首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
The binding of insulin and insulin-like growth factor 1 (IGF1) to high-affinity sites in the brain of rats aged 2-37 days was studied. Specific binding of insulin and IGF1 was assessed using tracer concentrations of 125I-insulin or 125I-IGF1. Sites for insulin and IGF1 were distinguished in these conditions as shown by competition experiments. The Kd were 3.6 nM (insulin) and 2.0 nM (IGF1). These values did not change significantly over the age range studied. The numbers of high-affinity binding sites for insulin and IGF1 were similar in adult animals. IGF1 binding was higher than the insulin binding in 2-day-old animals. The binding capacity for both insulin and IGF1 decreased from birth to age 15 and days remained stable thereafter. Tyrosine kinase activity, which is associated with these receptors, was measured using the artificial substrate poly (Glu, Tyr). It decreased over the first 15 days of life and remained stable thereafter. Autophosphorylation of the receptors confirmed this result. This decrease appears to be due to changes in the numbers of the two types of receptors, and is probably a reflection mainly of the variation in the number of IGF1 receptors. Similar results for insulin and IGF1 binding as well as tyrosine kinase activity were obtained with hypothyroid rats.  相似文献   

2.
Dikkes P  Hawkes C  Kar S  Lopez MF 《Brain research》2007,1131(1):77-87
Insulin-like growth factor-2 (IGF2) is a member of the insulin gene family with known neurotrophic properties. The actions of IGF2 are mediated via the IGF type 1 and type 2 receptors as well as through the insulin receptors, all of which are widely expressed throughout the brain. Since IGF2 is up-regulated in the brain after injury, we wanted to determine whether the absence of IGF2 can lead to any alteration on brain morphology and/or in the response of its receptor binding sites following a neurotoxic insult. No morphological differences were observed between the brains of IGF2 knockout (IGF2(-/-)) and wild-type control (IGF2(+/+)) mice. However, our in vitro receptor autoradiography results indicate that IGF2(-/-) mice had lower endogenous levels of [(125)I]IGF1 and [(125)I]insulin receptor binding sites in the hippocampus and cerebellum as compared to IGF2(+/+) mice, while endogenous [(125)I]IGF2 receptor binding showed a decrease only in the cerebellum. Seven days after kainic acid administration, the [(125)I]insulin receptor binding sites were significantly decreased in all brain regions of the IGF2(+/+) mice, while the levels of [(125)I]IGF1 and [(125)I]IGF2 binding sites were decreased only in select brain areas. The IGF2(-/-) mice, on the other hand, showed increased [(125)I]IGF1 and [(125)I]IGF2 and [(125)I]insulin receptor binding sites in selected regions such as the hippocampus and cerebellum. These results, taken together, suggest that deletion of IGF2 gene does not affect gross morphology of the brain but does selectively alter endogenous [(125)I]IGF1, [(125)I]IGF2 and [(125)I]insulin receptor binding sites and their response to neurotoxicity.  相似文献   

3.
The role of somatomedin/insulin-like growth factors (Sm/IGFs) in neural growth and development is not clearly defined. To characterize Sm/IGF receptors and to correlate binding with the biologic actions of Sm/IGFs in a homogeneous population of neural cells, we isolated and studied a nearly pure population of cultured astroglial monolayers derived from cerebral cortices of neonatal rats. Binding of radiolabeled Sm/IGFs was specific, saturable, and reversible, with 90% of the binding occurring within 6 hr of incubation at 4 degrees C. Competitive binding studies with Sm-C/IGF I yielded curvilinear Scatchard plots, while studies with IGF II and multiplication stimulating activity (MSA) yielded linear plots, suggesting that 125I-Sm-C/IGF I binds to more than 1 receptor species, and 125I-IGF II and 125I-MSA bind to one only. These findings were supported by affinity-labeling studies with radiolabeled Sm/IGFs using disuccinimidyl suberate as a cross-linking agent. Sm-C/IGF I appeared to bind to both type I and II Sm/IGF receptors, because cross-linked 125I-Sm-C/IGF I-receptor complexes with molecular weight (Mr) of greater than 300,000 (300K) and 130K (type I receptor) were observed under nonreducing and reducing conditions, respectively, as were 220 and 260K complexes (type II receptor) under the same respective conditions. 125I-IGF II and 125I-MSA, however, bound only to the Mr 220 and 260K moieties under nonreducing and reducing conditions, respectively, suggesting that these peptides bind only to the type II receptor. Competitive binding studies of the cross-linked moieties were consistent with this interpretation. In contrast, 125I-insulin bound poorly to astroglia (less than 0.5% specific binding), and cross-linking studies could not definitely distinguish among low-affinity binding to the type I Sm/IGF receptor, binding to a paucity of insulin receptors, or both. In addition, by combining autoradiography to localize 125I-Sm/IGFs binding on astroglial cells and immunocytochemistry with anti-glial fibrillary acidic protein to identify the cell type, we have demonstrated cell-surface binding and apparent internalization of radiolabeled Sm/IGFs. Concurrent studies of Sm/IGF stimulation of 3H-thymidine incorporation revealed that these cells were most sensitive to Sm-C/IGF I, followed by IGF II and MSA, and insulin. MSA and IGF II, however, were the most potent followed by Sm-C/IGF I and then insulin. Half-maximal stimulations of 3H-thymidine incorporation corresponded closely with half-maximal binding displacement for Sm-C/IGF I and less so for IGF II and MSA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Insulin and the insulin-like growth factors (IGFs) may directly affect the development of the nervous system. NGF, IGF-II, and insulin's effects on neurite formation and neuronal survival were studied in peripheral ganglion cell cultures from chick embryos. Neurite outgrowth was enhanced in a dose-dependent manner by insulin and IGF-II in sympathetic cell cultures. The half-maximally effective concentration, ED50, was about 0.4-0.6 nM for both polypeptides, and concentrations as low as 10 pM were active. However, in sensory neurons the ED50 for neurite outgrowth was about 30 nM for insulin and 0.1 nM for IGF-II, suggesting that these factors may have selective effects in different neuronal tissues. Neither serum nor the presence of non-neuronal cells was required for the response in sympathetic neurons. The specific anti-NGF antiserum inhibited the neurite outgrowth response to NGF but not to insulin nor IGF-II. Insulin and IGF-II additionally supported survival of sensory and sympathetic neurons; however, insulin was not as efficacious as NGF. The combination of high concentrations of NGF and insulin was no better than NGF alone in supporting sympathetic cell survival, or neurite outgrowth. This indicates that insulin acts on the same, or a subpopulation, of NGF-responsive neurons. These results support the hypothesis that insulin and its homologs belong to a broad family of neuritogenic polypeptides.  相似文献   

5.
This article describes a video digitizing system designed for measuring film optical density. The system, which is based on a 6-bit (64 gray level) digitizer, solid state video camera, and Apple II microcomputer, digitizes a rectangular area selected by the operator and converts the gray level values into preselected standard units. In order to develop autoradiographic standard curves for quantitative autoradiography with 125I-insulin, liver slices labeled with 125I-insulin and plastic sections containing known amounts of tritium were apposed to the same sheet of LKB Ultrofilm for exposures of 1-7 days. The results indicate that 3H plastic standards can be used to calibrate QAR of 125I-labeled ligands with LKB Ultrofilm. The Apple system was also used to measure binding of 125I-insulin to the external plexiform layer (EPL) in slices of the rat olfactory bulb. Results suggest that the EPL has two binding sites for insulin, a high affinity site with Kd = 1.0 X 10(-8) M and a low affinity site having a Kd = 1.4 X 10(-5) M.  相似文献   

6.
To develop effective procedures for improving the regeneration of peripheral nerves and for preventing the formation of neurofibromas, it is necessary to identify the different mitogens that stimulate the proliferation of Schwann cells. Insulinlike growth factor I (IGF-I), which is a potent autocrine growth factor in many tissues, is synthesized by proliferating Schwann cells. However, the role of IGF-I in stimulating their division is still uncertain. Here we show that nanomolar concentrations of IGF-I stimulate the growth of Schwann cells in primary culture. IGF-I alone was uneffective but in the presence of forskolin (5 μM) or dibutyryl cyclic AMP (dbcAMP, 10 μM), it became a potent mitogen. Neither IGF-II nor epidermal growth factor (EGF) were effective, even in the presence of forskolin. Insulin also stimulated Schwann cell proliferation in the presence of forskolin, but only at micromolar concentration. Receptors for IGF-I were visualized on the Schwann cell surface by indirect immunofluorescence staining using anti-human IGF-I receptor antibodies. Their presence was also assessed by binding assays using [125I]-IGF-I as a ligand. Scatchard analysis showed a single class of high-affinity receptors (Kd = 1.5 nM). Competition studies with unlabeled IGF-I or insulin indicated a half-maximal displacement of [125I]-IGF-I by IGF-I at about 5 nM, while insulin was about 500-fold less effective. The number of binding sites for IGF-I was increased by exposing cells for 3 days to forskolin (- forskolin: about 5,100; + forskolin: about 12,200 binding sites/cell). These results suggest that forskolin increases available receptors for IGF-I, which is consistent with the synergism between cAMP and IGF-I in stimulating Schwann cell growth. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The present work characterizes the autoradiographic distribution of insulin-like growth factor-1 (IGF-1)/somatomedin-C binding sites in neonatal and adult rat brain, and attempts to correlate the distribution of IGF-1 sites, in certain regions of the rat brain, with functional IGF-1 receptors. In neonatal brain, [125I]IGF-1 binding sites are especially concentrated in superficial cortical layers, nucleus accumbens and hippocampus. In the adult rat brain, the distribution of IGF-1 sites is broader, with a high density of sites observed in superficial and deep cortical layers, olfactory bulb, endopiriform nucleus, basomedial nucleus of the amygdala, thalamic nuclei and hippocampus. Specific binding of [125I]IGF-1 to its sites in these brain regions was almost completely inhibited by 100 nM nonradioactive IGF-1. In contrast, similar concentrations of either IGF-2 or insulin did not significantly alter [125I]IGF-1 binding to its sites. Therefore, under our incubation conditions, [125I]IGF-1 appears to label specifically the type-I IGF receptor. In the hippocampus, which is highly enriched with specific [125I]IGF-1 binding sites in both neonatal and adult rat brain, IGF-1 significantly altered the potassium-evoked (25 mM) release of acetylcholine (ACh) from slices of adult, but not immature (6- and 18-day-old), rat brain. This IGF-1-induced decrease in ACh release from adult rat brain slices was concentration-dependent and appeared to be specific to hippocampus; ACh release from frontal cortical slices was not affected by this GF. The spontaneous release of ACh in the presence of IGF-1 in either tissue was not significantly different from control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Evaluation of insulin receptor in myotonic dystrophy   总被引:1,自引:0,他引:1  
Only 2 of 6 patients with myotonic dystrophy had glucose intolerance and hyperinsulinemia. All, however, had markedly reduced insulin binding to specific receptors on circulating monocytes. A significant difference in receptor affinity for insulin was observed, but the difference in affinity was not as marked as that in the amount of 125I-insulin bound per cell, which was sixfold greater in control cells. No evidence for a circulating factor competing with insulin for binding sites could be demonstrated. These alterations in binding did not directly correlate with glucose intolerance or hyperinsulinemia and are consistent with a postulated generalized membrane defect. Study of the insulin receptor in this disorder may uncover regulatory mechanisms in normal and pathological conditions, including myotonic dystrophy.  相似文献   

9.
The hippocampal formation of the rat contains two types of membrane-bound cholinergic binding sites, as revealed by specific binding of [3H]quinuclidinyl benzilate (QNB) or of a-[125I]bungarotoxin (a-Btx). The sites differ in pharmacological profile, sensitivity to detergents and ontogenesis. The major binding site (about 17 pmol per adult hippocampus) is of a muscarinic nature, and binds [3H]QNB with an on-rate of 2 x 10(6) M-1 sec-1 and an apparent KD of 0.4 nM. This binding is displaced by low concentrations of muscarinic ligands but not of nicotinic ligands. The earliest increase in binding level is detected at about day 4 postnatal and a sharp increase in total binding takes place between days 10 and 15. Total binding continues to increase gradually about 3-fold until an age of about 7 weeks, at a rate resembling that of acetylcholinesterase. a-Btx-binding sites (about 0.6 pmol per adult hippocampus) display a nicotinic profile with an on-rate constant for a-[125I]Btx of 6 x 10(4) M-1 sec-1 and an apparent KD of 2 nM. Ontogenesis of these sites clearly differs from that of muscarinic sites and acetylcholinesterase. Absolute binding reaches mature levels at an age of 12--14 days postnatal, and binding per tissue protein is higher during the first postnatal days than at maturity. It appears that the level of toxin-binding sites attains mature values before the major synaptogenetic events in the area are completed.  相似文献   

10.
D End  L Pevzner  A Lloyd  G Guroff 《Brain research》1983,283(2-3):131-136
Primary cultures of chick neural crest cells obtained from explanted neural tubes have binding sites for radioiodinated nerve growth factor ([125I]NGF) but not for radioiodinated epidermal growth factor ([125I]EGF). The binding of [125I]NGF was shown to be a specific and saturable process with a high affinity (Kd = 0.3 nM) for the ligand. Despite the expression of these NGF binding sites, incubation of the neural crest cultures with nerve growth factor did not induce neurite outgrowth; no morphological alterations were observed. This was not due to an inability of the cells to express a neuronal phenotype, since the neural crest cells spontaneously differentiated into neurite-bearing cells. However, the nerve growth factor binding sites do appear to be functional receptors, since nerve growth factor could produce a modest induction of ornithine decarboxylase. The quantity of nerve growth factor binding sites seemed to be independent of the phenotype expressed by the neural crest cells, since both pigmented cells and neuron-like neural crest cells exhibited binding. These findings suggest that the differentiation of neural crest cells into mature nerve growth factor-responsive neurons may involve the coupling of nerve growth factor receptors to cellular responses important in the expression of the neuronal phenotype.  相似文献   

11.
Growth factors differently regulate astroglial cell differentiation and proliferation. In an effort to understand the early intracellular events promoted by growth factors in astroglial cells, we have determined the effects of insulin-like growth factor I (IGF1), insulin, platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factors (FGFs) on phosphatidylinositol-3 kinase (PI(3)-kinase). In astroglial cells cultured in serum-free medium, IGF1, PDGF, and EGF, which stimulate cell proliferation, increased PI(3)-kinase activity immunoprecipitated with anti-phosphotyrosine antibodies as shown by thin layer chromatography and high performance liquid chromatography. FGFa and FGFb, which strongly stimulate proliferation, glutamine synthetase, and deiodinase activities and modify cell morphology, have no effect on PI(3)-kinase activity. Addition of 1 nM PDGF, 10 nM IGF1, or 100 nM EGF to the culture medium rapidly stimulated PI(3)-kinase activity which declined slowly after 2 min. The stimulation of PI(3)-kinase increased with growth factor concentration. The maximum increase in PI(3)-kinase activity occurred with 50 nM IGF1, 1 nM PDGF, or 100 nM EGF. Since insulin was active only at high concentration (1 μM), its effect was probably mediated through IGF1 receptors and not through IGF1 receptors and not through insulin receptors. IGF1 and PDGF, to a lesser degree, also increased the PI(3)-kinase activity associated with pp60c-src protein. Immunoblots performed with an antibody directed against the p85-subunit of the PI(3)-kinase confirmed that IGF1 increased the number of PI(3)-kinase molecules associated with phosphotyrosine-containing proteins or with c-src protein. Each growth factor affects in a different manner the association of PI(3)-kinase with phosphotyrosine-containing proteins and with pp60c-src and thus probably modulates intracellular signals downstream of PI(3)-kinase in astroglial cells. © 1995 Wiley-Liss, Inc.  相似文献   

12.
L M Mudd  M K Raizada 《Brain research》1990,521(1-2):192-196
In this study we used differential culturing techniques to study the effects of phorbol esters on insulin receptors on neuronal and astrocytic glial cells in primary culture from the brain. 12-O-Tetradecanoyl-phorbol-13-acetate (TPA), a potent activator of protein kinase C (PKC), increased [125I]insulin binding in a time- and concentration-dependent manner with a maximally effective dose of 50 nM TPA for 2 h in glial cells. Treatment with TPA did not affect [125I]insulin binding in neuronal cells. The TPA effect on glial [125I]insulin binding was specific as evidenced by the observation that potencies of phorbol ester analogs to increase [125I]insulin binding were similar to their abilities to stimulate PKC. Competitive-inhibition experiments indicated that this effect of TPA was due primarily to an increase in the number of high affinity insulin binding sites on glial cells. Removal of the TPA after pretreatment resulted in a recovery from its effects within 6 h. The increase in glial insulin binding was not accompanied by an increase in insulin-sensitive glucose uptake, suggesting that TPA inactivates the glial cell receptors as it increases their numbers.  相似文献   

13.
Insulin receptors and insulin action in dissociated brain cells   总被引:1,自引:0,他引:1  
The present study was conducted to characterize insulin receptors and insulin action in rat brain cells. Binding of [125I]insulin to cells obtained by mechanically dissociating rat brains was 86% specific, time-dependent and reached equilibrium within 90 min. The t1/2 of association was 14 min and t1/2 of dissociation was 8 min. Scatchard analysis demonstrated the typical curvilinear plot providing high affinity (0.03 nM) and low affinity (6.6 nM) binding sites. The total number of binding sites were 0.15 pmol/mg protein. Crosslinking of [125I]insulin to its receptors on dissociated brain cells followed by SDS-PAGE and autoradiography showed that the alpha-subunit of the receptor had a molecular weight of 122,000. This was in contrast with a molecular weight of 134,000 for the liver alpha-subunit. Incubation of dissociated brain cells with insulin resulted in a concentration-dependent inhibition of total [3H]norepinephrine (NE) uptake. This inhibitory effect of insulin on [3H]NE uptake was sodium ion-dependent suggesting that 80-90% of the sodium ion-dependent uptake was insulin-sensitive. Incubation of lectin-purified insulin receptors with insulin resulted in a time- and concentration-dependent stimulation of phosphorylation of the tyrosine residue of an exogenous substrate poly (Glu, Tyr) (4:1). In addition, insulin also stimulated the autophosphorylation of the beta-subunit of the insulin receptors. These observations corroborate our contention that insulin exerts neuromodulatory effects mediated by the specific insulin receptors in the brain.  相似文献   

14.
Anatomic correlation of NMDA and 3H-TCP-labeled receptors in rat brain   总被引:7,自引:0,他引:7  
Using quantitative autoradiography, we have compared the regional distribution of N-methyl-D-aspartate (NMDA) receptors labeled with 3H-glutamate and dissociative anesthetic binding sites labeled with 3H-N-(1-[2-thienyl]cyclohexyl)3,4-piperidine (3H-TCP). Binding of both ligands was highest in the hippocampal formation, with high concentrations in a number of cortical and olfactory regions. Intermediate amounts of binding for both ligands were measured in several thalamic and basal telencephalic structures. Very little binding was observed in the hypothalamus, some deep forebrain regions, and most brain-stem structures. Linear-regression analysis comparing the binding at both sites revealed a marked concordance (R = 0.95; p less than 0.001; Pearson product-moment). The granule cell layer of the cerebellum was the only region in which this concordance was not observed. Scatchard analysis of 3H-glutamate binding to NMDA receptors in stratum radiatum of hippocampal formation revealed an apparent single binding site with a Bmax of 9.78 +/- 0.84 pmol/mg protein and KD of 158 +/- 37 nM. 3H-TCP also bound to an apparent single site with a Bmax of 2.07 +/- 0.16 pmol/mg protein and KD of 127 +/- 30 nM. Our results are consistent with the hypothesis that the dissociative anesthetic binding site is linked to the NMDA receptor, and the data suggest that there are approximately 4-5 NMDA binding sites for each dissociative anesthetic binding site.  相似文献   

15.
Blood glucose and plasma insulin during an oral glucose tolerance test were determined in 21 patients with amyotrophic lateral sclerosis and in 10 control patients matched for age, obesity and physical activity. In addition, 125I-insulin binding to circulating erythrocytes were studied in a subgroup of 4 ALS patients and 8 controls. Both impaired glucose tolerance and diabetes mellitus were evenly distributed between the study groups, and no difference in mean blood glucose levels during the OGTT was found between ALS and control patients. Fasting plasma immunoreactive insulin concentration was significantly higher in ALS patients as compared to controls, but plasma IRI increments to the glycemic stimulus were similar in the 2 groups. The number of insulin binding sites per cell appeared lower in patients with ALS, but the difference in receptor concentration was not statistically significant. In addition, the specific bound fraction of 125I-insulin showed no difference between ALS and control patients. In conclusion, we were unable to demonstrate any marked deterioration of glucose tolerance or increase in insulin resistance in patients with ALS.  相似文献   

16.
In early reports on 125I-VIP binding experiments in liver membranes, it has been proposed that, the VIP binding sites were partially sensitive to GTP. Here we confirm that the VIP binding sites of chicken liver membranes consisted mainly in bivalent VIP/PACAP receptors and that about 50% of the 125I-VIP binding capacity was not affected by the GTP analogue GppNHp. Part of these bivalent receptors also appeared to represent PHI binding sites. In GppNHp-treated membranes, the GTP-insensitive VIP binding sites displayed a 17-fold higher relative affinity than in control membranes for the VIP analogue PHI. Such data suggested that GTP-insensitive VIP receptors may correspond to a subclass of high-affinity PHI receptors. Cross-linking of 125 I-VIP or 125 I-PHI to their receptors, revealed 2 components of 48 and 60 kDa. The radiolabelling of the 60 kDa component was strongly affected by increasing concentrations of the GTP analogue but was modestly abolished by an excess of PHI. Conversely, the radiolabelling of the 48 kDa molecular form was not affected by the GTP analogue but was efficiently abolished by increasing concentrations of PHI. Taken together, the data suggest that the 48 kDa component expressed in chicken liver membranes display the properties of a GTP-insensitive VIP/PHI receptor that can be pharmacologically discriminated from the GTP-sensitive 60 kDa form, through its much higher affinity for PHI.  相似文献   

17.
1. Benzodiazepine receptors have been characterized in human brain mainly using [3H]-Ro 15-1788 and [3H]-flunitrazepam. Both ligands present a very high affinity for the receptor sites (Kd values of 0.56 and 1.53 nM respectively). 2. GABA enhanced the affinity of [3H]-flunitrazepam and [3H]-diazepam, but not that of [3H]-Ro 15-1788 and [3H]-methyl-beta-carboline 3-carboxylate for their specific binding sites as well in cerebral as in cerebellar human cortex. 3. Subcellular distribution of the benzodiazepine receptors revealed a main synaptosomal localization in human cerebral cortex, cerebellum and striatum. 4. Solubilized benzodiazepine receptors were obtained using 0.5% sodium deoxycholate and were characterized with [3H]-Ro 15-1788. The solubilized receptors are still coupled to GABA receptors since the [3H]-flunitrazepam specific binding was enhanced in the presence of micromolar concentrations of GABA.  相似文献   

18.
125I-insulin binding was studied in membrane preparations of olfactory bulb, frontal cortex, hippocampus and hypothalamus from mature (5-month-old) and aged (22-month-old) rats. In the young animals the highest level of specific insulin binding was found in the olfactory bulb, with lower values of specific insulin binding in the frontal cortex, hippocampus and hypothalamus. In the aged rats the specific insulin binding was not changed in the frontal cortex, hippocampus and hypothalamus as compared to the young ones. A significant decrease of total insulin binding was observed only in the olfactory bulbs of aged rats (0.67 +/- 0.04 pmol insulin/mg protein) as compared to the mature animals (1.3 +/- 0.08 pmol insulin/mg protein). Scatchard analysis of insulin binding data revealed that this decrease was due to changes in the number of binding sites rather than to changes in the affinity of insulin receptors. It was suggested that the decrease observed in insulin receptor number in olfactory bulbs of aged rats might be due to the atrophic changes in the structure of olfactory bulbs previously shown by electron microscopy for aged rats.  相似文献   

19.
Typical insulin receptors are present on neuroblastoma cell lines. High affinity binding for insulin was present in membrane preparations from NG108 (a hybrid mouse neuroblastoma-rat glioma) as well as in membranes from SK-N-MC and SK-N-SH, two human neuroblastoma cell lines. Specific [125I]insulin binding was 24.4% for NG108, 16.9% for SK-N-MC and 5.2% for SK-N-SH at membrane protein concentrations of 0.4 mg/ml. IC50 for [125I]insulin binding was 3.4 nM in NG108 membrane preparations and 0.9 nM for SK-N-SH and 1.8 nM in SK-N-MC membranes. Apparent mol. wt. for the alpha subunits (identified by specific immunoprecipitation using the anti-insulin receptor antiserum B10) on SDS PAGE was 134 kDa for NG108; 124 kDa for SK-N-MC and 120 kDa for SK-N-SH. Neuraminidase digestion increased the mobility of the alpha subunit from both NG108 and SK-N-MC receptors to 120 kDa, whereas that from SK-N-SH were unaffected. Endoglycosidase H and endoglycosidase F digestions increased the mobility of the alpha subunits of all 3 cell lines to varying degrees, suggesting the presence of N-linked glycosylation. Insulin induced autophosphorylation of the insulin receptor beta subunit in WGA-purified membranes from all 3 cell lines. In addition, phosphorylation of a protein with an apparent mol. wt. 105 kDa was stimulated by insulin in WGA purified membranes from NG108. Tyrosine-specific kinase activity was present in the membranes from each cell line and was stimulated by insulin in a dose-dependent manner from 10(-9) to 10(-6) M. Proinsulin was about 100 times less potent in stimulating phosphorylation of the artificial substrate poly (Glu, Tyr)4:1 when compared to insulin in accordance with its lower binding affinity to the insulin receptor. Hexose transport was stimulated by insulin in all 3 cell lines. These results indicate that neuroblastoma cells contain specific insulin receptors and that they may be useful as models for studying the role of insulin in nervous tissue.  相似文献   

20.
Neurotrophin signaling through Trk receptors is important for differentiation and survival in the developing nervous system. The present study examined the effects of CH(3)Hg on (125)I-nerve growth factor (NGF) binding to the TrkA receptor, NGF-induced activation of the TrkA receptor, and neurite outgrowth in an in vitro model of differentiation using PC12 cells. Whole-cell binding assays using (125)I-NGF revealed a single binding site with a K(d) of approximately 1 nM. Methylmercury (CH(3)Hg) at 30 nM (EC(50) for neurite outgrowth inhibition) did not affect NGF binding to TrkA. TrkA autophosphorylation was measured by immunoblotting with a phospho-specific antibody. TrkA autophosphorylation peaked between 2.5 and 5 min of exposure and then decreased but was still detectable at 60 min. Concurrent exposure to CH(3)Hg and NGF for 2.5 min resulted in a concentration-dependent decrease in TrkA autophosphorylation, which was significant at 100 nM CH(3)Hg. To determine whether the observed inhibition of TrkA was sufficient to alter cell differentiation, NGF-stimulated neurite outgrowth was examined in PC12 cells after exposure to 30 nM CH(3)Hg, a concentration that inhibited TrkA autophosphorylation by approximately 50%. For comparison, a separate group of PC12 cells were exposed to a concentration of the selective Trk inhibitor K252a (30 nM), which had been shown to produce significant inhibition of TrkA autophosphorylation. Twenty-four hour exposure to either CH(3)Hg or K252a reduced neurite outgrowth to a similar degree. Our results suggest that CH(3)Hg may inhibit differentiation of PC12 cells by interfering with NGF-stimulated TrkA autophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号