首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Leydig cell tumors (LCTs) are the most common tumors of the gonadal stroma and represent about 3% of all testicular neoplasms. In most cases, LCTs are benign; however, if the tumor is malignant, no effective treatments are currently available. We have recently reported that farnesoid X receptor (FXR) is expressed in R2C Leydig tumor cells, and it reduces the estrogen‐dependent cell proliferation by negatively regulating aromatase expression. Here, we demonstrated that treatment with GW4064, a specific FXR agonist, markedly reduced Leydig tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Indeed, the tumors from GW4064‐treated mice exhibited a decrease in the expression of the proliferation marker Ki‐67 and aromatase along with an increase in the apoptotic nuclei. FXR activation induced an enhanced poly(ADP‐ribose) polymerase cleavage, a marked DNA fragmentation and a strong increase in TUNEL‐positive R2C cells also in vitro. Moreover, in both in vivo and in vitro models, FXR ligands upregulated mRNA and protein levels of p53 and of its downstream effector p21WAF1/Cip1. Functional experiments showed that FXR ligands upregulated p53 promoter activity and this occurred through an increased binding of FXR/nuclear factor‐kB (NF‐kB) complex to the NF‐kB site located within p53 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Taken together, results from our study show, for the first time, that treatment with FXR ligands induces Leydig tumor regression in vivo, suggesting that activation of FXR may represent a promising therapeutic strategy for LCTs.  相似文献   

2.
Aromatase inhibitors have recently been reported to be more effective than the antiestrogen tamoxifen (Tam) in treating breast cancer. Here, we studied the mechanisms and signaling pathways of cell growth, cell cycle progression, and apoptosis induced by three aromatase inhibitors: letrozole (Let), anastrozole, and 4-hydroxyandrostenedione in comparison with estrogen withdrawal (E2W) and antiestrogens Tam and faslodex. Estrogen-dependent human breast cancer cells stably transfected with aromatase (MCF-7Ca) were used. All treatments induced growth suppression and cell cycle arrest at the G(0)-G(1) phase that was associated with up-regulation of p53 and p21 protein and mRNA levels and down-regulation of cyclin D1 and c-myc mRNA. The apoptotic index was increased 4-7 fold, Bcl-2 protein expression decreased, Bax increased, and caspase-9, caspase-6, and caspase-7 were activated but not caspase-3 and caspase-8. Let and E2W caused regression of tumors of MCF-7Ca cells grown in nude mice and increased the number of cells undergoing apoptosis. In contrast, Tam and faslodex did not induce tumor regression and a lower number of apoptotic cells was detected. Cleavage of poly(ADP-ribose) polymerase was detected. Treatment with Let, Tam, or E2W resulted in a dose- and time-dependent increase in active caspase-7 and up-regulation of p53 and p21 protein. Although the mechanisms involved appeared to be similar for antiestrogens and aromatase inhibitors, the most significant effects occurred with Let, which were significantly greater than with E2W and consistent with marked effects of Let on tumor and cell growth.  相似文献   

3.
Nair HB  Luthra R  Kirma N  Liu YG  Flowers L  Evans D  Tekmal RR 《Cancer research》2005,65(23):11164-11173
Epidemiologic studies have implicated estrogenic exposure as well as human papilloma virus (HPV) infection in cervical carcinogenesis, and some studies have suggested that estrogen and HPV may play synergistic roles in cervical tumorigenesis. In this study, we report a novel finding that approximately 35% of cervical carcinomas tested (n = 19) express aromatase, the enzyme responsible for converting androgen to estrogen, the rate-limiting and final step in estrogen biosynthesis. On the other hand, no aromatase expression was detected in precancerous (n = 42) or normal cervical (n = 17) tissue samples. Increased aromatase was associated with increases in estrogen receptors (ER-alpha and ER-beta) and a decrease in progesterone receptor levels, suggesting that in situ estrogen signaling via ER may be involved in tumor growth. Stable overexpression of aromatase in HPV+ cervical cancer cells resulted in increased cellular proliferation, anchorage-independent growth, and ER expression and activity. In contrast, little change in ER was observed in HPV- cells. Steroid hormone receptor expression observed in vitro paralleled that seen in cervical carcinomas expressing aromatase. Aromatase overexpression also induced the expression of cyclin D1, proliferating cell nuclear antigen, and the HPV oncogenes, E6 and E7. Furthermore, the data underscores the importance of steroid receptor (estrogen and progesterone receptors) regulation in cervical carcinogenesis. To our knowledge, this is the first report demonstrating the induction of aromatase expression in cervical carcinomas, and opens the possibility that aromatase inhibitors may be potential therapeutic agents in cervical carcinomas expressing aromatase.  相似文献   

4.
5.
MCF-7 breast cancer cells increase their rate of proliferation, as indicated by incorporation of tritiated thymidine into DNA, when exposed to estrogen. In confirmation of other studies, 10 nM 17beta-estradiol (E2) increased proliferation by 2.8-fold after 6 days of exposure. As indicated by trypan blue exclusion and TUNEL assays, cell survival was increased and apoptosis decreased by the presence of E2. The estradiol metabolite 2-methoxyestradiol (2-ME) when present in the culture medium in concentrations greater than 1 microM for three days, dose-dependently reduced the effectiveness of E2 on cell proliferation by increasing the rate of apoptosis. To examine a mechanism for the increase in apoptosis, expression of p34cdc2 and cyclin B1 protein levels were monitored by examination of immunoblots of their proteins. E2 increased p34cdc2 and cyclin B1 protein levels significantly after 6 days of exposure. This effect was inhibited significantly by the presence of 2-ME. The results indicate that up-regulation of p34cdc2 and cyclin B1 is closely associated with increased survivability and lack of apoptosis in estrogen-induced proliferation of MCF-7 cells. Further, anti-estrogenic effects of 2-ME in these cells can be accounted for by its activation of apoptotic functions, which are correlated with reductions in expression of p34cdc2 and cyclin B1 genes.  相似文献   

6.
The expression of cell-cycle progression molecules cyclin D1 and cyclin E were immunohistochemically examined in a series of 64 squamous cell invasive carcinomas of the larynx, 10 in situ carcinomas, 34 cases of dysplasia, 11 papillomas and 23 cases of keratosis. The results of their expression were compared with two cell-cycle implicated tumor suppressor proteins p53 and pRb as well as with two proliferation associated indices PCNA and Ki-67 in an attempt to elucidate their potential role in the pathogenesis and progression of these lesions. Nuclear staining for cyclin D1 and E (>5% positive cells) was observed in 19% and 39.7% of the laryngeal carcinomas, respectively. Significantly elevated levels of cyclin D1 and E in invasive laryngeal carcinomas compared with in situ carcinomas were revealed (p=0.045 and p=0.0003, respectively). High levels of cyclin D1 and E expression were correlated with increased Ki-67 score (p=0.037 and 0.017 respectively). A significant positive correlation between cyclin D1 and E was also detected in carcinomas (p=0.018). Decreased levels of cyclins D1 and E in the group of in situ carcinomas compared with those of dysplastic cases and papillomas were also observed. In the dysplastic lesions cyclin D1 expression was correlated with pRb expression (p=0.02). In the cases of keratosis cyclins D1 and E expression were correlated with pRb (p=0.002 and p=0.036, respectively), while cyclin D1 was associated with PCNA (p=0.008) and Ki-67 score (p=0.009). The prognostic significance of cyclins D1, E in determining the risk of recurrence and overall survival with both univariate (long-rang test) and multivariate (Cox regression) methods of analysis showed no statistically significant differences. We conclude that the expression of cyclins D1 and E in squamous cell carcinomas of the larynx does not seem to have a prognostic significance. In addition, their expression may be involved in the development of laryngeal lesions, implicated in cell proliferation, with other cell cycle related proteins, probably by different molecular pathways.  相似文献   

7.
Tamoxifen has been widely used for treatment, and more recently, for the prevention of breast cancer. Since breast carcinomas are composed of heterogeneous populations of estrogen receptor-positive (ER+) cells, we hypothesized that tamoxifen may suppress tumor growth by differentially affecting cell proliferation and apoptosis. ER+ mammary tumors were induced in Sprague–Dawley rats by N-methyl-N-nitrosourea (MNU) and when they became palpable, the animals were treated for 5, 10, or 20 days with tamoxifen, 1.0 mg/kg body weight. Tamoxifen induced a time-dependent decrease in proliferating (BrdU-labeled) cells, arrested the cells in G1/0 phase, and differentially decreased the cyclin E and cyclin D1 expression at mRNA and protein levels. In the same tumors, apoptotic cells increased during the first 10 days of treatment, but their number remained unchanged with extension of the treatment to 20 days. Thus, we provide data that tamoxifen may differentially affect cell proliferation and apoptosis in mammary tumors and that the expression levels of cyclin D1 and cyclin E might also be considered potential intermediate biomarkers of response of mammary tumors to tamoxifen and possibly to other selective estrogen receptor modulators (SERMs).  相似文献   

8.
Prostaglandin E(2) plays a growth-stimulatory role in breast cancer, and the rate-limiting enzyme in its synthesis, cyclooxygenase-2, is often overexpressed in these cancers. Little is known about the role of the key prostaglandin catabolic enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in breast cancer pathogenesis. Using a pharmacologically based screen for epigenetically silenced genes, we found low levels of 15-PGDH in MDA-MB-231 cells [estrogen receptor (ER) negative] but high levels in MCF-7 cells (ER positive) and observed its up-regulation following demethylation treatment. Further analysis revealed methylation of the 15-PGDH promoter in one breast cancer cell line and 30% of primary tumors. Analysis of 15-PGDH expression revealed low levels in 40% of primary breast tumors and identified a correlation between 15-PGDH and ER expression. Transfection assays showed that transient up-regulation of 15-PGDH levels in MDA-MB-231 cells resulted in a decreased clonal growth, and stable up-regulation significantly decreased the ability of these cells to form tumors in athymic mice. In contrast, transient silencing of 15-PGDH in MCF-7 cells resulted in their enhanced proliferation, and a stable silencing in these cells enhanced cell cycle entry in vitro and tumorigenicity in vivo. Forced expression of 15-PGDH inhibited the ER pathway and silencing of 15-PGDH up-regulated expression of aromatase. In addition, 15-PGDH levels were down-regulated by estrogen but up-regulated by the tumor suppressor gene CAAT/enhancer binding protein alpha. Our results indicate for the first time that 15-PGDH may be a novel tumor suppressor gene in breast cancer, and suggest that this enzyme can modulate the ER pathway.  相似文献   

9.
Varma H  Conrad SE 《Cancer research》2002,62(14):3985-3991
Previous studies have suggested that antiestrogens inhibit MCF-7 cell proliferation by alteringthe expression or activity of components of the insulin-like growth factor I (IGF-I) signaling pathway, including IGF-I receptor, insulin receptor substrate 1, and phosphatidylinositol 3-kinase. In this report, we examine the effects of the pure antiestrogen ICI 182,780 (ICI) on various targets of IGF-I signaling in MCF-7 cells. ICI treatment led to decreases in the absolute levels of cyclin D1 and cyclin A expression, retinoblastoma protein phosphorylation, and DNA synthesis in IGF-I-treated cells. However, IGF-I retained the ability to induce these events in the presence of ICI, suggesting that ICI treatment did not completely block IGF-I signaling. Consistent with this suggestion, IGF-I-induced phosphorylation of extracellular signal-regulated kinase, AKT, and insulin receptor substrate 1 was unaffected by ICI treatment. Finally, transient expression of either constitutively active phosphatidylinositol 3-kinase or AKT was unable to induce proliferation in ICI-treated MCF-7 cells. Together, these results indicate that ICI can inhibit proliferation without blocking IGF-I signaling and suggest a model in which both estrogen receptor and IGF-I signaling regulate cell cycle components and are required for MCF-7 cell proliferation.  相似文献   

10.
The monoterpene perillyl alcohol (POH) is a naturally occurring anti-cancer compound which is effective against a variety of rodent organ-specific tumor models. To establish the molecular mechanisms of POH and its major metabolite perillic acid (PA) as anti-proliferative agents, their effects on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in HCT 116 human colon cancer cells. POH, and to a lesser extent, PA, exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed that monoterpenes increased expression of cdk inhibitor p21(Waf1/Cip1) and cyclin E, and decreased expression of cyclin D1, cyclin-dependent kinase (cdk) 4 and cdk2. Our results suggest that monoterpenes induce growth arrest of colon cancer cells through the up-regulation of p21(Waf1/Cip1) and the down-expression of cyclin D1 and its partner cdk4.  相似文献   

11.
The objective of this study was to evaluate the coexpression patterns of hormonal markers in breast cancer tissue and their relationship with pathologic characteristics and epidemiologic risk factors. We evaluated the expression of 17 markers by immunohistochemistry in 842 invasive breast carcinomas collected in a population-based case-control study conducted in Poland. Based on marker correlations, factor analysis identified four major coexpression patterns (factors): "nuclear receptor factor" [estrogen receptor (ER)-alpha, progesterone receptor, androgen receptor, cyclin D1, and aromatase], "estrogen metabolism/ER-beta factor" (ER-beta, peroxisome proliferator-activated receptor-gamma, steroid sulfatase, estrogen sulfonotransferase, and cytochrome P450 1B1), "HER2 factor" (human epidermal growth factor receptor 2, E-cadherin, cyclooxygenase-2, aromatase, steroid sulfatase), and "proliferation factor" (cytokeratin 5, cytokeratin 5/6, epidermal growth factor receptor, P53). Three of these factors corresponded to molecular subtypes previously defined by expression profiling; however, the estrogen metabolism/ER-beta factor seemed to be distinctive. High scores for this factor were associated with high tumor grade (P heterogeneity = 0.02), younger age at menarche (P heterogeneity = 0.04), lower current body mass index among premenopausal women (P heterogeneity = 0.01), and older age at menopause (P heterogeneity = 0.04). High scores for the proliferation factor were also associated with early menarche (P heterogeneity < 0.0001), and in contrast to the estrogen metabolism/ER-beta factor, higher current body mass index among premenopausal women (P heterogeneity = 0.03). Our analysis of hormonal pathway markers independently confirmed several previously defined molecular subtypes identified by gene expression profiling and augmented these findings by suggesting the existence of additional relationships related to ER-beta and enzymes involved in hormone metabolism.  相似文献   

12.
13.
Overexpression of the oncogene amplified in breast cancer 1 (AIB1)/steroid receptor coactivator-3 (SRC-3) induces mammary tumorigenesis in mice. In breast cancer, high levels of AIB1/SRC-3 and the growth factor receptor HER2/neu predict resistance to endocrine therapy and poor outcome. However, a mechanistic relationship between AIB1/SRC-3 and HER2/neu in the development of breast cancer has not been shown. Here, we show that deletion of one allele of SRC-3 significantly delays Neu-induced mammary tumor development in mice. Homozygous deletion of SRC-3 in mice completely prevents Neu-induced tumor formation. By ages 3 to 4 months, Neu/SRC-3(+/-) mice exhibit a noticeable reduction in lateral side-bud formation, accompanied by reduced cellular levels of phosphorylated Neu compared with Neu/SRC-3(wt) mice. In Neu-induced tumors, high levels of SRC-3, phosphorylated Neu, cyclin D1, cyclin E, and proliferating cell nuclear antigen expression are observed, accompanied by activation of the AKT and c-Jun NH(2) kinase (JNK) signaling pathways. In comparison, phosphorylated Neu, cyclin D1, and cyclin E are significantly decreased in Neu/SRC-3(+/-) tumors, proliferation is reduced, and AKT and JNK activation is barely detectable. Our data indicate that AIB1/SRC-3 is required for HER2/neu oncogenic activity and for the phosphorylation and activation of the HER2/neu receptor. We predict that reducing AIB1/SRC-3 levels or activity in the mammary epithelium could potentiate therapies aimed at inhibiting HER2/neu signaling in breast cancer.  相似文献   

14.
The formation of a microvascular endothelium plays a critical role in the growth and metastasis of established tumors. The ability of a fragment from the first type III repeat of fibronectin (III(1C)), anastellin, to suppress tumor growth and metastasis in vivo has been reported to be related to its antiangiogenic properties, however, the mechanism of action of anastellin remains unknown. Utilizing cultures of human dermal microvascular endothelial cells, we provide evidence that anastellin inhibits signaling pathways which regulate the extracellular signal-regulated (ERK) mitogen-activated protein kinase pathway and subsequent expression of cell cycle regulatory proteins. Addition of anastellin to primary microvascular endothelial cells resulted in a complete inhibition of serum-dependent proliferation. Growth inhibition correlated with a decrease in serum-dependent expression of cyclin D1, cyclin A and the cyclin-dependent kinase, cdk4, key regulators of cell cycle progression through G(1) phase. Consistent with a block in G(1)-S transition, anastellin inhibited serum-dependent incorporation of [(3)H]-thymidine into S-phase nuclei. Addition of anastellin to serum-starved microvessel cells resulted in a time-dependent and dose-dependent decrease in basal levels of phosphorylated MEK/ERK and blocked serum-dependent activation of ERK. Adenoviral infection with Ad.DeltaB-Raf:ER, an inducible estrogen receptor-B-Raf fusion protein, restored levels of active ERK in anastellin-treated cells, rescued levels of cyclin D1, cyclin A, and cdk4, and rescued [(3)H]-thymidine incorporation. These data suggest that the antiangiogenic properties of anastellin observed in mouse models of human cancer may be due to its ability to block endothelial cell proliferation by modulating ERK signaling pathways and down-regulating cell cycle regulatory gene expression required for G(1)-S phase progression.  相似文献   

15.
Multiple nodes in the one‐carbon metabolism pathway play important regulatory roles in cancer cell growth and tumorigenesis. The specific biological functions of metabolic enzymes in regulating the signaling pathways that are associated with tumor cell growth and survival, however, remain unclear. Our current study found that phosphoserine aminotransferase 1 (PSAT1), an enzyme catalyzing serine biosynthesis, was significantly up‐regulated in non‐small cell lung cancer (NSCLC) and was involved in the regulation of E2F activity. Loss‐ and gain‐of‐function experiments demonstrated that PSAT1 promoted cell cycle progression, cell proliferation and tumorigenesis. Mechanistic study suggested that elevated PSAT1 led to inhibition of cyclin D1 degradation and subsequently an alteration in Rb‐E2F pathway activity, which in turn enhanced G1 progression and proliferation of NSCLC cells. Moreover, phosphorylation of cyclin D1 at threonine 286 by GSK‐3β was required for PSAT1‐induced blockage of cyclin D1 degradation. We also found that the activity of p70S6K mediated the effects of PSAT1 on GSK‐3β phosphorylation and cyclin D1 degradation. We further identified that PSAT1 was over‐expressed in NSCLC and predicted poor clinical outcome of patients with the disease. Correlation analysis showed that PSAT1 expression positively correlated with the levels of phosphorylated GSK‐3β, cyclin D1 and phosphorylated Rb in NSCLC primary tumors. These findings uncover a mechanism for constitutive activation of E2F via which unrestrained cell cycle progression occurs in NSCLC and may represent a prognostic biomarker and therapeutic target.  相似文献   

16.
Factors associated with increased estrogen synthesis increase breast cancer risk. Increased aromatase and estrogen receptor α (ERα) in both normal epithelium and ductal carcinoma in situ lesions are found in conjunction with breast cancer, leading to the idea that altered estrogen signaling pathways predispose the mammary gland to cancer development. Here, we developed a transgenic mouse that conditionally expresses aromatase in the mammary gland, and used it along with a deregulated ERα expression model to investigate the molecular pathways involved in the development of mammary gland preneoplasia and carcinoma. Both increased ERα and aromatase expression led to the development of preneoplasia, but increased preneoplasia, in addition to carcinoma, was found in aromatase overexpressing mice. Increased prevalence of mammary pathologic changes in mice expressing aromatase correlated with increased cyclin E and cyclin-dependent kinase 2 expression. Gain of both ERα and aromatase increased expression of ERα and progesterone receptor, but aromatase produced a higher increase than ERα, accompanied by higher levels of downstream target genes Ccnd1, Myc, and Tnfsf11. In summary, whereas gain of both ERα and aromatase activate abnormal growth pathways in the mammary gland, aromatase induced a wider range of abnormalities that was associated with a higher prevalence of mammary preneoplasia and cancer progression.  相似文献   

17.
18.
The murine Leydig cell tumor (M5480A) possesses high levels of estrogen receptor and is known to produce estrogens. In these studies we examined the effects of the potent aromatase inhibitor 4-hydroxyandrostenedione (4-OHA) on Leydig tumor cell steroidogenesis both in vitro and in vivo. The addition of 4-OHA to Leydig tumor cells in primary culture resulted in a dose- and a time-dependent decrease in media progesterone levels. The observed decrease was most likely due to impaired synthesis of progesterone, inasmuch as no alteration in progesterone metabolism was seen when progesterone levels were diminishing. However, 4-OHA inhibited progesterone conversion to testosterone following 1 h of incubation, but this effect disappeared coincident with 4-OHA metabolism. Analysis of pregnenolone production revealed a biphasic dose-dependent effect of 4-OHA. At low doses (0.01-0.1 microM), 4-OHA was found to decrease pregnenolone concentrations, while at higher doses (1-10 microM) pregnenolone levels were elevated. Therefore, the actions of 4-OHA on Leydig cell steroidogenesis in vitro appear to be multifocal. Other experiments were performed to evaluate the effects of 4-OHA on tumor-bearing male mice in vivo. In these studies, the predominant effects of 4-OHA were to act as an aromatase inhibitor and to inhibit progesterone production. Thus, while 4-OHA is a potent aromatase inhibitor, we have found that this compound may alter steroidogenesis in Leydig tumor cells at several sites prior to aromatization.  相似文献   

19.
Previous studies have shown that BRCA1-related breast cancers are often high-grade tumors that do not express estrogen receptors, HER2, p27(Kip1), or cyclin D1, but do express p53 and cyclin E. In addition, the expression of cytokeratin 5/6 (CK5/6), indicating a basal epithelial phenotype, is frequent in BRCA1-related breast cancer. Here, in a series of 247 breast cancers, we demonstrate that CK5/6 expression was associated with nearly all of the features of BRCA1-related breast cancer and was also associated with a poor prognosis. In a parsimonious multivariable proportional hazards model, protein levels of cyclin E, p27(Kip1), p53, and the presence of glomeruloid microvascular proliferation all independently predicted outcome after breast cancer. In this model, only cyclin E and p27(Kip1) levels were independent predictors in lymph node-negative cancers, whereas glomeruloid microvascular proliferation and tumor size independently predicted outcome in node-positive disease. The molecular determinants of the basal epithelial phenotype encapsulate many of the key features of breast cancers occurring in germ-line BRCA1 mutation carriers and have independent prognostic value. Basal breast cancer deserves recognition as an important subtype of breast cancer.  相似文献   

20.
雌激素受体β亚型对人乳腺癌细胞株生物学特性的影响   总被引:4,自引:0,他引:4  
Hou YF  Yuan ST  Li HC  Wu J  Lu JS  Lu LJ  Liu G  Shen ZZ  Ding J  Shao ZM 《中华肿瘤杂志》2005,27(7):389-392
目的探讨雌激素受体β亚型(ER8)对人乳腺癌细胞株生物学特性的影响和作用机制。方法构建ERβ稳定高表达的MDA—MB-435细胞株。运用噻唑蓝(MTT)法、流式细胞术和Tramwell等方法,观察不同雌激素浓度下ERβ对该细胞株增殖、侵袭和转移特性的影响。采用RRPCR和(或)Western blot、明胶酶谱技术检测相关基因的表达水平。结果ERβ可显著提高MDA-MB-435细胞的增殖速度和侵袭迁徙能力,且呈非雌激素依赖性。与对照细胞相比,ERβ高表达的细胞S期比例显著增多(P=0.01);p21 mRNA表达水平降低33.3%(P=0.03),蛋白表达水平降低47.4%(P=0.02);基质金属蛋白酶(MMP)-9 mRNA表达水平增高91.3%(P〈0.01),活性增高67.3%(P=0.02);Ets-1 mRNA表达水平增高62.2%(P=0.01),蛋白表达水平增高51.0%(P=0.01);cyclin A、cyclin E、cyclin D1、MMP-1、MMP-2、MMP-7、血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子(bFGF)在mRNA水平未见明显差异。结论ERβ有促进乳腺癌细胞增殖、侵袭和转移的作用。降低p21的表达、增加Ets-1和MMP-9的表达并增强MMP-9的活性是其可能的作用机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号