhibit unique functions. Whereas much attention has been paid to CD1d-restricted NKT cells, a second NKT cell population bearing an invariant AV19-AJ33 TCR has recently been identified in mice and humans. Selection and/or expansion of this population require B cells, and would involve a non-classical class I-related molecule MR1. Although their preferential distribution in the gut mucosa indicates their role in the host response at the site of pathogen entry, it remains unknown whether they play an alternative role at different sites or in immunological disorders. Using single-strand conformation polymorphism clonotype analysis, we investigated the presence of the human AV19-AJ33 T cells (V(alpha)7.2-J(alpha)33 T cells) in autopsy samples from multiple sclerosis (MS) patients as well as in nerve biopsy samples from chronic inflammatory demyelinating polyneuropathy (CIDP) patients. Here we report that the V(alpha)7.2-J(alpha)33 T cells are accumulated in some of the central nervous system lesions of MS and in the majority of the peripheral nerve samples from CIDP. We have previously revealed that CD1d-restricted, V(alpha)24-J(alpha)Q NKT cells are remarkably reduced in the peripheral blood from MS. However, V(alpha)7.2-J(alpha)33 T cells are not reduced in the peripheral blood from MS and could be detected in a large majority of the cerebrospinal fluid samples obtained during relapse of MS. The present results indicate that the V(alpha)7.2-J(alpha)33 T cells are involved in the autoimmune inflammatory lesions.  相似文献   

2.
Mucosal-associated invariant T (MAIT) cells are innate-like T-cells that recognize bacterial riboflavin metabolites. They are present in human blood but are abundant at barrier sites, including the liver, lungs, and kidneys, where they possess a CD69+/CD103+/− tissue-resident phenotype. In renal tissue, MAIT cells likely defend against the ascending uropathogens responsible for urinary tract infections (UTIs), which are common, especially among renal transplant recipients (RTRs). Nevertheless, the functional role for MAIT cells in renal tissue and the influence of renal transplantation on MAIT cells remains unclear. Using multiparameter flow cytometry and the MR1-tetramer, we characterized MAIT cell phenotype and function in healthy renal tissue (n = 6), renal transplants explanted after allograft failure (n = 14) and in blood from healthy controls (n = 20) and RTRs before and 1-year after transplantation (n = 21). MAIT cells in renal tissue constitute a distinct CD69+CD103+/− population that displays typical phenotypic features of tissue-resident T-cells and is skewed toward IL-2, GM-CSF, and IL-17A production upon stimulation. The circulating MAIT cell population was not decreased in number in RTRs pre- or post-transplantation. Tissue-resident MAIT cells in the kidney represent a functionally distinct population. This shows how MAIT cells in the kidney may be involved in the protection against microorganisms.  相似文献   

3.
ObjectiveMucosal associated invariant T cells (MAIT) and innate lymphoid cells (ILCs) have immunoregulatory functions at mucosal sites and have been involved in various inflammatory and autoimmune diseases. The aim of this study was to assess their frequencies in blood in ANCA-associated vasculitis (AAV).MethodsThe frequencies and function of MAIT cells, ILCs, γδT, iNKT, NK cells were analyzed by flow cytometry on PBMC of patients with granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) without any treatment, in acute (AP) and remission phase (RP) and compared with healthy controls (HC).ResultsThe frequencies of MAIT cells were strongly decreased in GPA and MPA in AP compared to HC, both in never treated and in relapsing patients and independently of patient age. This was associated with an activated phenotype of patient MAIT cells, as shown by increased expression of CD69 and IFNγ. MAIT cells remained decreased during RP in AAV patients. The frequencies of iNKT and γδT cells were unaffected compared to HC, whereas those of NK cells were slightly reduced during AP in MPA. We also observed a significant decrease in frequencies of total ILCs with decreased ILC2 and ILC3 and increased ILC1 during AP in both GPA and MPA compared to HC. These frequencies normalized during RP. Interestingly, we observed a significant correlation between the frequency of total ILCs and BVAS.ConclusionWe show for the first time that AAV are associated with a major decrease and an activated phenotype of blood MAIT cell. These features persisted during remission suggesting a role for MAIT cells in the pathogenesis of AAV.  相似文献   

4.
《Mucosal immunology》2017,10(3):802-813
Studies on mucosal-associated invariant T cells (MAITs) in nonhuman primates (NHP), a physiologically relevant model of human immunity, are handicapped due to a lack of macaque MAIT-specific reagents. Here we show that while MR1 ligand-contact residues are conserved between human and multiple NHP species, three T-cell receptor contact-residue mutations in NHP MR1 diminish binding of human MR1 tetramers to macaque MAITs. Construction of naturally loaded macaque MR1 tetramers facilitated identification and characterization of macaque MR1-binding ligands and MAITs, both of which mirrored their human counterparts. Using the macaque MR1 tetramer we show that NHP MAITs activated in vivo in response to both Bacillus Calmette-Guerin vaccination and Mycobacterium tuberculosis infection. These results demonstrate that NHP and human MR1 and MAITs function analogously, and establish a preclinical animal model to test MAIT-targeted vaccines and therapeutics for human infectious and autoimmune disease.  相似文献   

5.
Inflammatory bowel diseases are characterized by a deregulated immune response targeting the gut bacterial flora. Mucosal‐associated invariant T (MAIT) cells are major histocompatibility complex (MHC) class Ib‐restricted innate‐like lymphocytes with anti‐bacterial functions. They display an effector/memory phenotype and are found in large numbers in the blood, mucosae and liver. They have also been implicated in inflammatory diseases such as multiple sclerosis. Therefore, we aimed to analyse the possible involvement of MAIT cells in Crohn's disease (CD) and ulcerative colitis (UC). To this end, a phenotypical and functional analysis of MAIT cells isolated from the blood of healthy subjects, CD and UC patients was undertaken. MAIT cells were also quantified in ileal biopsies of CD patients. The frequency of blood MAIT cells was specifically reduced in IBD patients compared with healthy donors, whereas it was dramatically greater in the inflamed versus healthy tissue. MAIT cells were activated as they expressed significantly more the Ki67 antigen, and this was accompanied by phenotypical changes such as increased expression of natural killer (NK)G2D and B and T lymphocyte attenuator (BTLA). Finally, in‐vitro‐activated MAIT cells from CD and UC patients secreted significantly more interleukin (IL)‐17, together with a decreased interferon (IFN)‐γ in CD but an increased IL‐22 in UC. These data show that MAIT cells are activated in IBD, which results in an increased recruitment towards the inflamed tissues, an altered phenotype and a switch in the pattern of cytokine secretion. This is the first demonstration that MAIT cells are immune players in IBD, whose precise functions in this context need to be addressed.  相似文献   

6.
The intracellular pathogen Mycobacterium tuberculosis (Mtb) and its human host have long co-evolved. Although the host cellular immune response is critical to the control of the bacterium information on the specific contribution of different immune cell subsets in humans is incomplete. Mucosal associated invariant T (MAIT) cells are a prevalent and unique T-cell population in humans with the capacity to detect intracellular infection with bacteria including Mtb. MAIT cells detect bacterially derived metabolites presented by the evolutionarily conserved major histocompatibility complex-like molecule MR1. Here, we review recent advances in our understanding of this T-cell subset and address the potential roles for MR1-restricted T cells in the control, diagnosis, and therapy of tuberculosis.  相似文献   

7.
Human leukocyte-associated Ig-like receptor-1 (LAIR-1) is a transmembrane glycoprotein with a single extracellular Ig-like domain and a cytoplasmic tail containing two immunoreceptor tyrosine-based inhibition motifs (ITIMs). It is constitutively expressed on the majority of human mononuclear leukocytes and functions as an inhibitory receptor. In this study, we show that freshly isolated peripheral blood T cells are heterogeneous in their expression levels of LAIR-1. We have found that naive T cells express the highest levels of LAIR-1, even more than memory cells. The cross-linking of LAIR-1 inhibits T cell receptor (TCR) mediated signals in freshly isolated human naive T cells and whole populations of CD4+ or CD8+ T cells. TCR cross-linking increased cell surface expression of LAIR-1 in a process that requires p38 MAP kinase and ERK signaling. Altogether, these results indicate that LAIR-1 is capable of negatively regulating T cell functions, and its high level of expression by naive T cells suggests that it may function at an early stage in the development of an immune response.  相似文献   

8.
Mouse natural killer T cells with invariant Valpha14 rearrangement (Valpha14i NKT cells) can rapidly produce both Th1 and Th2 cytokines and regulate various immune responses, such as autoimmunity and tumor immunity. In this study, we describe the phenotypical and functional characterization of in vitro-expanded mouse Valpha14i NKT cells from spleen using a combination of alpha-galactosylceramide (alpha-GalCer) and IL-2. The expanded Valpha14i NKT cells retained the memory/activated (CD44(+)CD69(+)CD62L(-)) and CD4(+) or CD4(-)8(-) double negative phenotypes but modulated or lost the classical NKT cell marker, NK1.1. The expanded Valpha14i NKT cells continuously released IL-4 and IFNgamma and induced NK cell IFNgamma production in vitro. Furthermore, the expanded Valpha14i NKT cells migrated into the liver and spleen after adoptive transfer into lymphopenic SCID mice, and they were able to rapidly produce IL-4 and IFNgamma after alpha-GalCer injection. Our findings suggest that the intrinsic characteristics of the cytokine secretion of Valpha14i NKT cells were equivalent to that of in vitro-expanded Valpha14i NKT cells. In vitro-expanded Valpha14i NKT cells are considered to be useful for NKT cell defect-related diseases, such as autoimmunity and cancer.  相似文献   

9.
Invariant Valpha14 natural killer T (Valpha14i NKT) cells are a unique immunoregulatory T-cell population that is restricted by CD1d. The glycolipid alpha-galactosylceramide (alpha-GalCer) is presented by CD1d and causes robust Valpha14i NKT-cell activation. Three days after injection of alpha-GalCer, Valpha14i NKT cells vigorously increase in number and then gradually decrease to normal levels. In the present study, we found that the re-administration of alpha-GalCer into mice primed 3 days earlier causes a marked increase in serum interleukin-4 and interferon-gamma. Intracellular staining revealed that the only expanded Valpha14i NKT cells are responsible for the enhanced cytokine production. The enhanced cytokine production was correlated with an increased number of Valpha14i NKT cells after priming. Additionally, primed Valpha14i NKT cells produced larger amounts of cytokine as compared with naive Valpha14i NKT cells when cultured with alpha-GalCer-pulsed dendritic cells. Thus, we considered that a subset of expanded Valpha14i NKT cells acquired a strong ability to produce cytokines. In contrast to mice primed 3 days earlier, cytokine production is markedly diminished in mice primed 7 days earlier. The expanded Valpha14i NKT cells altered the surface phenotype (NK1.1- CD69-) and contained intracellular interferon-gamma. Additionally, we found that primed Valpha14i NKT cells did not disappear or down-regulate surface TCR expression when re-injected with alpha-GalCer as compared with naive Valpha14i NKT cells. These results demonstrate that the function and surface phenotype of Valpha14i NKT cells is dramatically altered after alpha-GalCer priming.  相似文献   

10.
In the pathogenesis of multiple sclerosis (MS), autoimmune Tcells reactive with proteolipid protein (PLP) may play a crucialrole. We determined 23 TCR (ß-chain sequences of limitingdilution T cell lines (TCL) selected against a synthetic peptide,PLP 95–116, 105–124 or 139–155, from the peripheralblood of three Japanese MS patients with the DR2, w15 haplotype(Tl, SK and OK). Fourteen sequences were originated from Tl,seven from SK and two from OK. The PLP-reactive TCL utilizedvarious Vß and Jß; gene segments, but therewas significant bias in the Vß and Jß usage.Overutilization of the Vß2 family and dominant usageof the Jß2.5 subfamily was seen in PLP 105–124-reactiveand 95–116-reactive TCL respectively. More remarkably,a majority of the TCL were found to express ß-chainCDR3 motifs that appear to be unique to MS brain infiltrates.In contrast, these motifs were only rarely seen in control TCRsequences from peripheral blood or from a TCL selected againsttetanus toxoid. In several cases, the ßCDR3 homologiesbetween the PLP-reactive T cells and MS brain T cells were extensive,owing to the shared motifs in combination with the surroundingamino acid identities. These results indicate that PLP-specificT cells may be involved in the immunopathology of MS.  相似文献   

11.
T cell activation is affected by both stimulatory and inhibitory co-signaling. MHC class II-expressing renal tubular epithelial cells (TEC) can function as APC for T cells. To study the influence of inhibitory ligands on TEC-mediated T cell activation, we examined the expression of programmed death ligand-1 (PD-L1) on human TEC line HK-2 cells, as well as in normal and diseased kidney samples. RT-PCR, FACS, and immunocytochemistry showed that PD-L1 is constitutively expressed on HK-2 cells, and is dramatically upregulated by IFN-gamma. In situ hybridization and immunohistochemical staining revealed constitutive low expression of PD-L1 on proximal tubules at both mRNA and protein levels in normal kidneys, but much higher expression in kidneys with type IV lupus nephritis. In vitro, pretreatment of IFN-gamma-stimulated HK-2 cells with anti-PD-L1 significantly enhanced IL-2 secretion from cocultured, mitogen-activated Jurkat or human peripheral blood T cells. These results suggest that the PD-L1:PD-1 pathway negatively regulates T cell activation by TEC, and may play an inhibitory role in TEC-mediated immune activation and immunopathology in the kidney.  相似文献   

12.
E O Major  R G Traub 《Virology》1986,148(1):221-225
We have examined the synthesis of the T protein of the human polyomavirus, JCV, during productive infection in primary cultures of human fetal glial and kidney cells. Immunoprecipitation of protein extracts from virus infected cells revealed that the JCV large T protein from both the prototype Mad and HEK adapted strains migrated as a 94-kDa protein in denaturing polyacrylamide gels. Resolution of the JCV T protein in brain cells could best be achieved following alkylation of the immunoprecipitated proteins prior to gel electrophoresis. The small t protein of either strain of JCV, however, could not be detected. In comparative experiments, the large T protein of the simian polyomavirus, SV40, was also identified as a 94-kDa protein in immortalized human fetal glial and kidney cultures. There were also protein complexes between p53 and SV40 T protein in the human glial and kidney cell lines. No evidence for a similar protein complex could be detected in JC virus infected human fetal brain or kidney cells.  相似文献   

13.
CD4+CD25+ regulatory T cells play an important role in peripheral tolerance. Upon T cell receptor (TCR)-mediated activation, the cells fail to proliferate but are induced to have a suppressor function. The intracellular signaling events that lead to their responses have not been elucidated. In this study, we have examined the proximal TCR signaling events in freshly isolated human CD4+CD25+ regulatory T cells after TCR ligation. In contrast to CD4+CD25- T cells, TCR ligation of CD4+CD25+ regulatory T cells by anti-CD3 cross-linking resulted in a lower calcium influx and extracellular signal-regulated kinase 1/2 phosphorylation. Examination of the CD3zeta chain phosphorylation status indicated that CD4+CD25+ regulatory T cells have poor phosphorylation of the protein and consequently, reduced recruitment of zeta-associated protein-70 to the TCR immunoreceptor tyrosine motif. The adaptor protein, Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa, which relays signals to downstream signaling components, also showed reduced phosphorylation, which correlated with reduced VAV guanine nucleotide exchange factors association. Consistent with other findings, the defect is accompanied with impaired actin cap formation, implicating a failure of actin remodeling of the cells. Together, our results demonstrate that CD4+CD25+ regulatory T cells have altered TCR proximal signaling pathways, which could be critical for inducing the distinct behavior of these cells.  相似文献   

14.
Mouse natural killer T cells with an invariant Valpha14-Jalpha18 TCR rearrangement (Valpha14i NKT cells) are able to regulate immune responses through rapid and large amounts of Th1 and Th2 cytokine production. It has been reported that in vivo administration of the Valpha14i NKT cell ligand, alpha-galactosylceramide (alpha-GalCer) significantly reduced morbidity and mortality of acute graft-versus-host disease (GVHD) in mice. In this study, we examined whether adoptive transfer of in vitro-expanded Valpha14i NKT cells using alpha-GalCer and IL-2 could modulate acute GVHD in the transplantation of spleen cells of C57BL/6 mice into (B6xDBA/2) F(1) mice. We found that the adoptive transfer of cultured spleen cells with a combination of alpha-GalCer and IL-2, which contained many Valpha14i NKT cells, modulated acute GVHD by exhibiting long-term mixed chimerism and reducing liver damage. Subsequently, the transfer of Valpha14i NKT cells purified from spleen cells cultured with alpha-GalCer and IL-2 also inhibited acute GVHD. This inhibition of acute GVHD by Valpha14i NKT cells was blocked by anti-IL-4 but not by anti-IFN-gamma monoclonal antibody. Therefore, the inhibition was dependent on IL-4 production by Valpha14i NKT cells. Our findings highlight the therapeutic potential of in vitro-expanded Valpha14i NKT cells for the prevention of acute GVHD after allogeneic hematopoietic stem cell transplantation.  相似文献   

15.
Contact sensitivity (CS) is a cutaneous T(h)1 response that is induced by skin painting with reactive hapten. In prior in vivo studies of CS, we showed that recombinant soluble alphabetaTCR (sTCR) acted non-specifically to protect CS-effector T cells from suppression, but no molecular mechanism was determined. In the current study, we employed an in vitro system to investigate the mechanism of how sTCR protect CS-effector T cells from suppression. Immune CS-effector cells and appropriate hapten-conjugated antigen-presenting cells (APC) were incubated together with down-regulatory culture supernatant produced by suppressive spleen cells from mice tolerized i.v. with specific hapten, which produced strong inhibition of IFN-gamma production by the CS-effector cells. Importantly, addition of two different sTCR, of unrelated specificity, reversed this down-regulation and thus restored IFN-gamma production. We found that the APC, and not the CS-effector T cells, were the locus of the sTCR-mediated protection and showed direct binding of sTCR to APC by flow cytometry. Further, addition of anti-IL-12 showed that sTCR protection was due to IL-12 induced by sTCR and released by the APC, and was confirmed by ELISA measurement of IL-12 induced in APC supernatants by sTCR incubation. These results indicated a possible new regulatory loop in which suppression was reversed by IL-12 derived from APC, following direct surface binding of sTCR, and enhanced by IFN-gamma production from the T(h)1 CS-effector cells.  相似文献   

16.
17.
The aim of this study was to investigate the pathogenesis of combination ipilimumab and nivolumab-associated colitis (IN-COL) by measuring gut-derived and peripheral blood mononuclear cell (GMNC; PBMC) profiles. We studied GMNC and PBMC from patients with IN-COL, IN-treated with no adverse-events (IN-NAE), ulcerative colitis (UC) and healthy volunteers using flow cytometry. In the gastrointestinal-derived cells we found high levels of activated CD8+ T cells and mucosal-associated invariant T (MAIT) cells in IN-COL, changes that were not evident in IN-NAE or UC. UC, but not IN-C, was associated with a high proportion of regulatory T cells (Treg). We sought to determine if local tissue responses could be measured in peripheral blood. Peripherally, checkpoint inhibition instigated a rise in activated memory CD4+ and CD8+ T cells, regardless of colitis. Low circulating MAIT cells at baseline was associated with IN-COL patients compared with IN-NAE in one of two cohorts. UC, but not IN-COL, was associated with high levels of circulating plasmablasts. In summary, the alterations in T cell subsets measured in IN-COL-affected tissue, characterized by high levels of activated CD8+ T cells and MAIT cells and a low proportion of Treg, reflected a pathology distinct from UC. These tissue changes differed from the periphery, where T cell activation was a widespread on-treatment effect, and circulating MAIT cell count was low but not reliably predictive of colitis.  相似文献   

18.
The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high, and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33 Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.  相似文献   

19.
Brain-specific angiogenesis inhibitor 1 (BAI1) is a p53-target gene specifically expressed in the brain. We examined the distribution of the endogenous BAI1 protein in normal human brain tissue using a polyclonal antibody against the extracellular region of BAI1. Immunohistochemical study demonstrated that BAI1 was expressed in neuronal cells of the cerebral cortex but not in astrocytes. BAI1 protein was localized in the cellular cytoplasm and membrane. It was predominantly localized in the cellular membrane when expressed in cultured cells by means of gene transfection. BAI1 protein may play an important role in neuronal functions such as synapse formation and signal transduction.  相似文献   

20.
The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells against endogenous and locally released granzyme B. Moreover, PI9 expression by neoplastic cells may constitute one of the mechanisms for tumors to escape immune surveillance. Here we show that PI9 is also expressed by human mast cells. In immunohistochemical studies using a PI9-specific monoclonal antibody, strong cytoplasmic staining for PI9 was found in normal mast cells in various tissues throughout the body. In addition, in 80% of all cases of cutaneous and systemic mastocytosis tested the majority of the mast cells expressed PI9. As an in vitro model for PI9 expression by mast cells, we studied expression by the human mast cell line HMC-1. Stimulation of HMC-1 with PMA and the calcium ionophore A23187 resulted in a marked increase of PI9 expression. Thus, PI9 is expressed by activated mast cells. We suggest that this expression serves to protect these cells against apoptosis induced by granzyme B released during initiation of the local inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号