首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.  相似文献   

2.
3.
Aims/hypothesis Stearoyl CoA desaturase 1 (SCD1) is implicated in mediating obesity and insulin resistance. Paradoxically, SCD1 converts saturated fatty acids, the lipid species implicated in mediating insulin resistance, to monounsaturated fatty acids. The aim of the present study was to assess the molecular mechanisms that implicate SCD1 in the aetiology of fatty acid-induced insulin resistance.Methods SCD1 protein was transiently decreased or increased in rat L6 skeletal muscle myotubes using SCD1 short interfering RNA (siRNA) or liposome-mediated transfection of pcDNA3.1/Hygro-mSCD1, respectively.Results Reducing SCD1 protein resulted in marked esterification of exogenous fatty acids into diacylglycerol (DAG) and ceramide. Insulin-stimulated Akt activity and phosphorylation and 2-deoxyglucose uptake were reduced with SCD1 siRNA. Exposure of L6 myotubes to palmitate abolished insulin-stimulated glucose uptake in both control and SCD1 siRNA myotubes. Overexpression of SCD1 resulted in triacylglycerol esterification but attenuated ceramide and DAG accumulation and protected myotubes from fatty acid-induced insulin resistance.Conclusions/interpretation SCD1 protects from cellular toxicity in L6 myotubes by preventing excessive accumulation of bioactive lipid metabolites.Electronic supplementary material Supplementary material is available for this article at and is accessible to authorised users.  相似文献   

4.
Multiple isoforms of glucose transporters are found in muscle, the tissue that normally accounts for 85% of insulin-stimulated glucose uptake. Glucose uptake into muscle cells in the fasting state is mediated primarily by GLUT1 and GLUT3 glucose transporters, whereas postprandial (insulin-stimulated) and exercise-related increments in muscle glucose uptake are mediated primarily by GLUT4. To determine if glucose transporters are abnormally expressed in muscle from insulin-resistant subjects, muscle samples were obtained from 10 normal subjects and 6 obese, nondiabetic subjects with severe insulin resistance and acanthosis nigricans. Both GLUT4 total protein and mRNA were normal in the insulin-resistant subjects. Muscle GLUT3 protein and mRNA were lower than controls by 62% and 71%, respectively. GLUT1 mRNA was twice normal, whereas GLUT1 protein content was not significantly increased. GLUT4 protein was markedly redistributed to the muscle plasma membrane in subjects with severe insulin resistance compared with normals (92% v 40% GLUT4 in plasma membrane-enriched fractions, P <.001), whereas the percentage of GLUT1 and GLUT3 protein found in the plasma membrane-enriched fractions was not different from controls. These data document differences in the expression of genes for GLUT1 and GLUT3 in muscle from normal and insulin-resistant subjects. Further, insulin resistance with fasting hyperinsulinemia was associated with a redistribution of GLUT4 to the muscle cell surface with no change in total GLUT4 protein. These data suggest that glucose transporter gene expression and their basal distribution in human muscle are related to insulin resistance and could be determinants of whole body insulin responsiveness.  相似文献   

5.
6.
Ruzzin J  Wagman AS  Jensen J 《Diabetologia》2005,48(10):2119-2130
Aims/hypothesis Treatment with glucocorticoids, especially at high doses, induces insulin resistance. The aims of the present study were to identify the potential defects in insulin signalling that contribute to dexamethasone-induced insulin resistance in skeletal muscles, and to investigate whether the glycogen synthase-3 (GSK-3) inhibitor CHIR-637 could restore insulin-stimulated glucose metabolism.Materials and methods Skeletal muscles were made insulin-resistant by treating male Wistar rats with dexamethasone, a glucocorticoid analogue, for 12 days. Insulin-stimulated glucose uptake, glycogen synthesis and insulin signalling were studied in skeletal muscles in vitro.Results Dexamethasone treatment decreased the ability of insulin to stimulate glucose uptake, glycogen synthesis and glycogen synthase fractional activity. In addition, the dephosphorylation of glycogen synthase by insulin was blocked. These defects were paralleled by reduced insulin-stimulated protein kinase B (PKB) and GSK-3 phosphorylation. While expression of PKB, GSK-3 and glycogen synthase was not reduced by dexamethasone treatment, expression of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) was increased. Inhibition of GSK-3 by CHIR-637 increased glycogen synthase fractional activity in soleus muscle from normal and dexamethasone-treated rats, although the effect was more pronounced in control rats. CHIR-637 did not improve insulin-stimulated glucose uptake in muscles from dexamethasone-treated rats.Conclusions/interpretation We demonstrated that chronic dexamethasone treatment impairs insulin-stimulated PKB and GSK-3 phosphorylation, which may contribute to insulin resistance in skeletal muscles. Acute pharmacological inhibition of GSK-3 activated glycogen synthase in muscles from dexamethasone-treated rats, but GSK-3 inhibition did not restore insulin-stimulated glucose uptake.  相似文献   

7.
Bisht B  Goel HL  Dey CS 《Diabetologia》2007,50(5):1058-1069
Aims/hypothesis On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. Materials and methods Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. Results A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague–Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3β, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. Conclusions/interpretation The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. This contains details of the authors’ contributions to the study. Niper communication no. 389  相似文献   

8.

Aims/hypothesis

Insulin-mediated glucose transport and utilisation are decreased in skeletal muscle from type 2 diabetic and glucose-intolerant individuals because of alterations in insulin receptor signalling, GLUT4 translocation to the plasma membrane and microvascular blood flow. Catalytic activity of the muscle-specific isoform of neuronal nitric oxide synthase (nNOS) also participates in the regulation of glucose transport and appears to be decreased in a relevant animal model of drastic insulin resistance, the obese Zucker fa/fa rat. Our objective was to determine the molecular mechanisms involved in this defect.

Methods

Isolated rat muscles and primary cultures of myocytes were used for western blot analysis of protein expression, immunohistochemistry, glucose uptake measurements and GLUT4 translocation assays.

Results

nNOS expression was reduced in skeletal muscle from fa/fa rats. This was caused by increased ubiquitination of the enzyme and subsequent degradation by the ubiquitin proteasome pathway. The degradation occurred through a greater interaction of nNOS with the chaperone heat-shock protein 70 and the co-chaperone, carboxyl terminus of Hsc70-interacting protein (CHIP). In addition, an alteration in nNOS sarcolemmal localisation was observed. We confirmed the implication of nNOS breakdown in defective insulin-induced glucose transport by demonstrating that blockade of proteasomal degradation or overexpression of nNOS improved basal and/or insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of insulin-resistant myocytes.

Conclusions/interpretation

Recovery of nNOS in insulin-resistant muscles should be considered a potential new approach to address insulin resistance.  相似文献   

9.
10.
11.
The plant alkaloid berberine (BBR) has been reported to have antidiabetic effect in humans and animals. However, the mechanism of action is not well understood. The present study was conducted to determine the effect and mechanism of action of BBR on the free-fatty-acid (FFA)–induced insulin resistance in muscle cells. The FFA-induced insulin-resistant cell model was established in L6 myotubes by treating them with 250 μmol/L of palmitic acid. The inclusion of FFA in the medium increased peroxisome proliferator–activated receptor γ (PPARγ) and fatty acid transferase (FAT/CD36) expressions by 26% and 50% and decreased glucose consumption by 43% and insulin-mediated glucose uptake by 63%, respectively. Berberine treatment increased the glucose consumption and insulin-stimulated glucose uptake in normal cells and improved glucose uptake in the FFA-induced insulin-resistant cells. The improved glucose uptake by BBR was accompanied with a dose-dependent decrease in PPARγ and FAT/CD36 protein expressions. In insulin-resistant myotubes, BBR (5 μmol/L) decreased PPARγ and FAT/CD36 proteins by 31% and 24%, whereas PPARγ antagonist GW9662 reduced both proteins by 56% and 46%, respectively. In contrast, PPARγ agonist rosiglitazone increased the expression of PPARγ and FAT/CD36 by 34% and 21%, respectively. Our results suggest that BBR improves the FFA-induced insulin resistance in myotubes through inhibiting fatty acid uptake at least in part by reducing PPARγ and FAT/CD36 expressions.  相似文献   

12.
Aims/hypothesis p38 mitogen activated protein kinase (MAPK) is generally thought to facilitate signal transduction to genomic, rather than metabolic responses. However, recent evidence implicates a role for p38 MAPK in the regulation of glucose transport; a site of insulin resistance in Type 2 diabetes. Thus we determined p38 MAPK protein expression and phosphorylation in skeletal muscle from Type 2 diabetic patients and non-diabetic subjects.Methods In vitro effects of insulin (120 nmol/l) or AICAR (1 mmol/l) on p38 MAPK expression and phosphorylation were determined in skeletal muscle from non-diabetic (n=6) and Type 2 diabetic (n=9) subjects.Results p38 MAPK protein expression was similar between Type 2 diabetic patients and non-diabetic subjects. Insulin exposure increased p38 MAPK phosphorylation in non-diabetic, but not in Type 2 diabetic patients. In contrast, basal phosphorylation of p38 MAPK was increased in skeletal muscle from Type 2 diabetic patients.Conclusion/interpretation Insulin increases p38 MAPK phosphorylation in skeletal muscle from non-diabetic subjects, but not in Type 2 diabetic patients. However, basal p38 MAPK phosphorylation is increased in skeletal muscle from Type 2 diabetic patients. Thus, aberrant p38 MAPK signalling might contribute to the pathogenesis of insulin resistance.Abbreviations AICAR 5-aminoimidazole-4-carboxamide ribonucleoside - AMPK 5-AMP activated protein kinase - ERK 1/2 extracellular regulated kinase - GIR glucose infusion rate - IRS-1 insulin receptor substrate 1 - MAPK mitogen-activated protein kinase - PI phosphatidylinositol - VO2max maximal oxygen uptake  相似文献   

13.
14.
Aims/hypothesis We characterised insulin resistance, metabolic defects and endocrine dysfunction in cultured adipose cells and examined the autocrine or paracrine roles of cytokines/adipokines in the progression of insulin resistance. Materials and methods Rat primary adipose cells were prepared and cultured for 24 and 48 h. Insulin resistance and gene expression were examined by glucose uptake assay, cDNA microarray and real-time RT-PCR. Results After 24 h in culture, the fold increase of insulin-stimulated glucose uptake in adipose cells was markedly reduced; after 48 h the response of the cells to insulin decreased. cDNA microarray analysis showed that the expression of 514 genes was altered in adipose cells after 24 h in culture. The dysregulated genes included those involved in the citric acid cycle and in fatty acid and pyruvate metabolism. Specifically, the following genes were all downregulated: genes encoding lipolytic and lipogenic enzymes; uncoupling protein 1 and 2 genes; peroxisome proliferator-activated receptor gamma, coactivator 1 alpha gene. This indicates that lipolytic and lipogenic activity, as well as mitochondria capacity decline in adipose cells cultured for 24 h. The mRNAs encoding 40 adipokines were also dysregulated in cultured cells. Strikingly, the dysregulated adipokines in cultured cells and in freshly isolated adipose cells from insulin-resistant Zucker fa/fa rats displayed a similar pattern with regard to protein functions. Also striking was the fact that progression of insulin resistance was promoted by the adipokines secreted from insulin-resistant adipose tissue or cells. Conclusions/interpretation Our data demonstrate that the impairment of metabolism and endocrine dysfunction in cultured adipose cells mimics the insulin resistance occurring in vivo. Cytokines and adipokines appear to play a critical role in the progression of insulin resistance in adipose cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

15.
Aim: Chromium is an essential nutrient required for glucose and lipid metabolism. Laboratory and clinical evidences indicate that chromium supplementation may improve insulin sensitivity by enhancing intracellular signalling. Considerable evidence suggests that serine phosphorylation of insulin receptor substrate 1 (IRS1) at 307 residue (IRS1‐Ser307) inhibits insulin signalling and results in peripheral insulin resistance. Therefore, we investigated whether chromium‐associated insulin action was mediated by modulation of IRS1‐Ser307 phosphorylation. Methods: Male KK/HlJ mice (genetically obese and insulin resistant) were supplemented daily with chromium‐containing milk powder or placebo for 7 weeks. In analysing functionally characterized insulin resistance, the changes of blood biochemicals, inflammatory factors and insulin signalling molecules in skeletal muscle were analysed. Results: Using KK mice model, we demonstrated that daily supplementation of trivalent chromium‐containing milk powder reduced serum levels of glucose, insulin and triglycerides, and improved glucose and insulin tolerance. Mechanistic study showed that chromium supplementation activated postreceptor insulin signalling such as increasing IRS1, IRS1 tyrosine phosphorylation, p85α regulatory subunit of phosphatidylinositol 3‐kinase and glucose transporter 4 expression, stimulating Akt activity, downregulating c‐Jun N‐terminal kinase (JNK) activity and decreasing IRS1 ubiquitinization and insulin resistance‐associated IRS1 phosphorylation (IRS1‐Ser307) in skeletal muscle. In addition, chromium supplementation attenuated pro‐inflammatory cytokine expression in both blood circulation and skeletal muscle. Conclusion: Our data suggest that chromium‐containing milk powder supplementation can provide a beneficial effect in diabetic subjects by enhancing insulin signalling in skeletal muscle. The improvement in insulin signalling by chromium was associated with the decreased IRS1‐Ser307 phosphorylation, JNK activity and pro‐inflammatory cytokine production.  相似文献   

16.
We previously reported that long-term treatment of Zucker diabetic fatty (ZDF) rats with the selective beta(3) agonist CL-316243 normalizes glycemia, decreases plasma free fatty acids (FFA) concentration, improves insulin responsiveness, and increases glucose uptake, not only in brown and white adipose tissues, but also in skeletal muscles. Because muscles do not express typical beta(3) adrenoceptors, we postulated that the muscle effect was indirect and that it was possibly mediated by an activation of the glucose-fatty acid cycle. To test this hypothesis, we investigated the effects of Acipimox, a potent inhibitor of lipolysis in adipose tissue. Similar to CL-316243, Acipimox (150 mg/kg orally) markedly decreased plasma FFA, glucose, and insulin concentrations and improved glucose tolerance while reducing the insulin response in obese (350 to 400 g) ZDF rats. Plasma FFA concentrations were significantly correlated with plasma glucose and insulin concentrations (r =.72 and.83, respectively; P <.01), indicating strong metabolic relationships between these parameters. Euglycemic-hyperinsulinemic clamps combined with the 2-[(3)H]deoxyglucose method revealed that Acipimox markedly improved insulin responsiveness and significantly increased glucose uptake (Rg') in the diaphragm, the heart, and various skeletal muscles. Unlike CL-316243, Acipimox did not increase glucose use in brown or white adipose tissues. This selectivity shows that it is possible to improve diabetes in obese ZDF rats without necessarily stimulating thermogenesis in adipose tissues. Thus, decreasing plasma FFA with 2 drugs (Acipimox or CL-316243) that act via different mechanisms (acute inhibition of lipolysis or chronic stimulation of FFA oxidation) is associated with increased glucose uptake in muscles and enhanced insulin responsiveness. These observations support the hypothesis that CL-316243 may indirectly stimulate glucose uptake in muscles of type II diabetic rats by first stimulating brown adipose tissue (increasing uncoupling protein content and fatty acid oxidation) and progressively decreasing the levels of circulating FFA, resulting in activation of the glucose-fatty acid cycle or other mechanisms regulating insulin responsiveness in skeletal muscles.  相似文献   

17.
Skeletal muscle is an important tissue for the proper maintenance of glucose homeostasis as it accounts for the major portion of glucose disposal following infusion or ingestion of glucose. Thus, cellular mechanisms regulating glucose uptake in skeletal muscle have a major impact on whole-body glucose homeostasis. Glucose transport into skeletal muscle is a rate-limiting step for glucose utilization under physiological conditions and a site of insulin resistance in patients with non-insulin-dependent diabetes mellitus (NIDDM). Defects in insulin signalling have been coupled to impaired glucose uptake in skeletal muscle from NIDDM patients. Although the exact aetiology is unclear, genetic and environmental (high-energy diets combined with a sedentary lifestyle) factors contribute to the onset of NIDDM. Furthermore, hyperglycaemia is linked with insulin resistance. This chapter will consider mechanisms for glucose disposal in skeletal muscle, potential sites of insulin resistance in skeletal muscle in NIDDM patients and the impact of hyperglycaemia on insulin action.  相似文献   

18.
Aims/hypothesis Troglitazone was the first thiazolidinedione (TZD) approved for clinical use, exerting hypoglycaemic effects related to its action as a ligand of the peroxisome proliferator-activated receptor receptor in adipocytes. However, emerging evidence suggests that mitochondrial function may be affected by troglitazone, and that skeletal muscle cells acutely respond to troglitazone by enhancing glucose uptake. The aim of the present study was to determine the cellular mechanisms by which troglitazone acutely stimulates glucose utilisation in skeletal muscle cells.Methods L6 cells overexpressing GLUT4myc were incubated with troglitazone. Glucose uptake, transport and phosphorylation as well as AMP-activated protein kinase (AMPK) signalling and insulin signalling were examined. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye JC-1. AMPK signalling was interfered with using AMPK 1/2 siRNA.Results Troglitazone acutely (in 10 min) reduced the mitochondrial membrane potential in L6GLUT4myc myotubes and robustly stimulated AMPK activity. Following 30 min of incubation with troglitazone or insulin, 2-deoxyglucose uptake was stimulated 1.5- and 2.1-fold respectively, and in cells treated with troglitazone, a 1.8-fold increase in the 2-deoxyglucose-6-phosphate:2-deoxyglucose ratio was observed. Moreover, contrary to insulin, troglitazone did not significantly stimulate 3-O-methylglucose uptake. Unlike insulin, troglitazone did not increase surface GLUT4myc content and did not increase IRS1-associated phosphatidylinositol 3-kinase activity or Akt phosphorylation on T308 and S473. Interestingly, interfering with troglitazone-induced activation of AMPK by decreasing the expression of the enzyme using siRNA inhibited the stimulation of 2-deoxyglucose uptake by the TZD.Conclusions/interpretation We propose that troglitazone acutely increases glucose flux in muscle via an AMPK-mediated increase in glucose phosphorylation.  相似文献   

19.
20.

Aims/hypothesis  

We examined in skeletal muscle (1) whether fatty acid transport protein (FATP) 1 channels long-chain fatty acid (LCFA) to specific metabolic fates in rats; and (2) whether FATP1-mediated increases in LCFA uptake exacerbate the development of diet-induced insulin resistance in mice. We also examined whether FATP1 is altered in insulin-resistant obese Zucker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号