首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The location and morphological characteristics of gamma-aminobutyric acid (GABA)-immunopositive cells and their processes were studied in rat and mouse first somatosensory (SI) cortex (including 'barrels') in layer IV, and layers above (I-III), and below (V and VI). In coronal sections of SI cortex of both species GABA-immunopositive cells and punctate profiles were found in each of layers I-VI. The cells were of various sizes; the largest, located in layers III and V of each species, resemble the large basket cells seen in Golgi-impregnated material. Most of the immunopositive cells were multipolar and circular or ellipsoidal in shape, but occasionally bipolar cells with fusiform perikarya were also seen. In coronal sections, immunopositive cells did not form a characteristic pattern. GABA-immunopositive cells were observed to be most numerous in the supragranular layers whereas GABA-positive punctate profiles were more numerous in layer IV. In tangential sections from layer IV of SI cortex of both species, GABA-immunopositive cells, processes and punctate profiles were visible throughout the entire barrel field. The pattern of distribution of immunopositive cells was similar (a) in two different morphological groups--i.e. the posteromedial barrel subfield (PMBSF) and the anterolateral barrel subfield (ALBSF) in rat barrel field, and (b) in PMBSF barrels of both rat and mouse (excluding differences due to structural dissimilarities between rat and mouse barrels). GABA-immunopositive neurons were grouped mainly in the barrel side and septum and were visible frequently in small clusters. In barrels of both species GABA-immunopositive cells were of a variety of sizes and ranged in shape from ellipsoidal to circular.  相似文献   

2.
Local intra- and interlaminar connections in mouse barrel cortex   总被引:7,自引:0,他引:7  
Focal injections of horseradish peroxidase (HRP) in dimethylsulfoxide (DMSO) were targeted into mouse somatosensory cortex, in vitro, with a template. Injections were made at different depths and in different locations in the whisker-barrel-defined somatosensory map in order to determine quantitative connectivity patterns within and between barrel-defined cortical columns. Cortices were sectioned in a plane parallel to the pia at 75 microns. Data were collected directly from microscope slides by computer. Data are presented as: 1) Plots of computer-mapped HRP reaction product density in neurons and cell locations for each section in relation to barrel boundaries; 2) histograms of label in cortical layers related to individual barrel-defined columns; 3) polar plots of relative amounts of label within individual barrel columns in sections through each barrel column; 4) vectors which represent HRP reaction product density as a function of direction and distance from the injection site; 5) statistical analysis of the shape of the label distribution pattern in the plane of the cortex as a function of injection site depth; and 6) probability of labeling of any other barrel column given a labeled barrel column. The principal findings are: 1) The pattern of label distribution, after an injection directly above or directly below an individual barrel, is hour-glass shaped with the waist of the hour-glass in layer IV. 2) Connections within barrel cortex are asymmetrical. Barrel-related columns within a row are more strongly interconnected than those in different rows. 3) Connections of the small barrels associated with whiskers on the upper lip are strongest with other small barrels, but strong connections also exist between these small barrels and the larger barrels. 4) The pattern of intracortical connections in SII is not asymmetrical; interlaminar connections in SII are fundamentally different from those in barrel cortex. 5) Quantitative intracortical projection patterns are highly consistent with functional data on intracortical processing of whisker information. As such, the quantitative data clearly indicate the spatial extent and relative magnitude of populations of neurons involved in intracortical processing of sensory information. The spatial arrangements of these intracortical connections, in conjunction with known developmental events, make it highly likely that the distribution of intracortical axons in mouse barrel cortex is sculpted in part by experience.  相似文献   

3.
Barrels of the PMBSF of the mouse somatosensory cortex become apparent in Nissl-stained tangential sections simultaneously, on the fourth postnatal day. At this time they are miniatures of those in the adult and are situated in the deepest sublamina of the trilaminar cortical plate. An early barrel appears as a patch of decreased cell density: the prospective hollow of the barrel. Septa become noticeable during the sixth postnatal day. From that period to adulthood, the relative contribution of the PMBSF to the total cortical surface area increases — an increase that goes against one's expectation: the barrel related periphery matures very early and so does the central, lateral region of the cortex. Barrel growth parallel to the pial surface is greater along the major axes than along the minor axes. By using the barrels to identify prospective layer IV in immature cortex, we could determine that layers V and VI attain their adult height during the sixth postnatal day — an age when prospective layers I-IV are only half their adult height. The onset of barrel formation coincides with the moment after which injury to the pertinent somatosensory periphery (the vibrissal papillae) no longer causes profound alterations in barrel morphology.  相似文献   

4.
To compare the spatial heterogeneity of brain tissue partial pressure of oxygen (pO(2)) among local brain regions, we focused on functional and anatomical variations in rat somatosensory cortex. Tissue pO(2) was measured by using an oxygen microelectrode with high spatio-temporal resolution, and investigated in three somatosensory areas including hindlimb (HL), forelimb (FL), and trunk region (Tr). Their anatomical structures were determined with histological techniques (Nissl stain). In addition to the measurement of baseline tissue pO(2), we examined temporal shifts in tissue pO(2) distribution elicited by functional stimulation using the brushing stimulation to the hindlimb, forelimb, and trunk regions of the body. We observed that average tissue pO(2) in the Tr (14+/-10 Torr) was significantly lower than those in the HL (25+/-13 Torr) and FL (24+/-13 Torr). Such regional differences in tissue pO(2) were closely related to the cytoarchitectonic variations among these three areas. In addition, the functional stimulation enlarged the regional differences in the pO(2) depending on each somatosensory area; the pO(2) in the HL increased by 3.6+/-2.9% after the stimulation to hindlimb, whereas that in the Tr decreased by -2.9+/-2.5% after the stimulation to trunk region. Such dual responses of tissue pO(2) (i.e. increase or decrease) after the functional stimulation to the corresponding body regions may provide a criterion to clinically predict regions susceptible to tissue hypoxia, because considerable decrease in tissue pO(2) occurred in the Tr showing the lowest baseline pO(2).  相似文献   

5.
Whereas resting state blood oxygenation‐level dependent (BOLD) functional MRI has been widely used to assess functional connectivity between cortical regions, the laminar specificity of such measures is poorly understood. This study aims to determine: (a) whether the resting state functional connectivity (rsFC) between two functionally related cortical regions varies with cortical depth, (b) the relationship between layer‐resolved tactile stimulus‐evoked activation pattern and interlayer rsFC pattern between two functionally distinct but related somatosensory areas 3b and 1, and (c) the effects of spatial resolution on rsFC measures. We examined the interlayer rsFC between areas 3b and 1 of squirrel monkeys under anesthesia using tactile stimulus‐driven and resting state BOLD acquisitions at submillimeter resolution. Consistent with previous observations in the areas 3b and 1, we detected robust stimulus‐evoked BOLD activations with foci were confined mainly to the upper layers (centered at 21% of the cortical depth). By carefully placing seeds in upper, middle, and lower layers of areas 3b and 1, we observed strong rsFC between upper and middle layers of these two areas. The layer‐resolved activation patterns in areas 3b and 1 agree with their interlayer rsFC patterns, and are consistent with the known anatomical connections between layers. In summary, using BOLD rsFC pattern, we identified an interlayer interareal microcircuit that shows strong intrinsic functional connections between upper and middle layer areas 3b and 1. RsFC can be used as a robust invasive tool to probe interlayer corticocortical microcircuits.  相似文献   

6.
The present study was aimed at identifying somatostatin receptor subtypes on the basis of their ligand-binding properties in the rat somatosensory cortex during fetal and postnatal development. Characterization of somatostatin-binding sites was performed in individual cortical layers by using three radioligands and eight competitors with known selectivities for the five somatostatin receptor subtypes. Binding sites sensitive to sst2-selective ligands were detected with high densities in the intermediate zone of the fetal cortex. From embryonic day 21 to 21 days postnatal (P21), mixed populations of receptors were detected in the cortical plate and emerging layers I-VI. Putative sst2 receptors were detected throughout the entire period but displayed different affinities for somatostatin and analogs, and a different sensitivity to GTP, depending on the developmental stage and the cortical layer considered. High densities of binding sites exhibiting characteristics of the sst1, sst3/5, and sst4 receptor subtypes were observed from P4 to P7, P7 to P14, and P7 to P21, respectively. In addition, each type of site exhibited a particular distribution pattern across the cortical layers that varied during the development. In the adult cortex, binding sites with sst1 and sst2 receptor characteristics were predominant. This study provides evidences of developmental expression windows of four sst receptor subtypes in selected areas of the rat cerebral cortex.  相似文献   

7.
The maturation of the barrel field in the primary somatosensory cortex was observed in Nissl-stained preparations from rats ranging in age from 12 days to 1.5 years postpartum. Prior to the 20th day, the barrels in the rat resemble those of the mouse and have distinct cell-sparse hollows that are surrounded by cell-dense sides. They span the full thickness of layer IV. Between the 20th and 34th days, the barrels in only the posteromedial part of the barrel field gradually change and the distinction between the hollows and sides is lost throughout all but the deepest part of layer IV. The resulting mature barrels are relatively indistinct and have a uniformly high cell density that extends well into the supragranular layers. In contrast, the barrels in the anterolateral part of the barrel field remain essentially unchanged. The remodeling apparently is not due passively to cortical growth because, by P20, the thicknesses of the cortical layers and the dimensions of the barrels are virtually the same as in the adult. Several mechanisms are considered that may account for the changes. These include a redistribution of the neurons that originally were in barrel sides; a reduction in the neuropil between the neurons that originally were within hollows; and differential growth of layer IV dendrites. The changes in the barrel structure may be related to the differentiation and quantity of innervation in the hairy skin between the vibrissae.  相似文献   

8.
We have studied the origin and extent of axons within layer I of the primary somatosensory cortex (SI) of rats by using retrograde and anterograde tracers with an emphasis on reciprocal connections to layer I of SI from ipsilateral cortical areas that are the target of SI projections. Small crystals of 1,1′,dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI) labeled horizontal axons projecting in all directions within layer I, which extended for up to 4 mm with numerous terminal branches. Applications of horseradish peroxidase, Diamidino yellow, or fast blue to the pial surface of SI labeled a characteristic pattern of neurons below the application site that excluded neurons in layer IV of the barrel fields, unless the dye penetrated deeper than layer II. This provided a control for the effective depth of the layer I dye applications. Retrograde transport from layer I of SI was traced to the primary motor area, the lateral parietal areas, including the secondary somatosensory (SII) and agranular insular cortex ipsilaterally, as well as the homotopic areas of SI contralaterally. Injections of the anterograde tracer dextran amine at the same site as the SI surface application labeled dense fiber terminations in middle layers of these same secondary areas in the primary motor cortex (MI) or SII in the midst of cells labeled by retrograde transport from layer I of SI. Injections of dextran amine into these secondary cortical areas labeled fibers that coursed through deep layers to SI, where they ascended to layer I. These reciprocal corticocortical inputs to SI were concentrated in layer I, where they branched and extended horizontally across several SI barrels. J. Comp. Neurol. 388:297–310, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Capsaicin (50 mg/kg s.c./25 μl) was administered to rats on the 2nd and 5th days after birth. The animals were raised, and from the age of 3 months the properties of the evoked activity were tested in the contralateral barrelfield. This neonatal capsaicin treatment was found to induce profound changes in the responsiveness of the barrel cortex in the adult rats: (1) the receptive field of the neurons in the Cl barrel was expanded; units within a particular barrel were driven by a significantly larger number of vibrissae than in the controls. (2) The rate of discharge evoked by the related vibrissa deflection was enhanced, while (3) the angular sensitivity of the neurons was decreased. (4) The most prominent change in cortical activity was observed by autoradiography: capsaicin-treated rats exhibited an enhanced labelling of different types of neurons throughout the hemisphere (surpassing the cortical representation of stimulated vibrissae). The present observations indicate that neonatal capsaicin affects the functional activity of the rat somatosensory cortex. It is suggested that unmyelinated sensory afferents play a role in the development of the rat somatosensory system.  相似文献   

10.
To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post-lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers; however, layers I and Vb recovered more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input but that cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.  相似文献   

11.
Local cerebral metabolic rates for glucose were studied by [14C]-2-deoxyglucose autoradiography in adult rats following acute and chronic unilateral deafferentation, with particular attention to the barrel field regions of the primary somatosensory cortex. Deafferentation was produced by permanently removing all of the large whiskers (vibrissae) on one side of the face. Data from experimental animals were then compared to data from sham-operated controls at 1, 5, 10, 15, 30, and 60 days after deafferentation. The rate of glucose utilization was maximally depressed at day 1 in the deafferented barrel field. After that, there was a progressive recovery of glucose utilization toward control levels at each subsequent time point. In contrast, glucose utilization in the barrel field associated with the intact set of whiskers increased by day 5 and remained elevated throughout the duration of the experiment. Similar patterns of altered cerebral metabolism were observed following unilateral infraorbital nerve transection. These results demonstrate that interference with normal somatosensory input causes a transient decrease in glucose metabolism of the contralateral cortical barrel-field and, in addition, causes long-term increments in glucose metabolism in the ipsilateral cortical barrel field--a structure not normally influenced by acute manipulation.  相似文献   

12.
Cortical columns are the functional units of the neocortex that are particularly prominent in the "barrel" field of the somatosensory cortex. Here we describe the morphology of two classes of synaptically coupled excitatory neurons in layer 4 of the barrel cortex, spiny stellate, and star pyramidal cells, respectively. Within a single barrel, their somata tend to be organized in clusters. The dendritic arbors are largely confined to layer 4, except for the distal part of the apical dendrite of star pyramidal neurons that extends into layer 2/3. In contrast, the axon of both types of neurons spans the cortex from layer 1 to layer 6. The most prominent axonal projections are those to layers 4 and 2/3 where they are largely restricted to a single cortical column. In layers 5 and 6, a small fraction of axon collaterals projects also across cortical columns. Consistent with the dense axonal projection to layers 4 and 2/3, the total number and density of boutons per unit axonal length was also highest there. Electron microscopy combined with GABA postimmunogold labeling revealed that most (>90%) of the synaptic contacts were established on dendritic spines and shafts of excitatory neurons in layers 4 and 2/3. The largely columnar organization of dendrites and axons of both cell types, combined with the preferential and dense projections within cortical layers 4 and 2/3, suggests that spiny stellate and star pyramidal neurons of layer 4 serve to amplify thalamic input and relay excitation vertically within a single cortical column.  相似文献   

13.
We used a dual anterograde-tracing paradigm to characterize the organization of corticocortical projections from primary somatosensory (SI) barrel cortex. In one group of rats, biotinylated dextran amine (BDA) and Fluoro-Ruby (FR) were injected into separate barrel columns that occupied the same row of barrel cortex; in the other group, the tracers were deposited into barrel columns residing in different rows. The labeled corticocortical terminals in the primary motor (MI) and secondary somatosensory (SII) cortices were plotted, and digital reconstructions of these plots were quantitatively analyzed. In all cases, labeled projections from focal tracer deposits in SI barrel cortex terminated in elongated, row-like strips of cortex that corresponded to the whisker representations of the MI or SII cortical areas. When both tracers were injected into separate parts of the same SI barrel row, FR- and BDA-labeled terminals tended to merge into a single strip of labeled MI or SII cortex. By comparison, when the tracers were placed in different SI barrel rows, both MI and SII contained at least two row-like FR- and BDA-labeled strips that formed mirror image representations of the SI injection sites. Quantitative analysis of these labeling patterns revealed three major findings. First, labeled overlap in SII was significantly greater for projections from the same barrel row than for projections from different barrel rows. Second, in the infragranular layers of MI but not in the supragranular layers, labeled overlap was significantly higher for projections from the same SI barrel row. Finally, in all layers of SII and in the infragranular layers of MI, the amount of labeled overlap was proportional to the proximity of the tracer injection sites. These results indicate that SI projections to MI and SII have an anisotropic organization that facilitates the integration of sensory information received from neighboring barrels that represent whiskers in the same row.  相似文献   

14.
One approach to examining how higher sensory, motor, and cognitive faculties emerge in the neocortex is to elucidate the underlying wiring principles of the brain during development. The mammalian neocortex is a layered structure generated from a sheet of proliferating ventricular cells that progressively divide to form specific functional areas, such as the primary somatosensory (S1) and motor (M1) cortices. The basic wiring pattern in each of these functional areas is based on a similar framework, but is distinct in detail. Functional specialization in each area derives from a combination of molecular cues within the cortex and neuronal activity-dependent cues provided by innervating axons from the thalamus. One salient feature of neocortical development is the establishment of topographic maps in which neighboring neurons receive input relayed from neighboring sensory afferents. Barrels, which are prominent sensory units in the somatosensory cortex of rodents, have been examined in detail, and data suggest that the initial, gross formation of the barrel map relies on molecular cues, but the refinement of this topography depends on neuronal activity. Several excellent reviews have been published on the patterning and plasticity of the barrel cortex and the precise targeting of ventrobasal thalamic axons. In this review, the authors will focus on the formation and functional maturation of synapses between thalamocortical axons and cortical neurons, an event that coincides with the formation of the barrel map. They will briefly review cortical patterning and the initial targeting of thalamic axons, with an emphasis on recent findings. The rest of the review will be devoted to summarizing their understanding of the cellular and molecular mechanisms underlying thalamocortical synapse maturation and its role in barrel map formation.  相似文献   

15.
The functional connections between the barrel cortex and visual cortex on the one hand and the perirhinal (PER) and postrhinal (POR) cortices on the other hand were investigated in the rat. Stimulation of the barrel cortex evoked field potentials throughout the longitudinal extent of both PER and POR. In contrast, visual cortex stimulation evoked responses only in the caudal portion of PER as well as in POR. Therefore, the information from the visual cortex on the way to the hippocampus is transferred preferentially by a relay in POR, whereas somatosensory information is transferred via both PER and POR. Moreover, stimulation of both cortical regions elicited firing of multiple units; however, unit activity was more commonly found in POR than in PER. We conclude that the transfer of somatosensory and visual information to the hippocampal formation is preferentially mediated by parallel channels through PER and POR respectively. Although the information transfer through these channels does overlap to some extent, each channel appears to have specific properties.  相似文献   

16.
The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.  相似文献   

17.
The distribution of substance P-containing fibers in the cerebral cortex and the hippocampal formation of the Japanese monkey (Macaca fuscata fuscata) was studied by immunohistochemistry using a monoclonal antibody raised against substance P. The results were compared with the distribution in homologous regions of the rat brain. Substance P-containing fibers and cell bodies were observed in all regions of the cerebral cortex. In deep layers of the neocortex (IV-VI), substance P-immunoreactive fibers formed arrays that ran perpendicular to the surface. These immunoreactive fibers tended to branch as they approached the cortical surface in layers II and III, at which point they were oriented in many directions. The molecular layer (I) of the monkey neocortex contained many granular, substance P-immunoreactive structures, resembling terminal boutons. In contrast to the monkey, rat cortical areas contained substantially fewer substance P-containing fibers. The immunoreactive profiles, mostly fine dot-like structures, were seen uniformly in layers II and IV of the rat neocortex, although in the medial prefrontal cortex many thick, varicose fibers were also observed. Substance P-containing fibers were seen throughout the hippocampal formation of the monkey, including the subiculum and the parahippocampal regions. The regional distribution of immunoreactive fibers was most dense in the molecular layers of dentate gyrus, in the stratum moleculare of the CA1 region, and in the stratum pyramidalis of the CA2 region. In the rat, the hippocampus and dentate gyrus contained fewer immunoreactive fibers. Moderate densities were observed in the rat subiculum and entorhinal cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Histochemical localization of synaptic zinc was examined in the somatosensory (SI) barrel cortex of mouse. The laminar distribution and distribution within the barrel field were described. At postnatal day 3 (P3) and 5 (P5), very faint and uniform zinc staining was present in the lower part of the subplate. At P6, subtle laminar variations emerged. At P8, these variations were clearly observed. Intense zinc staining was found in layers I, II, III, and V. Layers IV and VI showed a weaker staining. From this postnatal age to adult, uneven patchy distribution of synaptic zinc in layer IV could be distinguished in coronal sections. In tangential sections through layer IV, zinc staining showed a barrel-like pattern due to a higher zinc concentration in septa and the surrounding cortex. Barrel sides revealed a lower zinc concentration compared with the barrel hollow. With brain maturation, the zinc staining increased more intensely outside the barrel field, thus producing a progressively higher contrast between the barrel field and adjacent cortical regions. The differences in zinc staining between the barrel side and barrel hollow diminished with age but were still visible at P70. The changes in synaptic zinc distribution probably reflect the process of synaptic maturation of glutamatergic terminals projecting to the SI cortex. The time course of postnatal changes in terminal zinc distribution suggests that synaptic zinc is not involved in the mechanisms of barrel formation. J. Comp. Neurol. 386:652–660, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Rhythmic whisking behavior in rodents fully develops during a critical period about 2 weeks after birth, in parallel with the maturation of other sensory modalities and the onset of exploratory locomotion. How whisker‐related sensory processing develops during this period in the primary somatosensory cortex (S1) remains poorly understood. Here, we characterized neuronal activity evoked by single‐ or dual‐whisker stimulation patterns in developing S1, before, during and after the occurrence of active whisking. Employing multi‐electrode recordings in all layers of barrel cortex in urethane‐anesthetized mice, we find layer‐specific changes in multi‐unit activity for principal and neighboring barrel columns. While whisker stimulation evoked similar early responses (0–50 ms post‐stimulus) across development, the late response (50–150 ms post‐stimulus) decreased in all layers with age. Furthermore, peak onset times and the duration of the late response decreased in all layers across age groups. Responses to paired‐pulse stimulation showed increases in spiking precision and in paired‐pulse ratios in all cortical layers during development. Sequential activation of two neighboring whiskers with varying stimulus intervals evoked distinct response profiles in the activated barrel columns, depending on the direction and temporal separation of the stimuli. In conclusion, our findings indicate that the temporal sharpening of sensory‐evoked activity coincides with the onset of active whisking.  相似文献   

20.
Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function. Cambridge: MIT Press, '78). 3. Within the stereotyped geometry of the barrel field, there is considerable individual variation in the radial labeling distribution in corresponding (homotypical) columns of different cerebral hemispheres. This result is consistent with the hypothesis that dynamic processes operate to determine the connection strengths between neural elements in somatosensory cortex. It provides a basis for testing various "connectionist" and "group selection" theories of neural organization and development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号