首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growing evidence indicates that interactions of T cells with extracellular matrix through beta1 integrins are important for the regulation of T cell-mediated immune responses and diseases. In this regard, we have recently demonstrated that collagen I (Coll I) through alpha2beta1 integrin inhibited Fas-induced apoptosis of T cells by activating a protein phosphatase 2A (PP2A)-dependent ERK/MAP Kinase pathway. As survival of T cells is critical for their functions, we further investigated the mechanisms underlying the activation of this pathway. Inhibition studies demonstrated that Coll I activates the ERK/MAP Kinase pathway in Jurkat T cells through the activation of Ras and Raf-1. Activation of PP2A was not necessary for the binding of Coll I to Jurkat T cells, but is required for the activation of Raf-1. In accordance, activation of Ras, Raf-1 and PP2A were also required for the ability of Coll I to protect Jurkat T cells from Fas-induced apoptosis. In contrast and despite its capacity to activate Ras, fibronectin (Fbn) failed to activate PP2A and Raf-1. These results might explain, at least in part, the weak ability of Fbn to activate ERK in T cells, supporting thus the differential signaling of beta1 integrin members in these cells. This study provides novel insights into the mechanisms by which beta1 integrins activate the ERK/MAP Kinase pathway in T cells, and is the first report to provide a role for PP2A in integrin-mediated ERK/MAP Kinase activation.  相似文献   

2.
The protein-tyrosine kinase Syk participates in signal transduction pathways downstream from multiple immune recognition receptors. Recent evidence indicates that Syk is also functionally coupled to cell surface integrins, which mediate interactions between the actin cytoskeleton and extracellular matrix proteins. The interactions of undifferentiated, promonocytic HL60 or U937 cells with fibronectin or anti-beta1 integrin antibodies leads to an apparent activation and tyrosine phosphorylation of Syk that is independent of tight cellular adhesion and spreading. In response to fibronectin or anti-beta1 integrin antibodies, beta1 integrins become associated with a complex of proteins that include the Lyn protein tyrosine kinase and endogenous kinase substrates of 29 and 75-80 kDa. Lyn becomes transiently activated following integrin engagement and co-localizes with the actin cytoskeleton. These studies suggest a major role for Lyn in coupling beta1 integrins to the activation of Syk.  相似文献   

3.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) transmits anti-apoptotic signals in eosinophils and is involved in tissue eosinophilia at the site of allergic inflammation. We determined whether phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAP kinase) are involved in anti-apoptotic signals of GM-CSF in eosinophils. GM-CSF phosphorylated Akt, a downstream component of PI 3-kinase, and MAP kinases (ERK1 and ERK2) at 10 min after stimulation in eosinophils. GM-CSF prevented eosinophil apoptosis and sustained its survival during the 5-day culture. However, neither two PI-3 kinase inhibitors, wortmannin and LY294002, nor MEK inhibitor PD98059 inhibited GM-CSF-induced survival of eosinophils, although wortmannin and PD98059 inhibited GM-CSF-induced Akt phosphorylation and MAP kinase activation in eosinophils, respectively. In contrast, JAK2 inhibitor AG-490 inhibited both GM-CSF-induced JAK2 phosphorylation and cell survival in eosinophils. These results indicate that activation of JAK2, but not activation of PI 3-kinase/Akt and MAP kinase pathways, is critical for anti-apoptotic signals of GM-CSF in human eosinophils. Our findings suggest that manipulation of JAK2 activation would be useful for the treatment of allergic disorders.  相似文献   

4.
A Roberts  R E Brolin    E C Ebert 《Immunology》1999,97(4):679-685
Intraepithelial lymphocytes (IELs) from human intestinal epithelium are memory CD8+ T cells that bind to epithelial cells through human mycosal lymphocyte (HML)-1 and to mesenchymal cells through very late activation antigen-4 (VLA-4). Their binding of extracellular matrix proteins and the mechanism involved were tested. Activated 51Cr-labelled lymphocytes were incubated in protein-coated microwells with various additives. After washing, the adherent cells were detected by radioactivity. The percentages of activated IELs that bound to collagen types I and IV were 20 and 31%, respectively; fewer bound to fibronectin or laminin. Compared to interleukin-2-activated peripheral blood CD8+ T lymphocytes, more IELs bound collagen IV and fewer bound fibronectin. IEL adhesion to collagen (but not fibronectin or laminin) was up-regulated by antibody ligation of CD2 or by protein kinase C stimulation by phorbol ester; staurosporine reduced binding, while herbimycin, phytohaemagglutinin and CD3 ligation had no effect. Antibody-blocking of integrin VLA-1 subunits alpha1 (CD49a) and beta1 (CD18) inhibited adhesion to collagen type I by 82+/-6% and to type IV by 94+/-1% (P<0.001), implicating VLA-1 as the main collagen receptor for IELs. Cell adhesion was dependent on extracellular divalent cations, a characteristic event of VLA-1 never before shown for IELs: manganese and magnesium ions supported binding in a dose-dependent manner; calcium ions inhibited their effectiveness. Therefore, IELs bind collagen through integrin alpha1beta1 after protein kinase C activation. Adhesion is modulated by divalent cations.  相似文献   

5.
The mechanisms by which tobacco promotes lung cancer remain incompletely understood. Herein, we report that nicotine, a major component of tobacco, promotes the proliferation of cultured non-small cell lung carcinoma (NSCLC) cells; this effect was most noticeable at 5 days. However, nicotine had no effect on apoptosis of NSCLC cells. In experiments designed to unveil the mechanisms for this effect, we found that nicotine also stimulated mRNA and protein expression of fibronectin. Fibronectin is a matrix glycoprotein that regulates important cellular processes (e.g., adhesion, proliferation, and differentiation) and is highly expressed in tobacco-related lung disorders. Of note, reagents against the integrin alpha5beta1 (antibodies, RGD peptides, alpha5 shRNA) blocked the mitogenic effects of nicotine. Thus, nicotine stimulated NSCLC cell proliferation indirectly via fibronectin induction. We then focused on the mechanisms responsible for nicotine-induced fibronectin expression in NSCLC cells and found that nicotine stimulated the surface expression of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR), and that alpha-bungarotoxin, an inhibitor of alpha7 nAChR, abolished the nicotine-induced fibronectin response. The fibronectin-inducing effects of nicotine were associated with activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)/mammalian target of rapamycin (mTOR) signaling pathways, and were abrogated by inhibitors of ERK (PD98059), PI3-K (LY294002), and mTOR (rapamycin), but not by inhibitors of protein kinase (PK)C (calphostin C) and PKA (H89). These observations suggest that nicotine stimulates NSCLC proliferation through induction of fibronectin, and that these events are mediated through nAChR-mediated signals that include ERK and PI3-K/mTOR pathways. This work highlights the role of fibronectin and alpha5beta1 integrins as potential targets for anti-lung cancer therapies.  相似文献   

6.
The molecular stimuli involved in receptor-induced integrin activation are still poorly defined. We have investigated the role of receptors for the Fc portion of immunoglobulin G molecules (Fc gammaR) on activation of integrins in human neutrophils. Cross-linking of Fc gammaRIIA induced an increase in surface expression of beta2 integrins but had no effect on beta1 integrins. In contrast, cross-linking of Fc gammaRIIIB not only increased beta2 integrins on the cell surface but also induced beta1 integrin activation, as indicated by an increase in binding to fibronectin and the appearance of an activation epitope detected by the monoclonal antibody 15/7. The Fc gammaRIIIB-induced increase of beta2 integrins required Src-family tyrosine kinases, Syk kinase, and phosphatidylinositol-3 kinase (PI-3K), as the corresponding, specific inhibitors, PP2, Piceatannol, and LY294002, completely blocked it. Contrary to this, Fc gammaRIIIB-induced beta1 integrin activation was not blocked by PP2 or LY294002. It was, however, enhanced by Piceatannol. After Fc gammaRIIIB cross-linking, colocalization of Fc gammaRIIIB and active beta1 integrins was detected on the neutrophil membrane. These data show, for the first time, that cross-linking of Fc gammaRIIIB induces an inside-out signaling pathway that leads to beta1 integrin activation. This activation is independent of Src-family kinases, and PI-3K and may be induced in part by the interaction of Fc gammaRIIIB with beta1 integrins.  相似文献   

7.
Integrin and cell adhesion molecule–regulated cellular adhesion plays an integral part in the recruitment and activation of lymphocytes. T-cell activation is a dynamic process subject to integrin-dependent and -independent regulation. Stimulation of human peripheral blood T cells by the anti-CD3 monoclonal antibody results in a rapid upregulation of integrin affinity. In conjunction with adhesion to endothelial cell–derived ligands and extracellular matrix proteins, anti-CD3 antibodies have been shown to result in significant increases in IL-2 production and T-cell proliferation. Therefore, at least two signal cascades are activated by ligation of the TCR: One results in a change in affinity of integrins for their ligands, whereas the other activates a signaling cascade that leads to gene induction. We investigated the effects of several tyrosine kinase inhibitors on human peripheral blood T-cell adhesion and adhesion-induced costimulation of IL-2 expression and secretion. These compounds did not inhibit anti-CD3–induced short-term (30 min) or long-term (18 hr) T-cell adhesion to VCAM-1, MAdCAM, or ICAM-1. When T cells were stimulated with anti-CD3 and allowed to adhere to VCAM-1, MAdCAM, or ICAM-1 in the presence of these inhibitors; IL-2 production was significantly reduced. The MEK specific inhibitor, PD98059, did not block T-cell adhesion to the various substrates, but it did block IL-2 synthesis. In addition, the tyrosine kinase inhibitors and PD98059 blocked anti-CD3–mediated stimulation of IL-2 synthesis. These data suggest that the signaling mechanism for anti-CD3–mediated integrin activation is distinct from the signaling pathway that results in adhesion-induced IL-2 synthesis via specific integrins and anti-CD3.  相似文献   

8.
The MAP kinase (MAPK) p38 plays a key role in regulating inflammatory responses. Here, we demonstrate that beta1 integrin ligation on human NK cells results in the activation of the p38 MAPK signaling pathway, which is required for integrin-triggered IL-8 production. In addition, we identified some of the upstream events accompanying the beta1 integrin-mediated p38 MAPK activation, namely, the activation of the Rac guanine nucleotide exchange factor (GEF) p95 Vav, the small G protein Rac1, and the cytoplasmic kinases Pak1 and MKK3. Finally, we provide direct evidence that p95 Vav and Rac control the activation of p38 MAPK triggered by beta1 integrins.  相似文献   

9.
Leishmania donovani is an obligatory intracellular pathogen that resides and multiplies in the phagolysosomes of macrophages. The outcome of this infection depends on the balance between the host ability to activate macrophage killing and the parasite ability to suppress or evade this host immune response. Lipophosphoglycan (LPG) glycoconjugate, the surface molecule of the protozoan parasite is a virulence determinant and a major parasite molecule involved in this process. In this study, we examined the ability of Leishmania and its surface molecule, lipophosphoglycan to activate activating protein 1 (AP-1) through the mitogen-activated protein kinase (MAPK) cascade. We report here that the Leishmania surface molecule, lipophosphoglycan stimulates the simultaneous activation of all three classes of MAP kinases, extracellular signal-related kinases (ERKs), the c-jun amino-terminal kinase (JNK) and the p38 MAP kinase with differential kinetics in J774A.1 macrophage cell line. Furthermore, both L. donovani and its surface molecule lipophosphoglycan resulted in a dose- and time-dependent induction of AP-1 DNA-binding activity. We have also shown a dose-dependent increase of AP-1 binding activity in both low and high virulent strains of parasite. The use of inhibitors selective for ERK (PD98059) and p38 (SB203580) pathway showed that pre-incubation of cells with either SB203580 or PD98059 affected the binding activity of AP-1 suggesting that both p38 and ERK MAP kinase activation appear to be necessary for AP-1 activation by LPG. Lipophosphoglycan induced IL-12 production and generation of nitric oxide in murine macrophages. These results demonstrate that L. donovani LPG activates pro-inflammatory, endotoxin-like response pathway in J774A.1 macrophages and the interaction may play a pivotal role in the elimination of the parasite.  相似文献   

10.
Although the importance of beta1 integrin-mediated binding to adhesion molecules and extracellular matrix (ECM) molecules is well established for most types of leukocytes, the expression patterns and functional importance of beta1 integrins on neutrophils have remained controversial. Using flow cytometry, we found that human neutrophils express the alpha4, alpha5, alpha9 and beta1 integrin subunits. To examine whether the integrins VLA-4 (alpha4/beta1) and VLA-5 (alpha5/beta1) have a functional role on neutrophils, we studied adhesion to their ligand fibronectin. Treatment of neutrophils with antibody 8A2, which specifically binds and activates beta1 integrins, resulted in increased binding to fibronectin. However, addition of blocking mAb revealed that 8A2-induced adhesion did not depend on beta1 integrins, but on the beta2 integrin CD11b/CD18. Similarly, activation of beta1 integrins by 8A2 resulted in CD11b-dependent binding of neutrophils to fibrinogen. 8A2 treatment increased expression of an activation epitope of CD11b/CD18, which depended on phosphoinositide 3-OH kinase activity and an adequate concentration of intracellular free Ca2+. These data suggest that engagement of beta1 integrins on neutrophils results in a cross-talk signal that leads to activation of the beta2 integrin CD11b/CD18, followed by CD11b-mediated adhesion. As transmigrated neutrophils are surrounded by both beta1 and beta2 ligands in the ECM, this integrin cross-talk could play a role in modifying migration and cellular activation in inflamed tissues.  相似文献   

11.
We determined whether platelet-activating factor (PAF) activates mitogen-activated protein (MAP) kinases in human eosinophils, and if so, which signaling pathways are utilized for the MAP kinase activation. PAF activated 42-and 44-kDa MAP kinases (ERK1/ERK2) in eosinophils, which became maximal at 1 min after stimulation. The PAF receptor antagonist E6123 and pertussis toxin inhibited the PAF-induced MAP kinase activation in eosinophils. The phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, tyrosine kinase inhibitors herbimycin A and genistein, and an intracellular Ca2+ chelator BAPTA/AM inhibited PAF-induced MAP kinase activation in eosinophils, whereas protein kinase C inhibitors staurosporine and calphostin C had no effect. Furthermore, wortmannin as well as herbimycin A and genistein, but not BAPTA/AM, prevented PAF-induced tyrosine phosphorylation of Shc adapter protein in eosinophils. Finally, the specific MEK inhibitor PD98059 inhibited PAF-induced chemotaxis in eosinophils. Taken together, these results indicate that PAF activates MAP kinases in eosinophils through the activation of PI 3-kinase and a tyrosine kinase and the increase in intracellular Ca2+ and that PAF-induced MAP kinase activation mediates chemotaxis in eosinophils.  相似文献   

12.
Synthetic lipopeptides based on bacterial lipoprotein are efficient activators for monocytes/macrophages inducing the release of interleukin (IL)-1, IL-6, tumour necrosis factor-alpha (TNF-alpha), reactive oxygen/nitrogen intermediates, and the translocation of nuclear factor kappaB (NFkappaB). In this report we investigate the signal transduction pathways involved in leucocyte activation by the synthetic lipopeptide N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-(R)-cysteinyl-seryl-(lysyl)3-lysine (P3CSK4). We show that P3CSK4 activates mitogen-activated protein (MAP)-kinases ERK1/2 and MAP kinase (MAPK)-kinases MEK1/2 in bone-marrow-derived macrophages (BMDM) and in the macrophage cell line RAW 264.7. Additionally, we could detect differences between the P3CSK4 and lipopolysaccharide (LPS)-induced phosphorylation of MAP kinases: Different levels in phosphorylation were found both in kinetics and dose-response using RAW 264.7 cells or BMDM from BALB/c and LPS responder mice (C57BL/10ScSn) or LPS non-responder mice (C57BL/10ScCr). The lipopeptide activated the MAPK-signalling cascade in both LPS responder and non-responder macrophages, whereas LPS induced the MAPK signalling pathway only in macrophages derived from LPS responder mice. An approximately 70% decrease of lipopeptide induced NFkappaB translocation and an about 50% reduction of nitric oxide (NO) release was observed in the presence of anti-CD14. These data correspond to the reduction of phosphorylation of ERK1/2 after stimulation with P3CSK4 in the presence of anti-CD14 antibodies. Inhibition of MEK1/2 by PD98059 completely reduced the lipopeptide-induced phosphorylation of ERK1/2 indicating that MEK1/2 are solely responsible for the phosphorylation of the downstream-located MAP kinases ERK1/2.  相似文献   

13.
We examined the mechanism by which interleukin (IL)-5 causes beta(2)-integrin adhesion of human eosinophils. IL-5 caused time-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38alpha in eosinophils as detected by their phosphorylation. Preincubation of eosinophils with U0126, a mitogen-activated protein kinase/ERK kinase inhibitor, suppressed IL-5-induced activation of cytosolic phospholipase A(2) (cPLA(2)) and eosinophil adhesion, and p38 inhibition by SB203580 had neither effect. ERK1/2 phosphorylation and eosinophil adhesion were blocked by inhibition of the src-family tyrosine kinase, Janus tyrosine kinase (JAK)2, or phosphoinositide-3 kinase (PI3K). Coimmunoprecipitation assay demonstrated that Lyn, a src-family tyrosine kinase, was constitutively associated with PI3K. Inhibition of src-tyrosine kinase but not JAK2 suppressed PI3K activation. Our data suggest that IL-5 induces beta(2)-integrin adhesion of human eosinophils by regulation of cPLA(2) activation caused by ERK1/2 phosphorylation. This phosphorylation results from activation of PI3K and protein tyrosine kinases. We also find that src-family tyrosine kinase, possibly Lyn, is the upstream kinase causing PI3K activation.  相似文献   

14.
In human B cells, antigen receptor ligation and CD40 ligation are known to activate the extracellular-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) pathways, which in turn regulate many important B cell functions. We previously reported that antigen receptor ligation activated the ERK pathway whereas CD40 ligation activated the JNK/stress-activated protein kinase (SAPK) pathway. Here, we demonstrate that another SAPK, p38/Hog1, is activated by both antigen receptor ligation or CD40 ligation in a human B-lymphoblastoid cell line and tonsillar B cells. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, partially inhibited ERK2 and p38 activation triggered through the B cell receptor whereas activation of JNK1 and p38 through CD40 was not affected. PD98059, a specific inhibitor of mitogen-activated extracellular response kinase kinase (MEK), significantly inhibited ERK2 activation and partially inhibited p38 activation triggered by anti-IgM antibody treatment, but did not affect CD40-dependent signaling events. In addition, anti-IgM antibody-induced signaling pathways were shown to be PKC-dependent in contrast to the CD40-induced signaling pathways. Thus, the B cell receptor and CD40 recruit the ERK, JNK and p38 pathways by using different upstream effectors.  相似文献   

15.
16.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin O (LLO) on the host cell (P. Tang, I. Rosenshine, P. Cossart, and B. B. Finlay, Infect. Immun. 64:2359–2361, 1996). We have now found that two other MAP kinase pathways, those of p38 MAP kinase and c-Jun N-terminal kinase, are also activated by wild-type L. monocytogenes. Mutants lacking functional LLO (hly mutants) were still invasive but only activated ERK-2 and only activated it at later (90-min) postinfection times. Two inhibitors of L. monocytogenes invasion, cytochalasin D, which disrupts actin polymerization, and wortmannin, which blocks phosphatidylinositol (PI) 3-kinase activity, did not block ERK-2 activation by wild-type L. monocytogenes and hly mutants. However, genistein, an inhibitor of tyrosine kinases, and PD98059 both blocked invasion and decreased ERK-2 activation. These results suggest that MEK-1 and ERK-2 activities are essential for L. monocytogenes invasion into host epithelial cells. This is the first report to show that a MAP kinase pathway is required for bacterial invasion.  相似文献   

17.
We have shown previously that macrophage migration inhibitory factor (MIF) may play a role in the destabilization of atherosclerotic plaques by activating matrix metalloproteinase protein-9 (MMP-9). The aim of this study is to investigate the signaling mechanism by which MIF induces MMP-9 expression and activation in a murine macrophage line (RAW264.7). MIF was able to activate extracellular signal-regulated kinase 1/2 (ERK1/2), to a less extent JNK, but not p38 mitogen-activated protein (MAP), MAP kinase to induce MMP9 mRNA and protein expression in RAW264.7 murine macrophages. This was confirmed by the findings that addition of an ERK MAP kinase inhibitor (PD98059) but not a p38 inhibitor (SB203589) abolished MIF-induced MMP-9 expression and activation, whereas addition of a JNK inhibitor (SP600125) produced a partially inhibitory effect. The functional role of mitogen-activated protein kinase kinase (MEK)-ERK MAP kinase in MIF-induced MMP-9 expression was further confirmed by overexpressing dominant negative MEK (DN-MEK) and DN-ERK MAP kinases. Interestingly, constitutive expression of a wild-type (WT)-MEK alone was also capable of inducing a low, but significant MMP-9 mRNA and protein expression but did not cause a further increase in MMP-9 in response to MIF. MIF activates the MEK-ERK MAP kinase pathway to induce MMP-9 expression by murine macrophages. Activation of this pathway is necessary for MMP-9 expression and activation in response to MIF stimulation.  相似文献   

18.
The beta1 integrins are a family of heterodimeric adhesion receptors involved in cell-to-cell contacts and cell-to-extracellular matrix interactions. Through their adhesive role, integrins participate in transduction of outside/inside signals and contribute to trigger a multitude of cellular events such as differentiation, cell activation, and motility. The fibronectin integrin receptors, alpha4beta1 and alpha5beta1, can function as costimulatory molecules in T-cell receptor (TCR)-dependent T-cell activation. In the current study the Jurkat T-cell line was used as a model system to investigate the TCR-independent role of cell adhesion to fibronectin in the activation of Zap-70, a central molecule in the signalling events in T cells. Upon adhesion to plastic immobilized fibronectin but not to bovine serum albumin (BSA) the phosphorylation of p125FAK, a protein kinase that localizes to focal adhesion sites, was induced. Moreover, clustering of fibronectin receptors led to the detection of a p125FAK/Zap-70 complex. Finally, while the complex between fak-B, another protein kinase localized to focal adhesion sites, and Zap-70 was detected in cells plated either on BSA or on fibronectin, the formation of the p125FAK/Zap-70 complex appeared specifically induced following fibronectin-mediated integrin clustering. These data suggest the existence of a high degree of specificity when the members of the beta1 integrin family mediate signalling pathways in T cells.  相似文献   

19.
20.
Pharmacological inhibition of Hsp90 in tumor cells induces anticancer effects through the destabilization of several oncogenic signaling molecules. Although there were reports that Hsp90 inhibition compromises cellular integrity, how this affects the cell adhesion through extracellular matrix (ECM) and integrin signaling is not known. Using human neuroblastoma (IMR-32), cervical (HeLa) and breast (MCF-7) cancer cells, and mouse embryonic carcinoma (PCC-4) cells, and using different substratum, glass, plastic, fibronectin, and matrigel, we demonstrate 17AAG induced alterations in integrin cross-linking with the actin cytoskeleton. The 17AAG treatment of cells resulted in decreased mRNA levels and confined surface expression of three major beta1 family of integrins namely α2, α3, and α5 in IMR-32, HeLa and PCC-4 cells, but showed induced mRNA levels and surface expression in MCF-7 cells. Loss of surface expression of integrins correlated with inhibition of focal adhesion kinase (FAK) and mitogen regulated kinase (ERK1/2) activities, in contrast, induced integrin expression in MCF-7 correlated with activation of these kinases. Prolonged treatment but not the pretreatment (2 h) with 17AAG resulted in destabilized actin cytoskeleton, delayed wound repair, and limited colony forming ability of tumor cells on soft agar. Conclusively, we show that Hsp90 inhibition targets cell adhesion, which may relate to the inhibition of integrin signaling and inhibition of integrin-cytoskeleton crosslinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号