首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP+ toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP+ uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP+ (0.03 to 3.0 mM), and the neurotoxic effects of MPP+ were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3-fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP+ in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.  相似文献   

2.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide that is thought to modulate neurotransmitter release through pre-synaptic mGluR3 receptors. Despite years of research into NAAG biochemistry, almost nothing is known about NAAG biosynthesis. To date, NAAG biosynthesis has only been demonstrated conclusively in explanted animal neural tissues, including frog retina, rat dorsal root ganglia and crayfish nerve cord, but not in human cells or tissues. We show here that a human neuroblastoma cell line, SH-SY5Y, provides a good model system for the study of NAAG biosynthesis. Radiolabled NAAG synthesis occurred using both L-[3H]glutamic acid and L-[3H]glutamine as precursors, with glutamine being the preferred substrate. Differentiation of SH-SY5Y cells with retinoic acid resulted in decreased radiolabel incorporation into NAAG, whereas differentiation with nerve growth factor did not affect radiolabel incorporation.  相似文献   

3.
4.
Ault DT  Werling LL 《Brain research》2000,877(2):2180-360
Previous studies in our laboratory using rat brain tissue have shown that neuropeptide Y (NPY) can enhance NMDA- and potassium-stimulated dopamine release from various brain regions and that this enhancement is reversed by sigma (sigma) receptor antagonists. In the current study, we sought to determine whether SH-SY5Y cells are suitable for investigating sigma receptor effects and whether any sigma receptors present are of the subtype responsive to NPY. We compare mechanisms by which the prototypical sigma receptor agonist (+)-pentazocine, and the proposed endogenous sigma receptor ligand NPY regulate potassium-stimulated [(3)H]dopamine release from SH-SY5Y cells. Both (+)-pentazocine and NPY inhibit potassium-stimulated [(3)H]dopamine release. Unlike our studies in rat brain tissue, the effect of NPY on [(3)H]dopamine release is not reversed by sigma receptor antagonists. SH-SY5Y cells appear to be an appropriate model to study the regulation of dopamine release by sigma receptors or by NPY receptors, but this population is not identical to that population identified in brain slices.  相似文献   

5.
Jiang Y  Pei L  Li S  Wang M  Liu F 《Synapse (New York, N.Y.)》2008,62(11):797-803
Dopamine-induced neuronal cytotoxicity has been proposed as a leading pathological mechanism underlying many neuronal degenerative disorders including Parkinson disease. Various hypotheses have been proposed including oxidative stress and dopamine (DA)-induced intracellular signal disorder via DA D1 and D2 receptors. The exact mechanism involved in this process is far from clear. In this study, employing a neuronal blastoma cell line, SH-SY5Y, we tried to elucidate the roles of these different suggested mechanisms in this pathological process. The results showed that DA induced cell toxicity in a dose- and time-dependent way. Selective D1 and D2 DA receptor antagonist could not block the cytotoxic effects, whereas reductive reagent ascorbic acid but not GSH could effectively rescue the cell death, suggesting that DA-induced cell toxicity was caused by an extracellular oxidative stress. This was further supported by the enhancing effects of DA transporter blocker, GBR, which could increase the cell death when pretreated. Finally, ascorbic acid could also protect SY5Y cells from DA-induced cellular apoptotic signal changes including PARP and P53. Our studies suggested that DA exerted its cytotoxic effects via an extracellular metabolism, whereas intracellular transportation could reduce its oxidative stress. Cytotoxicity effects induced by extracellular DA could be protected by reductive agents as ascorbic acid. These results help to broaden our understanding of the mechanisms of DA-induced cell death and may provide potentially therapeutical alternative for the neurodegenerative disorders.  相似文献   

6.
Anti-parkinsonian agents possessing both D(2) and D(3) receptor agonist properties are neuroprotective against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in a variety of in vitro models. The mechanisms underlying protection by these D(2)/D(3) receptor agonists remain poorly defined. To test if the D(3) receptor preferring agonists S32504 and pramipexole act through D(2) or D(3) receptors and via brain-derived neurotrophic factor (BDNF)-dependent pathways, we utilized a terminally differentiated neuroblastoma SH-SY5Y cell line exhibiting a dopaminergic phenotype. The cytotoxic effects of MPP(+) (LD(50) of 100 microM) were stereospecifically antagonized by S32504 (EC(50) = 2.0 microM) and, less potently, by pramipexole (EC(50) = 64.3 microM), but not by their inactive stereoisomers, R(+) pramipexole and S32601, respectively. Neuroprotective effects afforded by EC(50) doses of S32504 and pramipexole were antagonized by the selective D(3) antagonists S33084, U99194A, and SB269652, and by the D(2)/D(3) antagonist raclopride. However, the preferential D(2) receptor antagonist LY741626 was ineffective as was the D1 antagonist SCH23390. BDNF (1 nM) potently protected against MPP(+)-induced neurotoxicity. Antibody directed against BDNF concentration-dependently blocked both the neuroprotective effects of BDNF and those of pramipexole and S32504 against MPP(+). The protection afforded by BDNF was blocked by the P3K-AKT pathway inhibitor LY249002 and less so by the MEK/MAPKK pathway inhibitor PD98059. LY249002, but not PD98059, blocked the neuroprotective effects of pramipexole and S32504 against MPP(+) toxicity. In conclusion, S32504 and, less potently, pramipexole show robust, stereospecific, and long-lasting neuroprotective effects against MPP(+) toxicity that involve D(3) receptors. Their actions also reflect downstream recruitment of BDNF and via a PK3-AKT pathway.  相似文献   

7.
The APPswe plasmid was transfected into the neuroblastoma cell line SH-SY5Y to establish a cell model of Alzheimer’s disease.Graded concentration and time course experiments demonstrate that curcumin significantly upregulates phosphatidylinositol 3-kinase(PI3K),Akt,nuclear factor E2-related factor-2(Nrf2),heme oxygenase 1 and ferritin expression,and that it significantly downregulates heme oxygenase 2,reactive oxygen species and amyloid-beta 40/42 expression.These effects of curcumin on PI3K,Akt and Nrf2 were blocked by LY294002(PI3k inhibitor) and NF-E2-related factor-2 siRNA.The results indicate that the cytoprotection conferred by curcumin on APPswe transfected SH-SY5Y cells is mediated by its ability to regulate the balance between heme oxygenase 1 and 2 via the PI3K/Akt/Nrf2 intracellular signaling pathway.  相似文献   

8.
9.
It has been postulated that the pathogenesis of Parkinson's disease (PD) is associated with mitochondrial dysfunction. Rotenone, an inhibitor of mitochondrial complex I, provides models of PD both in vivo and in vitro. We investigated the neuroprotective effect of D-beta-hydroxybutyrate (bHB), a ketone body, against rotenone toxicity by using SH-SY5Y dopaminergic neuroblastoma cells. SH-SY5Y cells, differentiated by all-trans-retinoic acid, were exposed to rotenone at concentrations ranging from 0 to 1,000 nM. We evaluated cellular oxidation reduction by the alamarBlue assay, viability by lactate dehydrogenase (LDH) assay, and survival/death ratio by live/dead assays. Exposure to rotenone for 48 hr oxidized cells and decreased their viability and survival rate in a concentration-dependent manner. Pretreatment of cells with 8 mM bHB provided significant protection to SH-SY5Y cells. Whereas rotenone caused the loss of mitochondrial membrane potential, released cytochrome c into the cytosol, and reduced cytochrome c content in mitochondria, addition of bHB blocked this toxic effect. bHB also attenuated the rotenone-induced activation of caspase-9 and caspase-3. Administration of 0-10 mM 3-nitropropionic acid, a complex II inhibitor, also decreased the reducing power of SH-SY5Y cells measured by alamarBlue assay. Pretreatment with 8 mM bHB attenuated the decrease of alamarBlue fluorescence. These data demonstrated that bHB had a neuroprotective effect that supported the mitochondrial respiration system by reversing the inhibition of complex I or II. Ketone bodies, the alternative energy source in the mammalian brain, appear to have therapeutic potential in PD.  相似文献   

10.
In Alzheimer's disease (AD), in aging, and under conditions of oxidative stress, the levels of reactive carbonyl compounds continuously increase. Accumulating carbonyl levels might be caused by an impaired enzymatic detoxification system. The major dicarbonyl detoxifying system is the glyoxalase system, which removes methylglyoxal in order to minimize cellular impairment. Although a reduced activity of glyoxalase I was evident in aging brains, it is not known how raising the intracellular methylglyoxal level influences neuronal function and the phosphorylation pattern of tau protein, which is known to be abnormally hyperphosphorylated in AD. To simulate a reduced glyoxalase I activity, we applied an inhibitor of glyoxalase I, p-bromobenzylglutathione cyclopentyl diester (pBrBzGSCp(2)), to SH-SY5Y neuroblastoma cells to induce chronically elevated methylglyoxal concentrations. We have shown that 10 microM pBrBzGSCp(2) leads to a fourfold elevation of the methylglyoxal level after 24 hr. In addition, glyoxalase I inhibition leads to reduced cell viability, strongly retracted neuritis, increase in [Ca(2+)](i), and activation of caspase-3. However, pBrBzGSCp(2) did not lead to tau "hyper"-phosphorylation despite activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase but rather activated protein phosphatases 2 and induced tau dephosphorylation at the Ser(202)/Thr(205) and Ser(396)/Ser(404) epitopes. Preincubation with the carbonyl scavenger aminoguanidine prevented tau dephosphorylation, indicating the specific effect of methylglyoxal. Also, pretreatment with the inhibitor okadaic acid prevented tau dephosphorylation, indicating that methylglyoxal activates PP-2A. In summary, our data suggest that a reduced glyoxalase I activity mimics some changes associated with neurodegeneration, such as neurite retraction and apoptotic cell death.  相似文献   

11.
Present study revealed the stimulatory effects of δ opioid receptor on intracellular Ca2+ concentration ([Ca2+]i) in SH-SY5Y cells. Fura-2 based single cell fluorescence ratio (F345/F380) was used to monitor the fluctuation of [Ca2+]i. Application of the selective delta-opioid receptor agonist alone, [D-Pen2,5]-enkephalin (DPDPE), hardly had any effects on cells cultivated for 3–10 days. However, after the cells had been pre-stimulated with cholinoceptor agonist, carbachol, variable calcium elevation was found in 59% of the cultures. The response was naltridole-reversible and dose-dependent, and was abolished completely by thapsigargin (TG) treatment but not by administration of CdCl2 or 0-Ca2+ bath solutions. DPDPE-mediated [Ca2+]i elevation was abolished by pertussis toxin (PTX) pretreatment but not cholera toxin (CTX), indicating coupling via G proteins of Gi/Go subfamily. In 17.5% of the responding cells, biphase response was found which may be due to both the stimulatory and the inhibitory effects of opioid. On the other hand, in acutely dissociated cells, DPPDE alone induced [Ca2+]i increase in 50% of the cultures. The probability and the amplitude of the elevation were decreased considerably by application of nifedipine or 0-Ca2+ bath solution and was little affected by application of TG. DPDPE activated [Ca2+]i increase via a PTX-insensitive and CTX-sensitive pathway suggesting coupling through Gs subunit. All these indicated the opioid modulated the intracellular Ca2+ regulation system through different pathways. SH-SY5Y cell line might be a suitable model for the investigation of the complex mechanism which underlies opioid function.  相似文献   

12.
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is formed by the oxidative deamination of dopamine (DA) catalyzed by monoamine oxidases (MAO); then, the aldehyde is oxidized to 3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenases (ALDH) or reduced to 3,4-dihydroxyphenylethanol (DOPET) by aldose/aldehyde reductases. The present work aimed at evaluating the in vitro toxicity of DOPAL on catecholaminergic neuroblastoma SH-SY5Y cells which accumulate DA. DOPAL synthesis was stimulated by incubating cells with DA and blocking DOPAL oxidation by disulfiram, an irreversible inhibitor of ALDH. As evidenced by MTT reduction assays, DA and disulfiram treatments produced cell losses which increased with time. 10(-2)M DA reduced by 40% cell viability after a 1h treatment, when its TC(50) (concentration reducing viability by 50%) value was 7.3 x 10(-5) M after a 24 h treatment. For the same treatment periods, TC(50) values for disulfiram were 8 x 10(-5) and 8.7 x 10 (-7) M, respectively. MTT reduction assay performed after a 24h treatment followed by a 24h incubation in a drug-free medium evidenced that the toxicity of 10(-4)M DA or 10(-6)M disulfiram was potentiated by the second drug. HPLC measurements showed that DOPAL was produced at the early stages of the treatment by DA and disulfiram. This was evidenced by the significant increase in the ((DOPAL + DOPET)/DOPAC ratio observed after a combined 3h treatment by 10(-4)M DA and 10(-6)M disulfiram. Total contents in DA and DOPAL were greatly reduced at the end of a 15 h treatment, and disulfiram did not significantly enhanced the (DOPAL + DOPET)/DOPAC ratio. For both treatment durations, DOPAL and DOPET were detectable only in the extracellular medium. So, these results suggest that an early production of DOPAL could produce delayed toxic effects on SH-SY5Y cells. Production of DOPET and release of DOPAL could be important means for reducing DOPAL concentrations in dopaminergic neurons.  相似文献   

13.
14.
目的观察经胆碱酯酶抑制剂加兰他敏处理的人神经母细胞瘤细胞(SH-SY5Y细胞)中解整合素样金属蛋白酶(ADAM)10和ADAM17以及可溶性淀粉样前体蛋白α(sAPPα)表达,探讨加兰他敏干预淀粉样前体蛋白(APP)代谢途径的可能机制。方法 SH-SY5Y细胞经全反式维甲酸诱导分化后,分别在含0.3、0.9或10μmol/L加兰他敏的无血清培养基中培养18h。以Western blot方法检测细胞内APP、ADAM10、ADAM17和sAPPα水平。结果 10μmol/L加兰他敏组ADAM17蛋白相对分子质量(Mr)80 000条带表达量(2.0670±0.0903)高于对照组(1.0000±0.0864,P<0.01),亦高于0.3、0.9μmol/L加兰他敏组(分别为1.4422±0.0374、1.8592±0.1018,均P<0.05);ADAM17蛋白Mr 130 000条带表达量(1.5938±0.0476)高于对照组、0.3和0.9μmol/L加兰他敏组(分别为1.0000±0.0523、1.2533±0.0658、1.4724±0.0576,均P<0.05)。与对照组(1.0000±0.0603)比较,0.3、0.9和10μmol/L加兰他敏组sAPPα蛋白的表达量(分别为1.4192±0.1256、1.6779±0.1055和2.3872±0.1495)均增高(均P<0.01)。0.3、0.9和10μmol/L加兰他敏组APP和AD-AM10蛋白水平与对照组比较,均无统计学差异(P>0.05)。结论加兰他敏可使ADAM17表达增加,促进APP代谢过程中sAPPα生成。  相似文献   

15.
目的探讨谷氨酸导致人神经母细胞瘤细胞(SH-SY5Y cells)兴奋性毒损伤的机制。方法MTT法检测SH-SY5Y细胞存活率;测定乳酸脱氢酶释放量观察细胞损伤程度;DAPI染色法观察细胞凋亡形态学特点;钙流法检测胞浆钙离子浓度变化 ;以胞内谷胱甘肽、超氧化物歧化酶活性和胞外丙二醛含量检测谷氨酸引发SH-SY5Y细胞的氧化应激状态。结果谷氨酸导致SH-SY5Y细胞受损,包括存活率下降、乳酸脱氢酶释放量增多及形态结构发生改变;谷氨酸处理 20 min 后,胞浆钙离子浓度无显著改变,而处理 24 h 后,胞浆钙离子大量增加,且 MK801 (NMDA受体拮抗剂)及LY341495 (代谢型谷氨酸受体拮抗剂)均不能抑制钙离子内流的增多;谷氨酸可导致SH-SY5Y氧化损伤,包括胞内谷胱甘肽含量减少、超氧化物歧化酶活性降低、胞外脂质过氧化产物丙二醛水平升高等,而丹参酮IIA (一种抗氧化剂)可减轻这些氧化损伤。结论谷氨酸导致SH-SY5Y细胞兴奋性毒损伤可能是通过氧化损伤产生的,而不依赖于 NMDA 受体介导的钙稳态的破坏。  相似文献   

16.
Indiscriminate overuse or occupational exposure to agricultural chemicals can lead to neurotoxicity. Many pesticides act to impair mitochondrial function which can lead to exacerbation of neurodegeneration. Triazole fungicides are applied to grain, fruit, and vegetable crops to combat mold and fungi and their use is increasing worldwide. Here, we assessed the in vitro toxicity of two widely used triazole fungicides, propiconazole and tebuconazole, to mitochondria using differentiated SH-SY5Y neuroblastoma cells as an in vitro cell model used in Parkinson’s disease research. Cell viability (based on ATP levels), mitochondrial membrane potential, oxidative respiration, and reactive oxygen species (ROS) were measured following fungicide treatments. Cell viability was decreased with 100 μM propiconazole after 24 and 48 h, while tebuconazole required higher doses to affect viability (−200 μM at 24 h). Mitochondrial membrane potential (MMP) was reduced with 50 μM propiconazole after 24 h while 200 μM tebuconazole reduced MMP. Oxidative respiration of SH-SY5Y cells was then measured using a XFe24 Flux analyzer and 100 μM propiconazole reduced basal respiration, oligomycin-induced ATP production, and FCCP-induced maximum respiration by −40−50%, while tebuconazole did not affect mitochondrial bioenergetics at the concentrations tested. Acute exposure to 100 μM propiconazole over 4 h did not immediately affect oxidative respiration in SH-SY5Y cells. ROS were not induced by propiconazole and tebuconazole up to 100 and 300 μM respectively. Based on these results, we focused our lipidomics investigations on SH-SY5Y exposed only to propiconazole, as lipid dysregulation is associated with mitochondrial dysfunction. Both 50 and 100 μM propiconazole altered the abundance of some ceramides, specifically reducing glucosylceramide non-hydroxyfatty acid-sphingosine (HexCer-NS) and increasing N-stearoyl-phytosphingosine (CerNP). Moreover, a recently discovered bioactive lipid called fatty acid ester of hydroxy fatty acid (FAHFA) was increased 5-fold, hypothesized to be a neuroprotective mechanism that has been demonstrated in other studies of human diseases. Additional lipids reduced in abundance included oxidized phosphatidylcholine (OxPC) and oxidized phosphatidylethanolamine (OxPE). There were no changes in cellular triacylglycerols nor total lipids with exposure to propiconazole. Taken together, this study provides insight into the toxicity of triazole fungicides in neuronal cells, which has implications for neurodegenerative diseases that involve the mitochondria such as Parkinson’s disease.  相似文献   

17.
PURPOSE: Recent clinical studies have suggested that treatment with second generation antipsychotic drugs such as olanzapine may prevent progressive alterations of brain structure in patients with schizophrenia. However, the molecular mechanisms underlying these different effects remain to be determined. We investigated the mechanisms of action of olanzapine and haloperidol, on serum withdrawal apoptosis in human neuroblastoma SH-SY5Y cells. METHODS: SH-SY5Y cells were cultured with olanzapine and haloperidol in medium with or without serum. We determined the effects of the drugs on cell viability against serum withdrawal by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, to explore the drugs' actions, Western blot was performed to examine the expression of key genes involved in GSK-3beta-mediated signaling, notably GSK-3beta, beta-catenin, and Bcl-2. RESULTS: SH-SY5Y cells suffered about a 38% loss in cell number under serum-free conditions for 48 h. Olanzapine (10-200 muM) up to 100 muM significantly attenuated serum withdrawal-induced cell loss (p<0.01), and a dose of 100 muM also increased cell viability (p<0.05). In contrast, haloperidol (0.01-10 muM) did not affect cell viability but exacerbated cell death at 10 muM under serum-free conditions (p<0.01). Western blot analysis showed that olanzapine, but not haloperidol, prevented the serum withdrawal-induced decrease in levels of neuroprotective proteins such as p-GSK-3beta, beta-catenin, and Bcl-2 (p<0.01), whereas haloperidol robustly reduced the levels of these proteins at a 10 muM dose in serum-starved cells (p<0.05). Moreover, olanzapine alone significantly increased phosphorylation of GSK-3beta under normal conditions (p<0.05). CONCLUSIONS: This study showed that olanzapine may have neuroprotective effects, whereas haloperidol was apparently neurotoxic. The actions of signaling systems associated with GSK-3beta may be key targets for olanzapine and haloperidol, but their effects are distinct. These differences suggest different therapeutic effects of first and second generation antipsychotic drugs in patients with schizophrenia.  相似文献   

18.
Chen L  Zou S  Lou X  Kang HG 《Brain research》2000,882(1-2):256-265
Present study revealed the stimulatory effects of delta opioid receptor on intracellular Ca(2+) concentration ([Ca(2+)](i)) in SH-SY5Y cells. Fura-2 based single cell fluorescence ratio (F345/F380) was used to monitor the fluctuation of [Ca(2+)](i). Application of the selective delta-opioid receptor agonist alone, [D-Pen(2,5)]-enkephalin (DPDPE), hardly had any effects on cells cultivated for 3-10 days. However, after the cells had been pre-stimulated with cholinoceptor agonist, carbachol, variable calcium elevation was found in 59% of the cultures. The response was naltridole-reversible and dose-dependent, and was abolished completely by thapsigargin (TG) treatment but not by administration of CdCl(2) or 0-Ca(2+) bath solutions. DPDPE-mediated [Ca(2+)](i) elevation was abolished by pertussis toxin (PTX) pretreatment but not cholera toxin (CTX), indicating coupling via G proteins of G(i)/G(o) subfamily. In 17.5% of the responding cells, biphase response was found which may be due to both the stimulatory and the inhibitory effects of opioid. On the other hand, in acutely dissociated cells, DPPDE alone induced [Ca(2+)](i) increase in 50% of the cultures. The probability and the amplitude of the elevation were decreased considerably by application of nifedipine or 0-Ca(2+) bath solution and was little affected by application of TG. DPDPE activated [Ca(2+)](i) increase via a PTX-insensitive and CTX-sensitive pathway suggesting coupling through G(s) subunit. All these indicated the opioid modulated the intracellular Ca(2+) regulation system through different pathways. SH-SY5Y cell line might be a suitable model for the investigation of the complex mechanism which underlies opioid function.  相似文献   

19.
20.
Recent work has highlighted the involvement of a dopamine derivative, 5-S-cysteinyl-dopamine (CysDA), in neurodegeneration and apoptotic cell death. In this paper we study in further detail the apoptotic process activated by this catechol-thioether derivative of dopamine in SH-SY5Y neuroblastoma cells. CysDA activates a cascade of events by an initial perturbation of Calcium homeostasis in the cell. Cell treatment with the catechol-thioether induces an immediate rise in intracellular Ca(2+) concentration, as demonstrated by a shift in the indo-1 dye emission spectrum, and a sustained high calcium concentration at long times of incubation. Fluorescence microscopy data show that the treatment of cells induces mitochondrial transmembrane potential depolarization, a clear evidence of the onset of apoptotic process. Programmed cell death activation is also demonstrated by cytochrome c release from the mitochondria, by an increased activity of both caspase-8 and -9 and by the poly(ADP-ribose)polymerase (PARP-1) cleavage, yielding the typical 86 kDa fragment due to caspase-3 activity. Overall, our data support the hypothesis that CysDA may induce apoptotic death in neuronal cells, via an initial perturbation of calcium homeostasis in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号