首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cholinergic neurons have both a low-affinity and a high-affinity choline transport process. The high-affinity choline transport is sodium dependent and thus it can be referred to as choline cotransport. Choline cotransport has been shown to be up-regulated by neuronal activity. Protein kinase C has also been shown to regulate choline cotransport. Both forms of regulation appear to modulate transport by altering the numbers of choline cotransporters in the nerve terminal membrane. The present study centers on choline cotransporter trafficking in Limulus brain hemi-slice preparations. The competitive, reversible, non-permeant ligand, [3H]hemicholinium-3, was used in binding studies to estimate the relative number of choline cotransporters in plasma membranes. The hemicholinium-3 mustard derivative has been shown to be an irreversible, highly selective, non-permeant ligand for the choline cotransporter, and was also used. Hemicholinium-3 mustard binding to the choline cotransporter blocked [3H]choline transport and [3H]hemicholinium-3 binding. Antecedent elevated potassium exposure of cholinergic tissues has been shown to up-regulate choline transport by the recruitment of additional choline cotransporters to surface membranes. This treatment was also effective in the recruitment of cotransporters following maximal inhibition by hemicholinium-3 mustard of brain hemi-slices. Long-term washout of hemicholinium-3 mustard in hemi-slices resulted in a time-dependent restoration of choline cotransport. Full recovery occurred within 2h. In uninhibited slice preparations, both staurosporine and chelerythrine, protein kinase C inhibitors, stimulated choline uptake. However, within a 1-h washout recovery of uptake following hemicholinium-3 mustard inhibition, the staurosporine responsive but not chelerythrine responsive transport had returned. On the basis of these findings, we hypothesize the existence of two distinct populations of cycling choline cotransporters, which includes inactive or "silent" transporters.  相似文献   

2.
Autoradiographic localisation of [3H]-ethylcholine mustard aziridinium ion (ECMA) after microinjection into the rat striatum has revealed intracellular sequestration of the toxin by glial and endothelial cells; fewer neuronal cells were labelled. Intrastriatal injection of 200 pmol ECMA caused severe cavitation of the tissue, extensive gliosis and permanent damage to myelinated structures, as revealed by immunocytochemical detection of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). These non-specific effects are in addition to ECMA's irreversible action on the choline carrier associated with cholinergic neurons, and only marginally protected by concomitant administration of the reversible choline transport inhibitor hemicholinium-3. They may instead be attributed to the powerful alkylating action that ECMA has on tissue proteins, as shown by fluorography of synaptosomal proteins treated with [3H]ECMA and separated by SDS-PAGE.  相似文献   

3.
Isolated ganglia from the ventral nerve cord of the horseshoe crab, Limulus polyphemus, were incubated in [3H]choline and subsequently analyzed for choline uptake, conversion of choline to acetylcholine and the release of the newly synthesized acetylcholine. The ganglia readily accumulated radioactivity when incubated in Chao's solution containing 2 μM [3H]choline. The rate of uptake was 0.08 pmols/min/mg tissue and 26% of the [3H]choline taken up during a 1 h period was converted to [3H]acetylcholine. A 15 min exposure of ganglia to 90 mM K+ prior to incubation in [3H]choline caused an 89% increase in choline uptake and a 150% increase in its conversion to [3H]acetylcholine. The presence of unlabeled acetylcholine in the uptake medium inhibited both uptake and conversion of [3H]choline.There was a 5-fold increase in the efflux of radioactivity when ganglia incubated in 2 μM [3H]choline were superperfused with 90 mM K+. The increased efflux of radioactivity was Ca2+-dependent and was inhibited by Mg2+ (44%) and by Co2+ (72%). Similarly, addition of veratridine caused a Ca2+ and Na+-dependent release of radioactivity from prelabeled ganglia. Analysis of the superperfusate revealed that virtually all of the released radioactivity was [3H]acetylcholine.The abdominal ganglia of Limulus take up choline at micromolar concentrations, convert substantial amounts of it to acetylcholine and possess a depolarization-triggered, Ca2+-requiring mechanism for the specific release of acetylcholine. These results give further support to the view that the abdominal ganglia of Limulus contain a population of cholinergic terminals.  相似文献   

4.
Five nmol ethylcholine mustard aziridinium ion, a potential cholinotoxin was administered bilaterally into the cerebral ventricles of male rats at coordinates A -1.5, L +/- 1.5 and V -4.0 mm. The dorsal hippocampi were processed for choline acetyltransferase, serotonin or tyrosine hydroxylase immunocytochemistry 7 days after the injection to determine the specificity of the effect of the drug. Intrinsic choline acetyltransferase positive cells were also found after treatment, while the overall staining of fibres decreased. No change was observed in staining for either serotonin or tyrosine hydroxylase. Using the electron microscope, degenerating nerve terminals, with recognizable synaptic specializations were encountered, most frequently in stratum oriens and occasionally, degenerated CA3 pyramidal cells were observed. These findings are consistent with the neurochemical data obtained in parallel experiments with the morphological study in which it was found that acetylcholine content of the hippocampus was reduced by 73.4% 7 days after ethylcholine mustard aziridinium ion treatment, while dopamine, noradrenaline and serotonin levels were unaffected. Furthermore, the morphological studies indicate that ethylcholine mustard aziridinium ion can exert selective effects on the cholinergic system of dorsal hippocampus without significantly altering its cytoarchitecture.  相似文献   

5.
Cholinergic properties of embryonic chick sensory neurons   总被引:2,自引:0,他引:2  
Experiments were carried out to determine the cholinergic properties of sensory neurons of the chick embryo by measuring the choline acetyltransferase activity (ChAT) and [3H]choline uptake. The choline acetyltransferase activity in the dorsal root ganglia of an 8-day-old chick embryo was 24.2 +/- 2.52, which increased to 45.4 +/- 9.69 pmol ACh/mg protein/min in the ganglia of 12-day-old embryos. Sensory neurons derived from dorsal root ganglia of 10-day-old embryos and maintained in a serum-free culture medium supplemented with insulin, transferrin and nerve growth factor (NGF) also contained significant amounts of ChAT (21.9 pmol ACh/mg protein/min). Omission of NGF resulted in neuronal death, and the enzyme activity could not be measured in these cultures. A specific inhibitor of ChAT, hydroxyethyl naphthylvinyl pyridine (NVP), when added to the assay mix produced a dose-dependent inhibition of ChAT from cultured neurons. Cultured sensory neurons incubated with [3H]choline followed by repeated washouts took up and retained [3H]choline. The uptake of [3H]choline was reduced by about 45% when NaCl, in the incubation medium, was replaced by LiCl. A specific inhibitor of choline uptake, hemicholinium-3, caused about 75% inhibition of [3H]choline uptake. It is implied that sensory neurons of the chick dorsal root ganglia express cholinergic properties during development.  相似文献   

6.
Uptake of [3H]choline by rat neurointermediate lobes in vitro was investigated. The rate of uptake showed saturation with concentration of [3H]choline above 120 microM. Lowering of the incubation temperature from 32 to 4 degrees C, or increasing the concentration of K+ in the incubation medium from 5 to 100 mM, diminished the rate of uptake by 83.8% (SEM 6.9%, n = 3) or 43.1% (SEM 13.5%, n = 3), respectively. Following preloading with [3H]choline, a slow efflux (1% of the content every 20 min) of [3H]radioactivity was observed from the perifused glands. This efflux was enhanced 10-fold by increasing the concentration of K+ in the perifusion medium to 100 mM. Neither the uptake of [3H]choline, nor the subsequent basal or potassium-enhanced efflux of [3H]radioactivity were affected by reducing the concentration of Na+ from 125 to 19 mM, or by including 10 microM hemicholinium-3 in the medium during preincubation and perifusion. Replacing Ca2+ by 0.5 mM EGTA during perifusion resulted in a minor decrease (28%, SEM 7.3%, n = 7) in the potassium-enhanced [3H]radioactivity efflux. This decrease occurred only in one of the two high-potassium periods during the perifusion. In conclusion, uptake of [3H]choline by rat neurointermediate lobes was due to a low-affinity, saturable mechanism, with the efflux of [3H]radioactivity most likely representing the depolarization-facilitated outflow of [3H]choline. Autoradiography of the tissue sections showed this uptake to be localized to both neuronal and glial elements of the neural lobe, in contrast to sparse labelling of pars intermedia.  相似文献   

7.
Cholinergic modulation of nociceptive transmission through both nicotinic and muscarinic receptors in the spinal cord represents an important mechanism in pain signaling. However, what neuronal elements release acetylcholine and how release might change in response to deafferentation are unclear. The present studies demonstrated Ca++- and K+-dependent release of [3H]-acetylcholine from slices of regional areas of rat spinal cord. That [3H]-acetylcholine was synthesized from [3H]-choline was demonstrated by the lack of [3H]-acetylcholine release following incubation with either the choline uptake inhibitor hemicholinium or the choline acetyltransferase inhibitor bromoacetylcholine. Rats treated neonatally with capsaicin or with spinal nerve ligation as adults showed a significantly decreased K+-stimulated release of [3H]-acetylcholine from dorsal horn but not ventral horn lumbar spinal cord slices. In rats subjected to dorsal rhizotomy, while basal release from lumbar dorsal spinal cord slices was reduced, K+-stimulated [3H]-acetylcholine release, while decreased, was not significantly different compared with controls. The data presented here show that there are regional differences in the release of acetylcholine from spinal cord and that this release can be modulated by chemical or surgical deafferentation. These results also indicate that the source of acetylcholine in the dorsal cord originates mainly from resident somata and their collaterals, interneurons and/or descending terminals, with only very minor contributions coming from primary afferents. The present data help to further elucidate the role of acetylcholine in spinal signaling, particularly with respect to the effects of nerve injury and nociceptive neurotransmission.  相似文献   

8.
Is ethylcholine mustard aziridinium ion a specific cholinergic neurotoxin?   总被引:4,自引:0,他引:4  
The histopathologic effects of different doses of ethylcholine mustard aziridinium ion infused into the caudate-putamen complex or nucleus basalis were evaluated in rats. Although no non-specific tissue damage was observed at the lowest doses of ethylcholine mustard aziridinium ion examined--0.01 nmol in 1-microliter vehicle and 0.02 nmol in 2-, 5-, and 10-microliters vehicle in both the striatum and nucleus basalis--minimal but definite non-selective pathology, characterized by gliosis and loss of all neuronal elements in the region affected by the nitrogen mustard, was observed in both targets at a dose of 0.02 nmol 1 microliter and more severely at all doses containing 0.05 and 0.1 nmol ethylcholine mustard aziridinium ion. At doses of ethylcholine mustard aziridinium ion containing 0.2 nmol of the cytotoxin and greater amounts, non-specific cell loss in intact tissue and extensive cavitation became increasingly the most prominent histologic features of drug action. No statistically significant effects of ethylcholine mustard aziridinium ion on striatal choline acetyltransferase activities were found until doses of 0.4 nmol/1 microliter or greater were injected, concentrations of the cytotoxin at which appreciable non-specific pathology was also observed. Levels of dopamine in the caudate-putamen nucleus were reduced by comparatively greater amounts than choline acetyltransferase at doses of 2.5 nmol/2 microliters, 5.0 nmol/2 microliters and 10 nmol/2 microliters cytotoxin, but a significant effect of ethylcholine mustard aziridinium ion on striatal L-glutamate decarboxylase activity was found only at a dose of 10 nmol/2 microliters. As no dose of ethylcholine mustard aziridinium ion was found that reduced choline acetyltransferase without producing considerable non-specific tissue destruction, the usefulness of the cytotoxin in studying the behavioral and physiological consequences of selective cholinergic hypofunction in the brain must be questioned.  相似文献   

9.
Isolated alveolar type II epithelial cells (granular pneumocytes) from rat lung accumulate free choline against a concentration gradient by an energy-dependent saturable transport process with apparent Km approximately 18 microM. In order to evaluate the structural requirements for choline transport by these cells, the inhibition of the initial rate of cellular uptake of [3H]choline (5 microM) by its analogue was measured. There was no significant inhibition of substrate uptake by analogues lacking an amino group while the presence of a quaternary nitrogen was most effective. N,N'-dimethylethanolamine (apparent Ki, 7 microM) and n-decylcholine (apparent Ki, 0.5 microM) were potent competitive inhibitors of choline transport. Substitution of the hydroxyl group in choline greatly diminished the inhibitory effect; fluorocholine, thiocholine, betaine, and betaine aldehyde showed little or no inhibition. This requirement for a hydroxyl group raises the possibility of hydrogen bonding of choline with the transport protein. The choline transport system in granular pneumocytes appears to differ from that in synaptosomes by the lower affinity of the carrier for substrate and for hemicholinium-3 and from that in erythrocytes by the role of the hydroxyl in the substrate molecule. The availability of inhibitory analogues for choline transport will facilitate isolation and study of the granular pneumocyte choline transport protein.  相似文献   

10.
1. Segments of rat diaphragms were kept in choline-free media for 4 hr and were then exposed to a physiological concentration of [14C]-choline (30 μM) at 37° C. The synthesis, storage and subsequent release of [14C]acetylcholine by the muscles was assessed by isotopic- and bio-assays after isolation of the transmitter by paper electrophoresis.2. Replacement of endogenous acetylcholine (0·92 μ-mole/kg) with labelled acetylcholine proceeded slowly at rest, but rapidly during nerve stimulation. [14C]Acetylcholine accumulated most rapidly when hydrolysis of the released transmitter, and thus the re-use of endogenous choline, was prevented by an esterase inhibitor. Fully replaced stores were maintained during nerve stimulation by synthesis rates sufficient to replenish at least 35% of the store size in 5 min.3 In the presence of hemicholinium-3, which inhibits choline uptake, acetylcholine stores declined rapidly during stimulation, and residual synthesis was slight, indicating little intraneural choline. Net choline uptake into nerve terminals was estimated from the highest observed synthesis rate and from previous measurements of the number and size of terminals, as 3-6 p-mole/cm2 sec.4. Transmitter synthesis was localized in the region of end-plates, and was reduced to a few per cent of normal 6 weeks after phrenic nerve section. Release experiments suggested that at least half of the acetylcholine in phrenic nerves is in their terminals; from this content and the morphology of the terminals, the average concentration of transmitter in the whole endings would appear to be about 50 m-mole/l. Homogenization of the muscles freed choline acetyltransferase into solution, but left some [14C]acetylcholine associated with small particles, presumably synaptic vesicles.5. Resting transmitter release was about 0·013% of stores/sec. With 360 nerve impulses at 1-20/sec, release increased up to 0·43% of stores/sec, and amounted to 3·5-7 × 10-18 moles per end-plate per impulse. The release rate was unaffected by the doubling of store size which occurred with eserine, but the extra transmitter did help to maintain releasable stores during prolonged stimulation. Experiments with fractional store labelling indicated that newly synthesized acetylcholine was preferentially released.6. Preformed [3H]acetylcholine was not taken up and retained by muscle or nerve cells in the absence of an esterase inhibitor. With eserine present, labelled acetylcholine was taken up uniformly by muscle segments; when eserine was then removed, radioactive acetylcholine remained only near neuromuscular junctions.  相似文献   

11.
1. Cat superior cervical ganglia were perfused with a Krebs solution containing 10(-6) M [3H]homocholine (2-hydroxypropyl-trimethylammonium) or 10(-5) M [14C]triethylcholine (2-hydroxyethyl-triethylammonium). Preganglionic nerve stimulation (20 Hz) increased the accumulation of homocholine (3-2-fold) and of triethylcholine (2-1-fold). This increased accumulation during stimulation was not the result of increased metabolism. 2. The increased accumulation of homocholine or triethylcholine induced by pregnaglionic nerve stimulation was not reduced by tubocurarine or by atropine, but it was blocked by choline and by hemicholinium. These results suggested that preganglionic nerve stimulation increased choline analogue accumulation into cholinergic nerve terminals. 3. The increased accumulation of homocholine or of triethylcholine induced by preganglionic nerve stimulation was reduced when the Ca2+ concentration was reduced and was abolished in the absence of Ca2+. However, changes in the Mg2+ concentration which depressed acetylcholine (ACh) release by amounts comparable to those induced by altered Ca2+ concentrations did not alter the uptake of homocholine or triethylcholine. It is concluded that the uptake of choline analogues is not regulated by transmitter release but that stimulation increases the uptake of the choline analogues by a Ca2+-dependent mechanism. 4. The accumulation of ACh by ganglia perfused with a Krebs solution containing choline and high MgSO4 (18 mM) was measured. The ACh content of these ganglia did not increase, although choline transport presumably exceeded that necessary for ACh synthesis to replace released ACh. It is concluded that choline transport does not limit ACh synthesis in ganglia.  相似文献   

12.
Isolated living cell bodies were obtained by mechanical and enzymatic dissociation from adult rabbit nodose ganglion followed by separation of fibres and cells using a Percoll gradient. A purification yield of 45% was measured. Based on previous results obtained in whole ganglion and showing the presence of cholinergic cell bodies among the afferent fibres of the vagus nerve, this preparation was used to study choline uptake by neuron cell somata. Cholinergic cells counted after choline acetyltransferase immunohistological staining showed a stained population of 2.9% among the isolated population. Two [3H]choline uptake mechanisms were detected at the cell body level. The first, with Km1 = 7 microM and Vm1 = 200 pmol/h per ganglion is sodium dependent, related to acetylcholine synthesis (43%) and has an IC50 with hemicholinium-3 equal to 50 microM. The second, with Km2 = 54 microM and Vm2 = 2235 pmol/h per ganglion is sodium independent, poorly associated to acetylcholine synthesis (12%) and exhibits an IC50 of 2 microM with hemicholinium-3. Except for their sensitivity to hemicholinium-3, the high and low affinity choline uptake mechanisms observed at the somatic level have, respectively, the same characteristics as the high and low affinity mechanisms described at the synaptic level. Their physiological role, their opposed sensitivity to hemicholinium-3 compared to the synaptic uptake systems and the relation between the somatic high affinity choline transport and an acetylcholine somatic release are discussed.  相似文献   

13.
1. The influence of internal and external Na concentrations on Ca movements have been measured in pinch-off presynaptic nerve terminals (synaptosomes). Ca uptake is enhanced when external Na (Nao) is replaced by Li, choline or dextrose, in Na-loaded synaptosomes. Depletion of internal Na (Nai) abolishes the stimulatory effect of external Na removal. 2. Ca uptake from Na-depleted media is proportional to [Na]i -2, and averages about 1-5 mumole Ca/g synaptosome protein per minute when [Na]i is approximately 137 mM. This may correspond to a Ca influx of about 0-1 p-mole/cm-2 sec. 3. External Na is a competitive inhibitor of the Nai-dependent Ca uptake. The interrelationship between [Na]o, [Ca]o and Ca uptake indicate that two external Na ions may compete with one Ca at each uptake site. 4. The distribution of particles with Nai-dependent Ca uptake activity parallels the distribution of synaptosomes in the preparative sucrose gradient. Thus, this Ca uptake activity is probably a property of the pinched-off nerve terminals per se, and not of the mitochondria which may contaminate the synaptosome fraction. 5. The Nai-dependent Ca uptake mechanism requires an intact surface membrane, since synaptosomes subjected to osmotic lysis lose the ability to accumulate Ca by this route. 6. Ca efflux into Ca-free media is largely dependent upon the presence of external Na. The curve relating Ca efflux to [Na]o is sigmoid, and suggests that more than one external Na ion (perhaps 2 or 3) is needed to activate the efflux of each Ca ion. 7. The net Ca gain exhibited by Na-loaded synaptosomes incubated in Na-depleted media can be accounted for by the increased Ca uptake and decreased Ca loss observed under these conditions. 8. Treatment of synaptosomes with cyanide or 2,4-dinitrophenol decreases Ca uptake and enhances Ca efflux into Na-containing media. This results in a net loss of Ca from the terminals, even in the presence of external Ca. 9. In contrast to the Ca efflux from synaptosomes, the Ca efflux from brain mitochondria is not dependent upon external Na, and is reduced by succinate, a substrate which is known to fuel mitochondrial respiration. 10. The temperature coefficient (Q10) of the Nai-dependent Ca uptake is about 3. 11. The Nai-dependent Ca uptake is reduced at low pH. The relationship between this Ca uptake and pH approximates a titration curve with a pKa of about 5-6. 12. The data indicate that Ca transport in rat brain presynaptic terminals may involve a carrier-mediated Na-Ca exchange mechanism, and that some of the energy required for Ca extrusion may come from the Na electrochemical gradient across the surface membranes.  相似文献   

14.
In cholinergic neurons, high-affinity choline uptake in presynaptic terminals is the rate-limiting step in acetylcholine synthesis. Using information provided by the Caenorhabditis elegans Genome Project, we cloned a cDNA encoding the high-affinity choline transporter from C. elegans (cho-1). We subsequently used this clone to isolate the corresponding cDNA from rat (CHT1). CHT1 is not homologous to neurotransmitter transporters, but is homologous to members of the Na+-dependent glucose transporter family. Expression of CHT1 mRNA is restricted to cholinergic neurons. The characteristics of CHT1-mediated choline uptake essentially match those of high-affinity choline uptake in rat brain synaptosomes.  相似文献   

15.
1. The recapture and re-use of choline formed by the hydrolysis of released acetylcholine (ACh) was studied in the superior cervical ganglion of the cat using radioactive tracer techniques. The ganglion's ACh store was labelled by perfusion, during preganglionic nerve stimulation, with Krebs solution containing [(3)H]choline.2. Preganglionic stimulation (5 Hz for 20 min) of ganglia containing [(3)H]ACh released similar amounts of radioactivity when perfusion was with neostigmine-choline-Krebs or with hemicholinium-Krebs. This indicated that neostigmine does not increase transmitter release.3. The amount of radioactivity collected from stimulated ganglia during perfusion with choline-Krebs was 39% of the amount of radioactivity collected during perfusion with medium containing neostigmine or hemi-cholinium. This difference in release was almost (85%) accounted for at the end of the experiment by extra radioactive ACh in the ganglia perfused with choline-Krebs. It is concluded that during preganglionic nerve stimulation approximately 50-60% of endogenously produced choline is recaptured for ACh synthesis; thus, during activity preganglionic nerve terminals appear selectively to accumulate choline.4. However, chronically decentralized ganglia accumulated as much choline as did acutely decentralized ganglia, and this was interpreted as indicating that at rest preganglionic nerve terminals do not selectively accumulate choline.5. Increased exogenous choline concentration increased the amount of radioactivity collected during nerve stimulation in the absence, but not the presence, of an anticholinesterase agent. The spontaneous efflux of radioactivity was little affected by changes in external choline levels. It is concluded that exogenous choline and choline made available from released transmitter compete for uptake into nerve terminals.  相似文献   

16.
L. Smart 《Neuroscience》1981,6(9):1765-1770
A newly synthesised mustard analog of hemicholinium 3. the trivial name of which is hemicholinium 3-bromo mustard, was evaluated as an inhibitor of the sodium-dependent high affinity choline uptake system. When synaptosomes prepared from rat striatum were incubated for ten minutes with a low concentration (10 nm) of the cyclised bi-ethylenimine form of hemicholinium 3-bromo mustard, the sodium-dependent high affinity choline uptake activity was reduced by more than 80°o. The inhibition profile produced by the bi-ethylenimine ion was consistent with mixed kinetics, in that both the Vmax and Km of the sodium-dependent high affinity choline uptake system were lowered in the presence of the compound in a non-parallel fashion. The reduction in Vmax was investigated further to establish if it resulted from a reversible non-competitive interaction or whether it was of a more enduring nature. Synaptosomes pretreated with low concentrations of the bi-ethylenimine form of hemicholinium 3-bromo mustard (25 nM) were thoroughly washed free of inhibitor and subsequently incubated at 37 C for up to 15 minutes before assaying the uptake activity. Under these conditions part of the inhibition effected by the mustard was found to persist and remain unchanged throughout the incubation period.The results are consistent with the bi-ethylenimine form of hemicholinium 3-bromo mustard effecting, possibly via alkylation of sites involved in the high affinity reversible binding of hemicholinium 3, a potent and enduring inhibition of the sodium-dependent high affinity choline uptake system.  相似文献   

17.
The choline analogue N-[Me-3H]N-hydroxyethyl-pyrrolidinium (pyrrolcholine) was studied in the Torpedo electric organ. Pyrrolcholine is transported into isolated nerve terminal sacs by the choline high affinity uptake system (KT = 5.7 μm). If blocks of electric tissue are perfused in the presence of both [3H]pyrrolcholine and [14C]choline both compounds become acetylated and are taken up into synaptic vesicles. This process is enhanced by low frequency stimulation (~0.1 Hz). Upon subsequent stimulation of the nerve at 5 Hz both acetylpyrrolcholine and acetylcholine are released into the perfusate by a calcium-sensitive mechanism; their molar ratio in the perfusate is the same as that for their loss from the vesicle fraction. Acetylpyrrolcholine is a potent agonist on the frog rectus abdominis muscle although 12.7-fold less active than acetylcholine.We conclude that pyrrolcholine is a precursor of a cholinergic false transmitter in the Torpedo electric organ. Acetylpyrrolcholine has been shown to fulfil all the criteria for the definition of a false transmitter, including storage in synaptic vesicles.  相似文献   

18.
The uptake of [3H]choline was investigated using isolated perfused rat lungs and primary cultures of granular pneumocytes isolated by tryptic digestion of rat lungs. Metabolic products were separated from free choline by chloroform:methanol extraction and column chromatography. Tissue-associated [3H]choline increased progressively in the perfused lung, and estimated mean intracellular concentration at 2 h was 12 times the extracellular concentration (5 microM). Choline uptake was inhibited by ventilation with CO and by perfusion with the choline analog, hemicholinium-3 (HC-3). Isolated granular pneumocytes also accumulated choline against a concentration gradient by an energy-dependent process. The concentration for half-maximal uptake, after correction for the diffusion component, was estimated at 18 +/- 4 microM (mean +/- SE; n = 3), and the estimated maximal rate of uptake was 213 +/- 44 pmol/min/microliter cell water. HC-3 inhibited uptake by approximately 50% at a concentration of 10(-4) M. There was no effect on uptake when Na+ in the medium was replaced by Li+ or N-methylglucamine+. These results indicate that granular pneumocytes possess a transport system that results in accumulation of choline against a concentration gradient. The characteristics of uptake indicate that this system is similar to the low affinity choline transport system of other organs.  相似文献   

19.
We measured the binding of the vesicular acetylcholine transport blocker [3H]vesamicol (2-[4-phenylpiperidino] cyclohexanol; AH-5183) to autopsied frontal cortex and amygdala of patients from 4 disorders having a marked brain cholinergic reduction, namely Alzheimer's disease, Parkinson's disease with dementia, dominantly inherited olivopontocerebellar atrophy and Down's syndrome. Although mean activity of the specific cholinergic marker enzyme choline acetyltransferase (ChAT) was markedly reduced by about 60% in frontal cortex in the 4 patient groups and by 80% or greater in amygdala of the Alzheimer's and Down's syndrome patients, [3H]vesamicol binding density was, on average, either normal or only slightly reduced as compared with the controls. This discrepancy suggests that in human brain [3H]vesamicol binding is either not preferentially localized to cholinergic nerve endings or, in these cholinergic deficiency syndromes, a substantial proportion of the vesamicol binding sites persist on cholinergic nerve terminals despite loss of ChAT activity.  相似文献   

20.
Y.A. Luqmani 《Neuroscience》1981,6(6):1011-1021
The in vitro uptake of [3H]nucleotides was studied using cholinergic syaptic vesicles isolated from Torpedo electric organ, with a resting membrane potential of 50–60 mV. The osmotically sensitive uptake of [3H]adenosine 5'-triphosphate (ATP) was markedly influenced by temperature and external pH, and was maximal after 40–50 min; longer incubation resulted in loss of accumulated radiolabel. Similar characteristics were also observed for adenosine 5'-mono- and diphosphate and guanosine and uridine triphosphates, all of which acted as competitive substrates for the saturable system which transported ATP (KT 1.15 mM). Breakdown of [3H]nucleotides in the medium was not a significant factor, and adenosine, guanosine and adenine were very poorly incorporated. Under conditions of Vmax, vesicle to medium ratios of [3H]ATP of 20–25 were observed; the amount of radiolabel was equivalent to 20–50% of the initial endogenous amount of ATP in the vesicles. Atractyloside specifically inhibited nucleotide transport with no modification of hemicholinium-3 sensitive acetylcholine uptake. Antisera raised (a), to whole Torpedo vesicle extract, and (b), to a single purified vesicle polypeptide, greatly stimulated ATP uptake without effect on simultaneous influx of either acetylcholine or glucose.It is concluded that isolated vesicles contain a nucleotide carrier of wide pharmacological specificity (possibly the 34,000 molecular weight protein of Stadler & tashiro [1979]), which is likely to be of physiological relevance. Implications for vesicular refilling mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号