首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The sciatic nerve adults rats was either cut and ligated or was crushed on one side. The response of the spinal cord to stimulation of the proximal part of the injured nerve was examined at various times after the lesion and compared to the effects of stimulating the intact nerve on the other side. During the first 10 days after nerve section the following measures were not affected: (i) the size of the input volley (compound action potential, CAP, measured on a dorsal root that carried sciatic nerve afferents (L5); (ii) the volley running in the dorsal columns; (iii) the dorsal root potential (DRP) evoked on neighbouring dorsal roots which do not contain sciatic afferents (L2 and L3); (iv) the post-synaptic volleys ascending in the spinal cord. However, by the fourth day after nerve section, there was a decrease of the DRP evoked on the ipsilateral L5 dorsal root by stimulation of the cut nerve. By 10 days this DRP had decreased by 50%. There was also a decrease in the DRP on the L5 root evoked by stimulation of the contralateral intact nerve. Crush lesions of the sciatic nerve did not produce DRP charge. Beginning 10–20 days after nerve cut, there was a decrease in the amplitude of the afferent CAP and of all the measures of central response to the afferent volley. We discuss the possibility that the loss of the DRP may be associated with a disinhibition which results in novel receptive fields which we observe in cord cells deafferented by the peripheral nerve section. The decrease of DRP and the appearance of novel receptive fields do not occur if the peripheral nerve is crushed rather than cut.  相似文献   

2.
In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1–5 and L7–S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.  相似文献   

3.
Summary Changes in the distribution of3H-quinuclidinylbenzilate (3 H-QNB),3 H-acetylcholine (3 H-ACh) and3 H-alpha-bungarotoxin (alpha-BTx) binding sites were studied with the use of quantitative in vitro autoradiography in the L4–L6 segments of rats 7 days after ventral L4–L6-rhizotomies and 24 hours after ligation of the dorsal roots L4–L6. The changes in the binding sites of these ligands and of3 H-etorphine binding sites were also studied in the dorsal roots of the rats operated with dorsal root ligation and in the sciatic nerves (around a ligature) in the rats operated with ventral rhizotomy. After ventral rhizotomy3 H-QNB binding sites in the ipsilateral motor neuron area were decreased by about 25% from 100±5 to 73±5 fmol/mg wet weight. After dorsal root ligation3 H-QNB binding sites in the ipsilateral posterior horn were reduced by about 30% from 91±5 to 64±7 fmol/mg wet weight. No significant changes in the binding of the other cholinergic ligands in the spinal cords were observed after the operations. In the dorsal root3 H-alpha-Btx and3 H-etorphine binding sites were higher on the distal side of the ligation (3.5±0.8 and 14±4 fmol/mg wet weight, respectively) than on the proximal side (0.7±0.5 and 2.4±1.2 fmol/mg wet weight, respectively).The same level of3 H-ACh (total, muscarinic and nicotinic) binding was observed on both sides of the ligation. In the sciatic nerve3 H-QNB and total, muscarinic and nicotinic ACh binding sites were higher on the proximal side of the ligation than on the distal side. Except for a small emergence of muscarinic-ACh binding distally to the ligation there were no changes in the number of binding sites in the sciatic nerve after the ventral rhizotomy.Muscarinic antagonist binding sites are probably located on the perikarya of the motor neurons and presynaptically on the primary afferents in the posterior horn and in the dorsal root. Cholinergic agonist binding sites in the spinal cord seem less sensitive to axonal damage than antagonist binding sites. Cholinergic and opioid receptors in peripheral nerves are transported in both anterograde and retrograde directions and their origin seems to be the dorsal root ganglion.  相似文献   

4.
Substance P was located in the spinal cord of rats by immunocytochemistry.Section and ligation of the sciatic nerve produced a depleted area low in substance P in the medial two-thirds of laminae 1 and 2 of segments L4 and 5.The time of depletion began about 5 days after the nerve had been cut and substance P reached a steady minimum by about 9 days and remained depleted for the entire period examined, 31 days.Crush lesions of the sciatic nerve failed to produce the marked and rapid changes of spinal cord substance P observed after section and ligation.  相似文献   

5.
Human umbilical cord-derived mesenchymal stem cells(h UCMSCs) represent a promising young-state stem cell source for cell-based therapy. h UCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of h UCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that h UCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with h UCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of h UCMSCs in peripheral nerve repair.  相似文献   

6.
Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and interleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.  相似文献   

7.
Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase(MAPK)pathway,but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear.Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury,but there has been little research focusing on the hypoglossal nerve injury and repair.In this study,we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days.p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury;exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus.Under transmission electron microscopy,we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury.Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury.  相似文献   

8.
Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of Pir B on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of Pir B(via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for Pir B increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, Pir B was mainly distributed along neuronal and axonal membranes. Pir B was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for Pir B was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of Pir B immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that Pir B may suppress repair after injury.  相似文献   

9.
The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mR NA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mR NA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mR NA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury.  相似文献   

10.
Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control) cells. We then treated cells with divalent cations of Ca2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.  相似文献   

11.
Cutaneous nerve injury is the most common complication following foot and ankle surgery. However, clinical studies including long-term follow-up data after cutaneous nerve injury of the foot and ankle are lacking. In the current retrospective study, we analyzed the clinical data of 279 patients who underwent foot and ankle surgery. Subjects who suffered from apparent paresthesia in the cutaneous sensory nerve area after surgery were included in the study. Patients received oral vitamin B12 and methylcobalamin. We examined final follow-up data of 17 patients, including seven with sural nerve injury, five with superficial peroneal nerve injury, and five with plantar medial cutaneous nerve injury. We assessed nerve sensory function using the Medical Research Council Scale. Follow-up immediately, at 6 weeks, 3, 6 and 9 months, and 1 year after surgery demonstrated that sensory function was gradually restored in most patients within 6 months. However, recovery was slow at 9 months. There was no significant difference in sensory function between 9 months and 1 year after surgery. Painful neuromas occurred in four patients at 9 months to 1 year. The results demonstrated that the recovery of sensory function in patients with various cutaneous nerve injuries after foot and ankle surgery required at least 6 months.  相似文献   

12.
T Sugimoto  S Gobel 《Brain research》1984,321(2):199-208
Microinjections of different doses of bicuculline methiodide (BM) were performed into the mesencephalic central gray (CG), the medial hypothalamus (MH) and lateral hypothalamus (LH). Flight reactions could be induced by microinjections of BM into either the CG or the MH. However, the type of flight behavior was different whether the injection was made in the CG or the MH. Furthermore, microinjections of 35 ng of BM in either structure produced an increase in locomotor activity whose time course differed according to the injected structure, and an increase in rearings was induced at MH but not at CG sites. At lateral hypothalamic sites, BM produced an increase in locomotor activity and rearings but no jump. These effects were antagonized in a dose-dependent manner by a local pretreatment with 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP), a GABA agonist. These results suggest that (1) at the level of both the MH and the CG, a GABAergic link is involved in the inhibition of a substrate whose activation produces aversive effects, and (2) the aversive effect induced by CG BM microinjection seems to be different from that induced by MH BM microinjection.  相似文献   

13.
Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β(an indicator of tissue fibrosis) decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.  相似文献   

14.
This study in adult cats demonstrates that primary neurons of all sizes survive following the transection and capping with a polyethylene tube of their peripheral processes in the superficial radial nerve. The central axonal arbors of these injured primary neurons remain intact and maintain their normal topographic position across laminae I–VI of the cervical (C6–C8) dorsal horn. In addition, they maintain their synaptic vesicles, some of their synaptic connections and their ability to transport horseradish peroxidase transganglionically.  相似文献   

15.
In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1 R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1 R expression reached a peak at 12 hours and then decreased. In addition, after the OX1 R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1 R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.  相似文献   

16.
With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords “pe-ripheral nerve injury”, “autotransplant”, “nerve graft”, and “biomaterial”, we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.  相似文献   

17.
Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells(OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4–5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4–5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.  相似文献   

18.
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration(2–8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.  相似文献   

19.
Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.  相似文献   

20.
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent' and ‘good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号