首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
摘要 背景:神经干细胞移植入大鼠脊髓损伤模型可以促进功能恢复,基因治疗已被广泛用于治疗脊髓损伤。 目的:确定BDNF-GFP转染后神经干细胞移植对大鼠脊髓损伤的修复效果。 设计,时间和背景:本实验是在中国医科大学基础医学院发育生物学实验室与2009年5月至2010年1月完成。 材料:10只新生Wistar大鼠和88只2-3个月大,雌雄不限的Wistar大鼠。 方法:以携带BDNF-GFP基因的腺病毒转染神经干细胞。88只Wistar大鼠中假手术组8只, 80只大鼠制成T9左侧横断模型,并随机分成四组:BDNF和GFP修饰的神经干细胞移植组,GFP修饰的神经干细胞移植组;单纯神经干细胞移植组和模型组。在各神经干细胞移植组,脊髓损伤后向横断处显微注射等体积细胞,模型组在相同的部位注射等体积的PBS。 主要观察指标: BBB评分检测脊髓损伤模型运动功能恢复情况;制备脊髓损伤模型2周后取材,免疫组化评估BDNF-GFP转染的神经干细胞移植后的细胞学特点;制备脊髓损伤模型2、4、6、8周Real-time PCR检测脊髓横断处BDNF表达情况。 结果: BDNF-GFP转染后神经干细胞在脊髓半切模型中存活并表达BDNF和GFP,移植该细胞后的大鼠体内高表达具有生物活性的BDNF,且脊髓损伤动物运动功能较对照组明显恢复。 结论:移植BDNF-GFP转染后神经干细胞可能是一种修复脊髓损伤的有效的方法。 关键词:神经干细胞,脑源性神经营养因子;绿色荧光蛋白;脊髓损伤;移植。  相似文献   

2.
重组Bcl—2腺病毒对损伤运动神经元的保护作用   总被引:3,自引:0,他引:3  
目的:观察携带Bcl-2基因的重组腺病毒(Ad/s-Bcl-2)对损伤运动神经元的保护作用,方法:采用培养脊髓运动神经元的谷氨酸损伤模型,评价重组Bcl-2腺病毒对损伤运动神经元的影响。指标是Bcl-2原位杂交和Bcl-2免疫组化染色,TUNEL阳性神经元计数,运动神经元[Ca^2 ]i的检测以及台盼蓝拒染法检测培养神经元存在。结果:(1)Ad/s-Bcl-2可转染原代培养的脊髓运动神经元并使其过表达Bcl-2。2)过表达Bcl-2可延长培养神经元的生存时间。(3)过表达Bcl-2可显著减少谷氨酸诱导的原代培养脊髓运动神经元的凋亡,并显著降低谷氨酸诱导的神经元[Ca^2 ]i的增高,结论:腺病毒中介Bcl-2基因表达对神经毒性损伤的运动神经元具有保护作用。  相似文献   

3.
目的:观察携带Bcl-2基因的重组腺病毒(Ad/s-Bcl-2)对损伤运动神经元的保护作用.方法:采用培养脊髓运动神经元的谷氨酸损伤模型,评价重组Bcl-2腺病毒对损伤运动神经元的影响.指标是Bcl-2原位杂交和Bcl-2免疫组化染色、TUNEL阳性神经元计数、运动神经元[Ga2+]i的检测以及台盼蓝拒染法检测培养神经元存活.结果:①Ad/s-Bcl-2可转染原代培养的脊髓运动神经元并使其过表达Bcl-2.②过表达Bcl-2可延长培养神经元的生存时间.③过表达Bcl-2可显著减少谷氨酸诱导的原代培养脊髓运动神经元的凋亡,并显著降低谷氨酸诱导的神经元[ca2+]i的增高.结论:腺病毒中介Bcl-2基因过表达对神经毒性损伤的运动神经元具有保护作用.  相似文献   

4.
背景:磁刺激可促进损伤神经的修复。 目的:观察磁刺激对大鼠损伤坐骨神经神经传导速度及相应水平脊髓运动神经元内生长相关蛋白43表达的影响。 方法:将60只SD大鼠随机分为实验组(n=24)、模型组(n=24)和假手术组(n=12),用一新的长17 cm的止血钳钳夹坐骨神经至第二扣,以21.95×103 Pa维持10 s制备损伤模型。造模后24 h,实验组每天给予0.09 T的磁刺激。 结果与结论:造模后第2,4,8,12周,免疫组织化学染色显示实验组脊髓L4~5运动神经元生长相关蛋白43的表达较模型组相应时间点明显增高( P < 0. 05);造模后12周,电生理检测发现,与模型组比较,实验组再生神经传导速度加快,波幅升高,潜伏期缩短(P < 0.05)。说明磁刺激能提高损伤坐骨神经的传导速度,增加其对应脊髓节段运动神经元中生长相关蛋白43的表达,对大鼠损伤坐骨神经的修复起促进作用。  相似文献   

5.
背景:睫状神经营养因子具有多种生物活性,在神经系统发育、分化和损伤修复中具有重要意义。 目的:观察睫状神经营养因子对坐骨神经切断吻合后大鼠相应脊髓节段前角星形胶质细胞的特异标记物胶质纤维酸性蛋白表达的影响。 方法:将SD大鼠随机分为对照组、模型组、生理盐水组及药物组。除对照组外,对所有大鼠实施双侧坐骨神经切断吻合术,药物组手术区局部注射睫状神经营养因子100 ng/kg,1次/d,生理盐水组局部注射等量生理盐水。术后1,3,7,14,21,28 d取相应脊髓节段,免疫组织化学染色观察胶质纤维酸性蛋白的表达,苏木精-伊红染色、TUNEL染色对脊髓前角神经元进行计数。 结果与结论:大鼠坐骨神经切断吻合后相应脊髓节段星形胶质细胞胞体大,突起分枝多且粗大,神经元数目逐渐减少,凋亡神经元增多,胶质纤维酸性蛋白表达增高。与模型组和生理盐水组比较,药物组神经元存活数目增多,凋亡减少,胶质纤维酸性蛋白表达明显增加(P < 0.05或P < 0.01)。同时,药物组大鼠的运动功能障碍较轻,恢复较快。说明睫状神经营养因子可以通过促进大鼠脊髓前角胶质纤维酸性蛋白的表达起到神经保护作用。 关键词:胶质纤维酸性蛋白;睫状神经营养因子;星形胶质细胞;神经元凋亡;周围神经损伤  相似文献   

6.
背景:作者前期将无细胞神经移植物与骨髓间充质干细胞复合培养,成功构建了组织工程人工神经。 目的:应用辣根过氧化物酶(HRP)神经逆行示踪技术对无细胞神经移植物复合骨髓间充质干细胞构建的神经移植复合体桥接大鼠坐骨神经缺损后运动神经元的保护作用进行评价。 方法:成年清洁级健康雄性SD大鼠,随机分成3组:①实验组:采用复合骨髓间充质干细胞的无细胞神经移植物桥接大鼠坐骨神经缺损。②空白对照组:采用无细胞神经移植物桥接大鼠坐骨神经缺损。③自体神经对照组:采用自体神经移植桥接大鼠坐骨神经缺损。术后12周应用辣根过氧化物酶神经逆行示踪技术对脊髓前角运动神经元的再生进行评价。 结果与结论:术后12周脊髓前角运动神经元再生评价结果显示:实验组优于无细胞神经移植物组,而与自体神经移植物组相比差异无显著性意义。证实无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,对大鼠脊髓运动神经元具有保护作用,可能达到与自体神经移植相似的效果。 关键词:无细胞神经移植物;骨髓间充质干细胞;辣根过氧化物酶;神经移植;大鼠  相似文献   

7.
目的探讨髓鞘碱性蛋白(myelinbasicprotein,MBP)和睫状神经营养因子(ciliaryneuotrophicfactor,CNTF)在周围神经损伤及再生修复过程中的影响。方法将不同年龄组大鼠采用损伤后外周神经小室再生模型,用酶联免疫法测定坐骨神经中MBP含量,用免疫组化和Westernblotting检测CNTF及CNTFRα在坐骨神经和脊髓中的表达。结果各年龄组伤前脊髓中有CNTFRα表达,CNTF较少表达;周围神经中CNTF主要分布在雪旺氏细胞(SCs)中,CNTFRα极少表达。各年龄组伤后损伤侧脊髓CNTF、CNTFRα,伤侧神经CNTFRα表达较伤前显著升高(P<0.05~0.01),4周达最高峰;伤侧近、远端神经中CNTF伤后1d~1周表达较伤前减低(P<0.05),2周后开始升高,4周达高峰。其中幼年变化最大,成年次之,老年最弱。MBP的变化与神经CNTF的变化具有一致性,且远端高于近端。结论坐骨神经再生过程中大鼠神经、脊髓CNTF及CNTFRα表达的变化与神经再生髓鞘化的进程密切相关,不同年龄大鼠对CNTF的依赖性不同,MBP的变化与CNTF具有相关性。  相似文献   

8.
背景:核因子κB是一种重要的转录因子,在炎症反应中起重要作用。 目的:观察微囊化异种坐骨神经组织细胞移植于脊髓损伤大鼠后核因子κB的表达及活性变化。 方法:家兔用于制备异种坐骨神经组织细胞悬液。SD大鼠120只随机被分为4组。假手术组,建立大鼠脊髓半横断伤模型后分微囊组、细胞组、单损组。于损伤处分别植入明胶海绵吸附的10 μL 微囊化异种坐骨神经组织细胞、明胶海绵吸附的10 μL 异种坐骨神经组织细胞以及明胶海绵吸附的10 μL生理盐水。术后6,12,24 h,3,7,14 d,苏木精-伊红染色观察脊髓组织的病理学改变及免疫组织化学染色观察核因子κB的表达情况。 结果与结论:脊髓损伤大鼠神经元细胞浆及细胞核内核因子κB表达增加,24 h达高峰水平,3 d后开始逐渐降低,7 d基本降至正常。微囊组脊髓核因子κB阳性细胞的体积密度和表面积密度值均少于单损组、细胞组(P < 0.05)。 结果提示,微囊化异种坐骨神经组织细胞移植对脊髓损伤后核因子κB的活性表达起抑制作用,有益于减轻核因子κB介导的炎性反应。 关键词:微囊;核因子-κB;脊髓损伤;异种移植;SD大鼠 doi:10.3969/j.issn.1673-8225.2010.25.015  相似文献   

9.
目的观察脊髓损伤大鼠远端神经元及骨骼肌变化情况。方法 20只大鼠随机分为2组,每组10只,分别为假手术组和脊髓损伤组,假手术组行椎板切除术,脊髓损伤组行胸10完全脊髓损伤,在制成模型后1、2、4、12、24周观察大鼠坐骨神经-运动终板-内侧腓肠肌形态变化情况。结果脊髓损伤组电镜下坐骨神经术后12周有髓神经纤维髓鞘崩解,其板层结构清晰,有髓神经纤维髓鞘于术后24周模糊、碎裂髓鞘变多,12周后无髓神经纤维及薄髓增多;术后12周腓肠肌光镜下局部肌细胞多数模糊,但边界清楚,结缔组织增生明显,肌细胞核相对聚集;肌细胞于术后24周融合,融合细胞间有空隙,细胞核密集,结缔组织增生明显;术后12周电镜下运动终板突触前后及皱褶膜不可分辨,肌纤维明暗带清晰,突触结构紊乱,z线不连续,高倍镜下突触前后膜不可辨,突触皱褶未见,可见类圆形细小颗粒及突触小泡,肌板结构清晰。结论大鼠脊髓损伤后在损伤平面以下周围神经、运动终板、骨骼肌在形态上会发生规律性变化,12周后显著变化,24周后则毁损性改变。  相似文献   

10.
背景:大量实验证明,Bungner带-许旺细胞-基底膜结构是神经再生理想的微环境。这一结构在神经损伤两三周后形成。而在神经损伤数小时后,近断端的神经纤维就开始发芽再生神经纤维开始再生与所需微环境的形成并不同步。 目的:观察周围神经损伤后不同时间进行修复的最佳效果。 设计、时间及地点:随机对照动物实验,于2007-06/2008-06在哈尔滨医科大学动物实验中心完成。 材料:新西兰大白兔20只,随机数字表法分为4组:2周后神经修复组、4周后神经修复组、3个月后神经修复组、即时神经修复组。 方法:建立成年新西兰大白兔周围神经损伤模型,即时修复组立即缝合伤口,2周后神经修复组、4周后神经修复组、3个月后神经修复组采用神经两断端分别固定于肌膜上,逐层缝合伤口,2周,4周,3个月后重新打开伤口,在手术显微镜下用10-0无损伤尼龙针线进行外膜缝合修复坐骨神经,缝合伤口。 主要观察指标:各组缝合神经段的神经电生理、轴突数、光镜及电镜观察结果。 结果:2周后神经修复组神经传导速度慢于4周后神经修复组、3个月后神经修复组(P < 0.01);即时神经修复组与2周后神经修复组差异无显著性意义(P > 0.05)。2周后神经修复组效果最好,神经纤维走行正常、排列完好,神经纤维可见血管增生,髓鞘结构较好,许旺细胞功能活跃,新生轴突内微丝密集排列。4周后神经修复组最差,神经纤维数量少、排列紊乱,髓鞘轴突变性明显,大部分神经纤维脱髓鞘崩解,轴突消失,未见再生神经纤维。3个月后神经修复组效果较差,可见较多神经纤维结构破坏,排列略紊乱,髓鞘和轴突变性较明显,仅见少量再生神经纤维,许旺细胞略少,胞质不发达。即时进行神经修复组效果较好,神经纤维结构破坏不明显,排列整齐,髓鞘和轴突变性轻,神经纤维内见有大量再生髓鞘,许旺细胞明显增多,胞质较发达。2周后神经修复组轴突计数优于其他3组(P < 0.05),4周后神经修复组最少。 结论:神经损伤2周后进行神经修复效果优于其他时间点,是周围神经损伤后修复的最佳时机。  相似文献   

11.
We reported recently that overexpression of neurotrophin-3 (NT-3) by motoneurons in the spinal cord of rats will induce sprouting of corticospinal tract (CST) axons (Zhou et al. [2003] J. Neurosci. 23:1424-1431). We now report that overexpression of brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF) in the rat sensorimotor cortex near the CST neuronal cell bodies together with overexpression of NT-3 in the lumbar spinal cord significantly increases axonal sprouting compared to that induced by NT-3 alone. Two weeks after unilaterally lesioning the CST at the level of the pyramids, we injected rats with saline or adenoviral vectors (Adv) carrying genes coding for BDNF (Adv.BDNF), GDNF (Adv.GDNF) or enhanced green fluorescent protein (Adv.EGFP) at six sites in the sensorimotor cortex, while delivering Adv.NT3 to motoneurons in each of these four groups on the lesioned side of the spinal cord by retrograde transport from the sciatic nerve. Four days later, biotinylated dextran amine (BDA) was injected into the sensorimotor cortex on the unlesioned side to mark CST axons in the spinal cord. Morphometric analysis of axonal sprouting 3 weeks after BDA injection showed that the number of CST axons crossing the midline in rats treated with Adv.BDNF or Adv.GDNF were 46% and 52% greater, respectively, than in rats treated with Adv.EGFP or PBS (P < 0.05). These data demonstrate that sustained local expression of neurotrophic factors in the sensorimotor cortex and spinal cord will promote increased axonal sprouting after spinal cord injury, providing a basis for continued development of neurotrophic factor therapy for central nervous system damage.  相似文献   

12.
The time-dependent decline in the ability of motoneurons to regenerate their axons after axotomy is one of the principle contributing factors to poor functional recovery after peripheral nerve injury. A decline in neurotrophic support may be partially responsible for this effect. The up-regulation of BDNF after injury, both in denervated Schwann cells and in axotomized motoneurons, suggests its importance in motor axonal regeneration. In adult female Sprague-Dawley rats, we counted the number of freshly injured or chronically axotomized tibial motoneurons that had regenerated their axons 1 month after surgical suture to a freshly denervated common peroneal distal nerve stump. Motor axonal regeneration was evaluated by applying fluorescent retrograde neurotracers to the common peroneal nerve 20 mm distal to the injury site and counting the number of fluorescently labelled motoneurons in the T11-L1 region of the spinal cord. We report that low doses of BDNF (0.5-2 microg/day for 28 days) had no detectable effect on axonal regeneration after immediate nerve repair, but promoted axonal regeneration of motoneurons whose regenerative capacity was reduced by chronic axotomy 2 months prior to nerve resuture, completely reversing the negative effects of delayed nerve repair. In contrast, high doses of BDNF (12-20 microg/day for 28 days) significantly inhibited motor axonal regeneration, after both immediate nerve repair and nerve repair after chronic axotomy. The inhibitory actions of high dose BDNF could be reversed by functional blockade of p75 receptors, thus implicating these receptors as mediators of the inhibitory effects of high dose exogenous BDNF.  相似文献   

13.
Numerous experimental therapies to promote axonal regeneration have shown promise in animal models of acute spinal cord injury, but their effectiveness is often found to diminish with a delay in administration. We evaluated whether brain-derived neurotrophic factor (BDNF) application to the spinal cord injury site 2 months after cervical axotomy could promote a regenerative response in chronically axotomized rubrospinal neurons. BDNF was applied to the spinal cord in three different concentrations 2 months after cervical axotomy of the rubrospinal tract. The red nucleus was examined for reversal of neuronal atrophy, GAP43 and Talpha1 tubulin mRNA expression, and trkB receptor immunoreactivity. A peripheral nerve transplant paradigm was used to measure axonal regeneration into peripheral nerve transplants. Rubrospinal axons were anterogradely traced and trkB receptor immunohistochemistry performed on the injured spinal cord. We found that BDNF treatment did not reverse rubrospinal neuronal atrophy, nor promote GAP-43 and Talpha1 tubulin mRNA expression, nor promote axonal regeneration into peripheral nerve transplants. TrkB receptor immunohistochemistry demonstrated immunoreactivity on the neuronal cell bodies, but not on anterogradely labeled rubrospinal axons at the injury site. These findings suggest that the poor response of rubrospinal neurons to BDNF applied to the spinal cord injury site 2 months after cervical axotomy is not related to the dose of BDNF administered, but rather to the loss of trkB receptors on the injured axons over time. Such obstacles to axonal regeneration will be important to identify in the development of therapeutic strategies for chronically injured individuals.  相似文献   

14.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

15.
Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons. However, most motoneurons display retrograde atrophy and subsequently die. Two neurotrophic factors, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote the survival of motoneurons after injury. The long-term delivery of these neurotrophic factors to the motoneurons in the ventral horn of the spinal cord is problematic. One strategy to improve the outcome of the neurosurgical reinsertion of the ventral root following avulsion would involve gene transfer with adeno-associated viral (AAV) vectors encoding these neurotrophic factors near the denervated motoneuron pool. Here, we show that AAV-mediated overexpression of GDNF and BDNF in the spinal cord persisted for at least 16 weeks. At both 1 and 4 months post-lesion AAV-BDNF- and -GDNF-treated animals showed an increased survival of motoneurons, the effect being more prominent at 1 month. AAV vector-mediated overexpression of neurotrophins also promoted the formation of a network of motoneuron fibers in the ventral horn at the avulsed side, but motoneurons failed to extent axons into the reinserted L4 root towards the sciatic nerve nor to improve functional recovery of the hind limbs. This suggests that high levels of neurotrophic factors in the ventral horn promote sprouting, but prevent directional growth of axons of a higher number of surviving motoneurons into the implanted root.  相似文献   

16.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

17.
Preconditioning sciatic nerve injury enhances axonal regeneration of ascending sensory neurons after spinal cord injury. A key question is whether direct injury of sensory nerves is necessary for the enhanced regeneration. The lumbar 5 ventral root transection (L5 VRT) model, a model of selective motor nerve injury, provides a useful tool to address this question. Here we examined the effects of a preconditioning L5 VRT on the regeneration after a subsequent dorsal column transection (DCT) in adult Sprague–Dawley rats. We found that L5 VRT 1 week before DCT increased the number of Fast Blue (FB)-labeled neurons in the L5 dorsal root ganglia (DRG) and promoted sprouting/regenerating axons to grow into the glial scar. L5 VRT also induced a dramatic upregulation of expression of brain-derived neurotrophic factor (BDNF) in the preconditioned DRG and in the injured spinal cord. Moreover, almost all of the FB-labeled sprouting/regenerating neurons expressed BDNF, and approximately 55% of these neurons were surrounded by p75 neurotrophin receptor-positive glial cells. This combined injury led to an increase in the number of BDNF- and TrkB-immunoreactive nerve fibers in the dorsal column caudal to the lesion site. Taken together, these findings demonstrate that L5 VRT promotes sprouting/regeneration of ascending sensory neurons, indicating that sensory axotomy may not be essential for the plasticity of injured dorsal column axons. Thus, the sensory neurons could be preprimed in the regenerative milieu of Wallerian degeneration and neuroinflammation, which might alter the expression of neurotrophic factors and their receptors, facilitating sprouting/regeneration of ascending sensory neurons.  相似文献   

18.
We compared the effects of peripheral nerve grafts, embryonic spinal cord transplants and brain-derived neurotrophic factor (BDNF) on the survival and axon regeneration of adult rat spinal motor neurons undergoing retrograde degeneration after ventral root avulsion. Following implantation into the dorsolateral funiculus of the injured spinal cord segment, neither a peripheral nerve graft nor a combination of peripheral nerve graft with embryonic spinal cord transplant could prevent the retrograde motor neuron degeneration induced by ventral root avulsion. However, intrathecal infusion of BDNF promoted long-term survival of the lesioned motor neurons and induced abundant motor axon regeneration from the avulsion zone along the spinal cord surface towards the BDNF source. A combination of ventral root reconstitution and BDNF treatment might therefore be a promising means for the support of both motor neuron survival and guided motor axon regeneration after ventral root lesions.  相似文献   

19.
Spinal cord injury (SCI) induces retrograde cell death in descending pathways, which can be prevented by long-term intrathecal infusion of neurotrophins (Novikova et al. [2000] Eur J Neurosci 12:776-780). The present study investigates whether the same treatment also leads to improved regeneration of the injured tracts. After cervical SCI in adult rats, a peripheral nerve graft was attached to the rostral wall of the lesion cavity. The animals were treated by local application into the cavity of Gelfoam soaked in (1) phosphate buffered saline (untreated controls) or (2) a mixture of the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (local treatment), or by intrathecal infusion of BDNF + NT-3 for (3) 2 weeks (short-term treatment) or (4) 5-8 weeks (long-term treatment). Despite a very strong survival effect, long-term treatment failed to stimulate ingrowth of descending tracts into the nerve graft. In comparison with untreated controls, the latter treatment also caused 35% reduction in axonal sprouting of descending pathways rostral to the lesion site and 72% reduction in the number of spinal cord neurons extending axons into the nerve graft. Local and short-term treatments neither prevented retrograde cell death nor enhanced regeneration of descending tracts, but induced robust regeneration of spinal cord neurons into the nerve graft. These results indicate that the signal pathways promoting neuronal survival and axonal regeneration, respectively, in descending tracts after SCI respond differently to neurotrophic stimuli and that efficient rescue of axotomized tract neurons is not a sufficient prerequisite for regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号