首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowing how different cell types handle glucose should help to decipher how energy supply is adjusted to energy demand in the brain. Previously, the uptake of glucose by cultured brain cells was studied in real‐time using fluorescent tracers and confocal microscopy. Here, we have adapted this technique to acute slices prepared from the rat cerebellum by means of multiphoton microscopy. The transport of the fluorescent glucose analogs 2NBDG and 6NBDG was several‐fold faster in the molecular layer of the cerebellar cortex than in Purkinje cell somata and granule cells. After washout of free tracer, it became apparent that most phosphorylated tracer was located in Bergmann glia, which was confirmed by counterstaining with the glial marker sulforhodamine 101. The effective recovery of fluorescence after photobleaching showed that 2NBDG‐P can diffuse horizontally across the molecular layer, presumably through gap junctions between Bergmann glial cells. Our main conclusion is that in acute cerebellar slices, the glucose transport capacity and glycolytic rate of Bergmann glia are several‐fold higher than those of Purkinje cells. Given that the cerebellum is largely fueled by glucose and Purkinje neurons are estimated to spend more energy than Bergmann glial cells, these results suggest substantial shuttling of an energy‐rich metabolite like lactate between glial cells and neurons. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Chondroitin sulfate is a long sulfated polysaccharide with enormous structural heterogeneity that binds with various proteins, such as growth factors, in a structure-dependent manner. In this study, we analyzed the expression of chondroitin sulfate in the postnatally developing cerebellar cortex by using three monoclonal antibodies against chondroitin sulfate, MO-225, 2H6, and CS-56, which recognize different structural domains in this polysaccharide. During the first postnatal week, the patterns of immunohistochemical staining made by these antibodies were quite similar, and the molecular layer, the granule cell layer, and Bergmann glial fibers in the external granular layer were densely stained. After postnatal day 12 (P12), the expression of 2H6 epitopes was down-regulated in the molecular layer, and the expression of CS-56 epitopes in this layer was also reduced after P16. On the other hand, the strong expression of MO-225 epitopes, GlcA(2S)beta1-3GalNAc(6S) (D unit)-containing structures, remained until adulthood. These chondroitin sulfate epitopes were observed around Purkinje cells, including cell soma and dendrites. Detailed immunohistochemical analysis suggested that chondroitin sulfate was deposited between Purkinje cell surfaces and the processes of Bergmann glia. Furthermore, the amount of pleiotrophin, a heparin-binding growth factor, in the cultured cerebellar slices was remarkably diminished after treatment with chondroitinase ABC or D unit-rich chondroitin sulfate. With the previous findings that pleiotrophin binds to D unit-rich chondroitin sulfate, we suggest that the D-type structure is important for the signaling of pleiotrophin, which plays roles in Purkinje cell-Bergmann glia interaction, and that the structural changes of chondroitin sulfate regulate this signaling pathway.  相似文献   

3.
Wang X  Imura T  Sofroniew MV  Fushiki S 《Glia》2011,59(6):857-868
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that inhibits the Wnt/beta-catenin signaling pathway and regulates the microtubule and actin cytoskeletons. Using conditional knockout (CKO) mice in which the APC gene is inactivated in glial fibrillary acidic protein (GFAP)-expressing cells, we show a selective and critical role for APC in maintaining the morphology and function of cerebellar Bergmann glia, which are specialized astroglia that extend polarized radial processes from the Purkinje cell layer to the pial surface. APC-CKO mice developed Bergmann glia normally until the accumulation of beta-catenin started around postnatal day 10 (P10). Their radial fibers then became shortened with a marked reduction of branching collaterals and their cell bodies translocated into the molecular layer followed by loss of their pial contact and transformation into stellate-shaped cells by P21. Purkinje neurons were normal in appearance and number at P21, but there was significant loss of Purkinje neurons and cerebellar atrophy by middle age. Outside the cerebellum, neither beta-catenin accumulation nor morphological changes were identified in GFAP-expressing astroglia, indicating region-specific effects of APC deletion and an essential role for APC in maintaining the unique morphology of Bergmann glia as compared with other astroglia. These results demonstrate that loss of APC selectively disrupts the Bergmann glial scaffold in late postnatal development and leads to cerebellar degeneration with loss of Purkinje neurons in adults, providing another potential mechanism for region-specific non-cell autonomous neurodegeneration.  相似文献   

4.
Cystatin B (cystB) is an anti-protease implicated in EPM1, a degenerative disease of the central nervous system. This work analyzes the pattern of expression of cystB in developing and adult cerebellum, identifying the cystB positive cells by double immune-fluorescence microscopy using specific cell markers. In primary glial cells, cystB is found in progenitor and differentiated oligodendrocytes as well as in astrocytes. In the cerebellum, only oligodendrocyte progenitors express cystB. In myelin-producing cells, cystB synthesis is strongly down-regulated and the protein is not detectable. Astrocytes and Bergmann glia express cystB at all the developmental stages analyzed both in the cell body and in the fibers. Most neurons of developing and adult rat cerebellum do not express detectable amounts of cystB, with the exception of the Purkinje cells and of some cells of the differentiated molecular layer. In human cerebellum, cystB is present in Purkinje cells and Bergmann glial fibers only. cystB is also found in the cortical neurons of the dentate gyrus of the hippocampus. In rat cerebellum, cystB forms a complex with a number of proteins, two of which are specific to the nervous system. The cellular co-localization of cystB and its partners in developing and adult cerebellum is also shown.  相似文献   

5.
The immunohistochemical expression and distribution of the AMPA-selective receptor subunits GluR1 and GluR2/3 were investigated in the rat cerebellum following portocaval anastomosis (PCA) at 1 and 6 months. With respect to controls, GluR1 and GluR2/3 immunoreactivities increased over 1 to 6 months following PCA, although immunolabelling patterns for both antibodies were different at the two analysed times. GluR1 immunoreactivity was expressed by Bergmann glial cells, which showed immunoreactive glial processes crossing the molecular layer at 6 months following PCA. The GluR2/3 subunit was expressed by Purkinje neurons and moderately expressed by neurons of the granule cell layer. Immunoreactivity for GluR2/3 was detectable in cell bodies and dendrites of Purkinje cells in young control cerebella, whereas GluR2/3 immunoreactivity was scarce 1 month post PCA. However, despite a lack of immunoreactivity in the Purkinje somata and main processes of adult control rats, GluR2/3 immunoreactivity was strongly enhanced in Purkinje neurons following long-term PCA. These findings suggest that the localization of the GluR2/3 subunit in Purkinje cells undergoes an alteration and/or reorganization as a consequence of long-term PCA. The combination of enhanced GluR immunoreactivity in long-term PCA, both in Bergmann glial cells and in Purkinje neurons, suggests some degree of neuro-glial interaction, possibly through glutamate receptors, in this type of encephalopathy.  相似文献   

6.
Astrogliogenesis in the human fetal cerebellum was examined in 46 cerebella obtained from hysterotomy specimens ranging between 9 and 20 weeks of ovulation age. By correlating the results obtained by rapid Golgi and Golgi-Cox methods, the indirect immunofluorescence technique for glial fibrillary acidic protein, and electron microscopy, it was possible to ensure identification of cells and obtain a comprehensive view of the ontogenesis of cerebellar astroglia, in particular Bergmann fibers. Radial fibers were present at 9 weeks of ovulation age, with features of astroglial differentiation. In the cerebellar hemisphere radial fibers arising near the ventricular zone did not reach all the way to the pial surface but terminated in vascular walls of the intermediate zone. A second set of glial cells located in the intermediate zone gave rise to long, tapering processes oriented radially to the pia, some reaching to the pial surface and terminating there in conical swellings. Radial glia with these features were observed in cerebella at all fetal ages examined, indicating their availability for guidance of external granular cells as they migrate inward.

With advancing fetal age, the segment of those radial glia traversing the molecular layer demonstrated an increasing resemblance to Bergmann fibers, though the cell bodies giving rise to these processes were still located below the Purkinje cells. Transitional forms between radial glial processes and fibers beginning to resemble Bergmann fibers were observed in numerous specimens impregnated with the Golgi methods. Astrogliogenesis in human fetal cerebellum occurs earlier than formerly believed, and Bergmann fibers are a final stage in the development of a defined group of radial glia in the cerebellum.  相似文献   


7.
Bergmann glia (BG) are unipolar cerebellar astrocytes, whose radial (or Bergmann) fibers associate with developing granule cells and mature Purkinje cells (PCs). In the present study, we investigated the morphodifferentiation of BG by immunohistochemistry for glutamate transporter GLAST and electron microscopy. GLAST was expressed widely in cerebellar radial glia/astrocytes during fetal and neonatal periods and became concentrated in BG postnatally. During the second postnatal week when PC dendrites grow actively, GLAST immunostaining revealed dynamic cytologic changes in Bergmann fibers in a deep-to-superficial gradient; Bergmann fibers traversing the external granular layer were stained as rod-like fibers, whereas in the molecular layer, the rod-like pattern was gradually replaced with a reticular meshwork. At postnatal day 10, the superficial rod-like domain was composed of glial fibrillary acidic protein (GFAP)-positive/GLAST-positive straight fibers, forming cytoplasmic swellings and short filopodia. Along this domain, the tip of growing PC dendrites ascended vertically and entered the base of the external granular layer. The deeper reticular domain of Bergmann fibers was characterized by active expansion of GFAP-negative/GLAST-positive lamellate processes, which surrounded PC synapses almost completely. Therefore, the transformation of Bergmann fibers proceeds in correlation with dendritic differentiation of PCs. The intimate PC-BG relationships during cerebellar development raise the possibility that a preexisting glial shaft could serve as a structural substrate that directs dendritic outgrowth toward the pial surface, whereas the successive formation of a reticular glial meshwork should lead to structural maturation of newly formed PC synapses.  相似文献   

8.
Rho GTPases proteins are essential for cytoskeletal reorganization and play important roles in the development of neuronal dendrites and axons. Several studies have implicated two members of the Rho GTPase family Rho-A and Rac1 activities in the neuronal polarization and the formation of axons and dendrites. In order to correlate cellular expressions of Rho-A and Rac1 with neuronal polarity (axons versus dendrite formation) in the central nervous system, the cerebellum and immunochemical techniques have been chosen. In the adult cerebellar cortex differential pattern of distribution between Rho-A and Rac1 was observed. While Rac1 expression was restricted to Purkinje cell (somata, dendrites and axons), Rho-A was ubiquitously distributed within the cerebellar cortex. Rac1 was localized in the Purkinje cell dendritic arborization (largest and tiny dendrites) and in their axons. This pattern of distribution was also observed during the postnatal development and followed the dendritic morphogenesis of Purkinje cell. Rho-A was highly expressed in the adult Purkinje cells somata, in cells of the granular layer, in glia within the white matter and in axons. Intense staining was observed in Bergmann glia cell bodies and processes. In the developing cerebellum, Rho-A was highly present in cells of the external and internal granule layers and in the Purkinje cell layer. Bergmann glia cell bodies and processes had the most intense staining during the development. The present study reveals a high expression of Rac1 and Rho-A during Purkinje cell neurites outgrowth period which occurred after birth in the cerebellum. In addition Rho-A is highly expressed in granule cell progenitor cells present in the external granular layer and therefore may play an important role in granule cell progenitor migration.  相似文献   

9.
10.
The localization of D-amino acid oxidase in rat cerebellum was systematically studied in serial fixed sections at the levels of both light and electron microscopy using a coupled peroxidation method based on the intensifying effect of nickel ions. Deposits were only seen in astrocytes and Bergmann glial cells, and not in neuronal components, endothelial cells or ependymal cells. In the molecular layer, heavy deposits were present in the profiles of Bergmann glial processes around the complexes of synapses where the parallel fiber varicosities form synapses with the thorns emerging from the spiny branchlets of Purkinje cell dendrites. In the Purkinje cell layer, the oxidase-containing processes of Bergmann glial cells enveloped basket cell axons, their terminals, the terminals of the recurrent collaterals of Purkinje cell axons and Purkinje cell bodies. In the granular layer, the cerebellar glomeruli were enveloped by the heavily stained processes of astrocytes. Based on this characteristic localization of the oxidase, we discussed the physiological role of the oxidase in connection with the function of glial cells.  相似文献   

11.
Creatine kinase isoenzymes were localized in the chicken cerebellum by the use of isoenzyme-specific anti-chicken creatine kinase antibodies. Brain-type creatine kinase was found in high amounts in the molecular layer, particularly in Bergmann glial cells but also in other cells of the cerebellar cortex, e.g. in astrocytes and in the glomerular structures, as well as in cells of the deeper nuclei. A mitochondrial creatine kinase isoform was primarily localized to the glomerular structures in the granule cell layer and was also identified in Purkinje neurons. Surprisingly, a small amount of the muscle-type creatine kinase isoform was identified in cerebellar extracts by immunoprecipitation, immunoblotting and native enzyme electrophoresis, and was shown to be localized exclusively in Purkinje neurons. Cell type-specific expression of brain- and muscle-type creatine kinase in Bergmann glial cells and Purkinje neurons, respectively, may serve to adapt cellular ATP regeneration to the different energy requirements in these specialized cell types. The presence of brain-type creatine kinase in Bergmann glial cells and astrocytes is discussed within the context of the energy requirements for ion homeostasis (K+ resorption), as well as for metabolite and neurotransmitter trafficking. In addition, the presence of muscle-type creatine kinase in Purkinje neurons, which also express other muscle-specific proteins, is discussed with respect to the unique calcium metabolism of these neurons and their role in cerebellar motor learning.  相似文献   

12.
Depletion of noradrenaline in newborn rats by 6-hydroxydopamine (6-OHDA) affects the postnatal development and reduces the granular cell area in the neocerebellum (lobules V-VII). During the first postnatal month, Bergmann glial fibers guide the migration of immature granule cells to the internal granule cell layer. Microglia and Bergmann glia may play an important role in this process, but the exact mechanism behind this phenomenon is not known. We studied the effect of systemic administration of 6-OHDA on the expression and localization on microglia and Bergmann glia in the neonatal cerebellum by immunohistochemistry. In the neocerebellum, 6-OHDA treatment caused a significant increase in the number of activated microglia. The increase was observed mainly in the granule cell layer and the cerebellar medulla. Bergmann glial cells in treated brains were abnormally located, did not form intimate associations with Purkinje cells, and the glial fibers were structurally different. Our findings indicate that a noradrenergic influence may be necessary for the normal maturation and migration of granule cells, and abnormal migration may be the result of Bergmann glia destruction and the activation of microglia. Activated microglia in the granule cell layer may be used as a marker for an injured cerebellar area.  相似文献   

13.
14.
In order to investigate the role of neuron-glia interactions in the response of astroglial to a non-invasive cerebellar cortex injury, we have used two cases of the ataxic form of Creutzfeldt-Jakob disease (CJD) with distinct neuronal loss and diffuse astrogliosis. The quantitative study showed no changes in cell density of either Purkinje or Bergmann glial cells in CJ-1, whereas in the more affected CJ-2 a loss of Purkinje cells and an increase of Bergmann glial cells was found. The granular layer in both CJD cases showed a similar loss of granule cells (about 60% ) in parallel with the significant increase in GFAP+ reactive astrocytes. GFAP immunostaining revealed greater reactivity of Bergmann glia in CJ-2 than in CJ-1, as indicated by the thicker glial processes and the higher optical density. Granular layer reactive astrocytes were regularly spaced. In both CJD cases there was strict preservation of the spatial arrangement of all astroglial subtypes—Fañanas cells, Bergmann glia and granular layer astrocytes. Reactive Fañanas and Bergmann glial cells and microglia/macrophages expressed vimentin, while only a few vimentin+ reactive astrocytes were detected in the granular layer. Karyometric analysis showed that the increase in nuclear volume in reactive astrloglia was directly related with the level of glial hypertrophy. The number of nucleoli per nuclear section was constant in astroglial cells of human controls and CJD, suggesting an absence of polyploidy in reactive astroglia. Ultrastructural analysis revealed junctional complexes formed by the association of macula adherens and gap junctions. In the molecular layer numerous vacant dendritic spines were ensheathed by lamellar processes of reactive Bergmann glia. Our results suggest that quantitative (neuron/astroglia ratio) and qualitative changes in the interaction of neurons with their region-specific astroglial partners play a central role in the astroglial response pattern to the pathogenic agent of CJD.  相似文献   

15.
Spinocerebellar ataxia-1 (SCA1) is caused by the expansion of a polyglutamine repeat within the disease protein, ataxin-1. The overexpression of mutant ataxin-1 in SCA1 transgenic mice results in the formation of cytoplasmic vacuoles in Purkinje neurons (PKN) of the cerebellum. PKN are closely associated with neighboring Bergmann glia. To elucidate the role of Bergmann glia in SCA1 pathogenesis, cerebellar tissue from 7 days to 6 wks old SCA1 transgenic and wildtype mice were used. We observed that Bergmann glial S100B protein is localized to the cytoplasmic vacuoles in SCA1 PKN. These S100B positive cytoplasmic vacuoles began appearing much before the onset of behavioral abnormalities, and were negative for other glial and PKN marker proteins. Electron micrographs revealed that vacuoles have a double membrane. In the vacuoles, S100B colocalized with receptors of advanced glycation end-products (RAGE), and S100B co-immunoprecipated with cerebellar RAGE. In SCA1 PKN cultures, exogenous S100B protein interacted with the PKN membranes and was internalized. These data suggest that glial S100B though extrinsic to PKN is sequestered into cytoplasmic vacuoles in SCA1 mice at early postnatal ages. Further, S100B may be binding to RAGE on Purkinje cell membranes before these membranes are internalized.  相似文献   

16.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is widely expressed in the brain, and plays key roles in various cellular processes in response to both extracellular and intracellular stimuli. Here, we explored the role of FAK in cerebellar development. In the mouse cerebellum, FAK was found to be distributed as tiny cytoplasmic aggregates in various neuronal and glial elements, including Purkinje cells (PCs), Bergmann glia (BG), parallel fiber (PF)-terminals and climbing fiber (CF)-terminals. The neuron/glia-specific ablation of FAK impaired cerebellar foliation, such as variable decreases in foliation sizes and the lack of intercrural and precentral fissures. Some of the BG cells became situated ectopically in the molecular layer. Furthermore, the FAK ablation altered the innervation territories of CFs and PFs on PCs. CF innervation regressed to the basal portion of proximal dendrites and somata, whereas ectopic spines protruded from proximal dendrites and PFs expanded their territory by innervating the ectopic spines. Furthermore, the persistence of surplus CFs innervating PC somata caused multiple innervation. When FAK was selectively ablated in PCs, diminished dendritic innervation and persistent somatic innervation by CFs were observed, whereas cerebellar foliation and cell positioning of BG were normally retained. These results suggest that FAK in various neuronal and glial elements is required for the formation of normal histoarchitecture and cytoarchitecture in the cerebellum, and for the construction of proper innervation territory and synaptic wiring in PCs.  相似文献   

17.
Lee C  Kim DW  Jeon GS  Roh EJ  Seo JH  Wang KC  Cho SS 《Brain research》2001,901(1-2):271-276
A model of fetal aerogenic hypoxia was developed in which fertilized chicken eggs were half-painted with melted wax and incubated under normal conditions. The cerebellum of the hypoxic chick embryos at a later stage of development (E18-20) was analyzed immunochemically. Hypoxic insult resulted in considerable neurocytological deficits of the Purkinje cells and altered glial fibrillary acid protein (GFAP) immunoreactivity in the fetal cerebellum. Purkinje cells in the hypoxic embryos were marked by small cell size, poorly developed dendrites, low cell density, deletion and ectopia. On the other hand, enhanced GFAP immunoreactivity was found in astrocytes and Bergmann glia of the hypoxic embryos. Our results indicate that chronic hypoxia in the chick fetus can cause severe disorders of neuronal development as well as glial activation. We suggest that our hypoxic model of chick embryos could be an accessible animal model for further elucidating fetal hypoxia.  相似文献   

18.
Pregnant rats were given a liquid diet containing 5% (w/v) ethanol between gestational days 10 and 21. Cerebella of their offspring were examined at 7 weeks of age. Rats exposed prenatally to ethanol showed a fusion of folia V and VI in the cerebellar vermis. Around the fusion, the cortical laminar structure was disrupted: Purkinje cell dendrites derived from each adjacent folium were tangled, and solitary or clustered ectopic granule cells were in the molecular layer. Some ectopic granule cells surrounded basophilic rosette-like structures. Glial fibrillary acidic protein immunostaining revealed defects in the glia limitans, which is formed by Bergmann glial endfeet on the cerebellar surface. Absence of the glia limitans was observed corresponding to the fusion area. These findings suggested that prenatal exposure to ethanol might impair the formation of the glia limitans in the cerebellum, resulting in the fusion of folia and the disruption of the cortical structure. These malformations may be involved in the delayed motor development and ataxia seen in human fetal alcohol syndrome.  相似文献   

19.
Neuropathological changes in the cerebellar cortex of microsphere-embolized rats were studied at 30 min and 3 h after the embolism. Necrotic processes including a sponge-like vacuolation in the molecular layer, a vague outline of some Purkinje cells, and a few pyknotic granule cells having small and dark profiles were identified at sometime between 30 min and 3 h after microsphere-induced embolism in Nissl staining. Glial fibrillary acidic protein staining shows an apparent reduction in the number of Bergmann glial processes in some of the areas where there was necrosis of the molecular layer and poor astroglia processes in the areas subjacent to the pyknotic granule cells. These data demonstrate that within a short time, microsphere-induced cerebral ischemia produces necrosis of cerebellar neurons (i.e. Purkinje and granule cells) and changes in cerebellar glia cells (i.e. Bergmann and astroglia cells), and that these neuropathological changes are secondary phenomenon caused by microsphere blockage of cerebellar blood flow.  相似文献   

20.
Corticotropin releasing factor (CRF) and its cognate receptors, defined as Type 1 and Type 2 have been localized within the cerebellum. The Type 2 CRF receptor (CRF-R2) is known to have both a full length (CRF-R2alpha) and a truncated (CRF-R2alpha-tr) isoform. A recent study documented CRF-R2alpha primarily in Bergann glia and astrocytes, as well as in populations of Purkinje cells in the adult cerebellum. The goal of the present study is to determine if CRF-R2alpha is present in the postnatal cerebellum, and if so to describe its cellular distribution. RT-PCR data showed that CRF-R2alpha is expressed in the mouse cerebellum from birth through postnatal day 21. Between birth and P14, CRF-R2alpha-immunoreactivity was localized within the somata of Purkinje cells, and migrating GABAergic interneurons. GFAP-immunoreactive astrocytes, including Bergmann glia, also expressed CRF-R2alpha-immunoreactivity from P3-P14. There is a change, however, in CRF-R2alpha immunolabeling within neurons as the cerebellum matures. Compared to its expression in the adult cerebellum, Purkinje cells, and GABAergic interneurons showed more extensive CRF-R2alpha immunolabeling during early postnatal development. We postulate that CRF-R2alpha could be involved in developmental events related to the survival and differentiation of Purkinje cells and GABAergic neurons, whereas in the adult, this isoform of the CRF receptor family is likely involved in modulating Bergmann glia that have been shown to play a role in regulating the synaptic environment around Purkinje neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号