首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and m RNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.  相似文献   

2.
Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease.  相似文献   

3.
Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton's jelly mesenchymal stem cells(WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 m M Ca Cl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/m L basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin(marker for WJMSCs-differentiated neuron) and CD271(motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively.  相似文献   

4.
There is increasing evidence that a chronic inflammatory response in the brain in Alzheimer's disease (AD) ultimately leads to neuronal injury and cognitive decline. Microglia, the primary immune effector cells of the brain, are thought to be key to this process. This paper discusses the evidence for inflammation in AD, and describes the mechanism whereby microglia generate neurotoxic cytokines, reactive oxygen species, and nitric oxide. Evidence that the cytokine macrophage colony-stimulating factor (M-CSF) is an important cofactor in microglial activation in AD is presented. Ongoing work using organotypic hippocampal expiant cultures to model the inflammatory process in the AD brain is also discussed. Potential avenues for therapeutic intervention are outlined.  相似文献   

5.
A variety of inflammatory cytokines are involved in spinal cord injury and influence the recovery of neuronal function. In the present study, we established a rat model of acute spinal cord injury by cerclage. The cerclage suture was released 8 or 72 hours later, to simulate decompression surgery. Neurological function was evaluated behaviorally for 3 weeks after surgery, and tumor necrosis factor α immunoreactivity and apoptosis were quantified in the region of injury. Rats that underwent decompression surgery had significantly weaker immunoreactivity of tumor necrosis factor α and significantly fewer apoptotic cells, and showed faster improvement of locomotor function than animals in which decompression surgery was not performed. Decompression at 8 hours resulted in significantly faster recovery than that at 72 hours. These data indicate that early decompression may improve neurological function after spinal cord injury by inhibiting the expression of tumor necrosis factor α.  相似文献   

6.

Objective

To investigate the neuroprotective effects of edaravone (Eda) on cobalt chloride (CoCl2)-induced oxidative stress and apoptosis in cultured PC12 cells as well as the underlying mechanisms.

Methods

PC12 cells impaired by CoCl2 were used as the cell model of hypoxia. MTT (methyl thiazolyl tetrazolium) was used to assay the viability of the PC12 cells exposed to Eda with gradient concentrations; Hochest 33258 stain assay was used to analyze the apoptosis ratio of the PC12 cells; Bcl-2 and Bax protein levels in PC12 cells were examined by western blotting. ROS level, the mitochondrial transmembrane potential and caspase-3 activity in each group were detected by spectrofluorometer.

Results

CoCl2 treatment caused the loss of cell viability in PC12 cells, which was associated with the elevation of apoptotic rate, the formation of ROS and the disruption of mitochondrial transmembrane potential. CoCl2 also significantly induced the upregulation of Bax/Bcl-2 ratio and the activation of caspase-3. In contrast, Eda significantly reversed these phenotypes, with its maximum protective effect at 0.1 μmol/L.

Conclusion

These results indicated that Eda could protect PC12 cells from CoCl2-induced cytotoxicity, and this protection might be ascribed to its anti-oxidative and anti-apoptotic activities.  相似文献   

7.
Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 m RNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the m RNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β m RNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.  相似文献   

8.
Geniposide, a monomer extracted from gardenia and widely used in Chinese medicine, is a novel agonist at the glucagon-like peptide-1 receptor. This receptor is involved in neuroprotection. In the present study, we sought to identify an anti-apoptotic mechanism for the treatment of neurodegenerative diseases. Primary cultured neurons were treated with different concentrations of rotenone for 48 hours. Morphological observation, cell counting kit-8 assay, lactate dehydrogenase detection and western blot assay demonstrated that 0.5 n M rotenone increased lactate dehydrogenase release, decreased the expression of procaspase-3 and Bcl-2, and increased cleaved caspase-3 expression in normal neurons. All these effects were prevented by geniposide. Our results indicate that geniposide diminished rotenone-induced injury in primary neurons by suppressing apoptosis. This may be one of the molecular mechanisms underlying the efficacy of geniposide in the treatment of neurodegenerative diseases.  相似文献   

9.
We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide(NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.  相似文献   

10.
Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells(OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4–5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4–5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.  相似文献   

11.
Early diagnosis of Alzheimer s disease (AD) is relevant in order to initiate symptomatic treatment with antidementia drugs. This will be of greater significance if the drugs aimed at slowing down the degenerative process (secondary prevention) prove to affect AD pathology and are clinically effective, such as γ-secretase inhibitors. However, there is currently no clinical assessment to differentiate the patients with mild cognitive impairment (MCI) who will progress to AD from those with a benign form of memory impairment that is part of the normal aging process. Thus, there is great clinical need for diagnostic and predictive biomarkers, as well as biomarkers for classification purposes, to identify incipient AD in MCI subjects. The most promising cerebrospinal fluid (CSF) biomarker candidates are total tau protein (T-tau), phosphorylated tau protein (P-tau), and the 42-andno acid form offi-amyloid (Aβ42), which may, if used in the right clinical context, prove to have sufficient diagnostic accuracy and predictive power to resolve this diagnostic challenge.  相似文献   

12.
Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.  相似文献   

13.
Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury.  相似文献   

14.
Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygen in vitro. MTT assay, neurosphere number, and immunofluorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration(120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell proliferation and neuronal differentiation. Our findings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.  相似文献   

15.
As the world''s population continues to age, Alzheimer''s disease presents a homing public health crisis that left unchecked, threatens to overwhelm health care systems throughout the developed world, in order to significantly tackle the most catastrophic and devastating symptom of Alzheimer''s disease (AD)-dementia-we must be able to detect the disease prior to the onset of clinical symptoms, and be able to offer patients preventative treatments that block or significantly slow disease progression. This review summarizes a variety of the most promising early detection methods for Alzheimer''s disease (AD) and mild cognitive impairment (MCI) that could be used to identify those at high risk of developing the disease and used for monitoring disease progression and response to investigational treatments, in addition, treatment research programs that could be developed into disease-modifying treatments that significantly delay the development of dementia are highlighted. These potential treatments target many different pathways, and may one day be dosed in combination to increase efficacy and prevent cognitive deterioration in patients with AD. While we still face numerous challenges, AD researchers have made great progress in understanding disease mechanisms. As we have seen in the treatment of heart disease, even modest preventative treatments can have hugely significant clinical outcomes and drastically reduce disease prevalence on a population scale. Therefore, there is hope that the development of prophylactic treatments, combined with improved early detection methods, will provide dramatic relief for millions of aging individuals threatened by the specter of Alzheimer''s disease.  相似文献   

16.
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.  相似文献   

17.
Micro RNA-9(mi R-9) has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that mi RNAs adjust the autophagic pathways. This study used mi R-9-1 lentiviral vector and mi R-9-1 inhibitor to modulate the expression level of mi R-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3(LC3)-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the mi R-9+ group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when mi R-9 was overexpressed, demonstrating that mi R-9 can promote neuronal differentiation by increasing autophagic activity.  相似文献   

18.
Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.  相似文献   

19.
Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms.However,to date,no unified method has been described for establishing a blood-brain barrier model.Here,we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-μm pores,and conducted transepithelial electrical resistance measurements,leakage tests and assays for specific bloodbrain barrier enzymes.We show that the permeability of our model is as low as that of the bloodbrain barrier in vivo.Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.  相似文献   

20.
Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号