首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.  相似文献   

2.
Epidemiological studies have consistently shown associations between elevated concentrations of urban particulate matter (UPM) air pollution and exacerbations of asthma and chronic obstructive pulmonary disease, which are both associated with viral respiratory infections. The effects of UPM on dendritic cell (DC) ‐stimulated CD4 T lymphocytes have been investigated previously, but little work has focused on CD8 T‐lymphocyte responses despite their importance in anti‐viral immunity. To address this, we examined the effects of UPM on DC‐stimulated naive CD8 T‐cell responses. Expression of the maturation/activation markers CD83, CCR7, CD40 and MHC class I on human myeloid DCs (mDCs) was characterized by flow cytometry after stimulation with UPMin vitro in the presence/absence of granulocyte–macrophage colony‐stimulating factor (GM‐CSF). The capacity of these mDCs to stimulate naive CD8 T‐lymphocyte responses in allogeneic co‐culture was then assessed by measuring T‐cell cytokine secretion using cytometric bead array, and proliferation and frequency of interferon‐γ (IFN‐γ)‐producing T lymphocytes by flow cytometry. Treatment of mDCs with UPM increased expression of CD83 and CCR7, but not MHC class I. In allogeneic co‐cultures, UPM treatment of mDCs enhanced CD8 T‐cell proliferation and the frequency of IFN‐γ+ cells. The secretion of tumour necrosis factor‐α, interleukin‐13, Granzyme A and Granzyme B were also increased. GM‐CSF alone, and in concert with UPM, enhanced many of these T‐cell functions. The PM‐induced increase in Granzyme A was confirmed in a human experimental diesel exposure study. These data demonstrate that UPM treatment of mDCs enhances priming of naive CD8 T lymphocytes and increases production of pro‐inflammatory cytokines. Such UPM‐induced stimulation of CD8 cells may potentiate T‐lymphocyte cytotoxic responses upon concurrent airway infection, increasing bystander damage to the airways.  相似文献   

3.
Human peripheral blood contains two major dendritic cell (DC) populations, namely CD11c(-)CD123+ plasmacytoid DCs (PDCs) and CD11c+CD123(-) myeloid DCs (MDCs). Although the activation of these DC types by various TLR ligands has been relatively well-characterized, less is known about the ability of whole live bacteria to induce PDC and MDC activation. In the present report, we have compared the activation of human PDCs and MDCs in response to major human bacterial pathogen Streptococcus pyogenes (group A streptococci) and influenza A virus. S. pyogenes stimulation resulted in the maturation of both DC types, as evidenced by enhanced expression of costimulatory molecules and production of proinflammatory cytokines and chemokines. Furthermore, S. pyogenes-stimulated PDCs and MDCs activated na?ve CD4+ T cells and enhanced their Th1 cytokine production. Influenza A virus infection induced rapid PDC activation, whereas MDCs were extremely sensitive to influenza A virus-induced cell death. The most significant differences between DC types were seen in the production of IL-10 and IL-12, which were only produced by S. pyogenes-stimulated MDCs. Although S. pyogenes was able to induce PDC activation, only influenza A virus infection resulted in detectable IFN-alpha production. Our results show that depending on the infecting microbe, the functions of PDCs and MDCs may be partially overlapping, suggesting a considerable flexibility of the human DC system.  相似文献   

4.
Biochemical, genetic, and immunological studies of follicular dendritic cells (FDCs) have been hampered by difficulty in obtaining adequate numbers of purified cells in a functional state. To address this obstacle, we enriched FDCs by irradiating mice to destroy most lymphocytes, excised the lymph nodes, and gently digested the nodes with an enzyme cocktail to form single cell suspensions. The FDCs in suspension were selected using the specific mAb FDC-M1 with magnetic cell separation technology. We were able to get nearly a million viable lymph node FDCs per mouse at about 90% purity. When examined under light and transmission electron microscopy, the cytological features were characteristic of FDCs. Furthermore, the cells were able to trap and retain immune complexes and were positive for important phenotypic markers including FDC-M1, CD21/35, CD32, CD40, and CD54. Moreover, the purified FDCs exhibited classical FDC accessory activities including: the ability to co-stimulate B cell proliferation, augment antibody responses induced by mitogens or antigens, maintain B cell viability for weeks, and protect B lymphocytes from anti-FAS induced apoptosis. In short, this combination of methods made it possible to obtain a substantial number of highly enriched functional murine FDCs.  相似文献   

5.
6.
7.
8.
9.
Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis in young children. Upon infection both T helper 1 (Th1) and Th2 cytokines are produced. Because RSV-induced Th2 responses have been associated with severe immunopathology and aggravation of allergic reactions, the regulation of the immune response following RSV infection is crucial. In this study we examined the influence of RSV on the activation and function of murine bone marrow-derived dendritic cells (DCs). RSV induced the expression of maturation markers on myeloid DCs (mDCs) in vitro. The mDCs stimulated with RSV and ovalbumin (OVA) enhanced proliferation of OVA-specific T cells, which produced both Th1 and Th2 cytokines. In contrast to mDCs, RSV did not induce the expression of maturation markers on plasmacytoid DCs (pDCs), not did it enhance the proliferation of OVA-specific T cells that were cocultured with pDCs. However, RSV stimulated the production of interferon-alpha (IFN-alpha) by pDCs. Our findings indicate a clear difference in the functional activation of DC subsets. RSV-stimulated mDCs may have immunostimulatory effects on both Th1 and Th2 responses, while RSV-stimulated pDCs have direct antiviral activity through the release of IFN-alpha.  相似文献   

10.
Particulate matter (PM) is thought to be responsible for respiratory health problems. Epithelial cells exposed to particles release pro-inflammatory cytokines leading to inflammation of airways. However, the signaling cascades triggered by particles are poorly understood. We demonstrate that PM with an aerodynamic diameter < 2.5 microm (PM2.5) or diesel exhaust particles upregulate the expression of amphiregulin (AR), a ligand of the epidermal growth factor receptor (EGFR), in human bronchial epithelial cells. AR secretion was blocked by an inhibitor of the EGFR tyrosine kinase (AG1478), or a selective mitogen-activated protein (MAP) kinase/extracellular regulated kinase (Erk) inhibitor (PD98059), but not by the p38 MAP kinase inhibitor (SB203580). Thus, AR secretion is mediated through the activation of the EGFR and Erk MAP kinase pathway. In addition, AR secretion was inhibited by the antioxidant N-acetyl cysteine, but not by a neutralizing anti-EGFR, suggesting an EGFR transactivation via oxidative stress. AR may be involved in cytokine secretion, as AR can induce granulocyte macrophage-colony-stimulating factor (GM-CSF) release and a neutralizing anti-EGFR reduces the particle-induced GM-CSF release. This study indicates that PM2.5 induces the expression and secretion of AR, an EGFR ligand contributing to GM-CSF release, which may reflect an important mechanism for sustaining the proinflammatory response.  相似文献   

11.
Therapeutic prospects of particulates are increasingly recognized for vaccination purposes. Compared with biologic particulates, such as live or attenuated bacterial vectors and viral vectors, synthetic particulates may be expected to ease the hurdles of quality assurance and validation in vaccine development and production and shorten the time for approval and to the market. The ability of synthetic antigen-loaded particulates to elicit strong immune responses, even with low amounts of antigen and to weakly immunogenic epitopes, is suggested to be due to their efficient cross-talk with the most potent antigen-presenting cells, such as dendritic cells. Moreover, the potential of particulates for intracellular delivery and directing intracellular trafficking of antigens has evolved as a promising opportunity to target the major histocompatibility complex I pathway. In summary, synthetic particulate vaccine delivery systems are likely to play an increasingly active role in enhancing or even enabling the immunostimulating effect of antigens upon direct interaction with the target cells.  相似文献   

12.
We recently showed that T. cruzi parasites enhance expression of co-stimulatory surface molecules on cord blood myeloid dendritic cells (mDCs). This study aims to gain insight into the role of live parasites and intracellular infection in mDC activation using CSFE-labelled parasites. First, we observed that only a low proportion of mDCs was infected by T. cruzi after overnight culture of whole blood samples and trypomastigotes, as compared with monocytes and granulocytes. Cord blood mDCs were also less infected than their adult counterpart. Second, expression levels of HLA-DR and co-stimulatory molecules CD80, CD83 and CD86 were similar on infected and uninfected mDCs. Parasite lysate also triggered mDCs phenotypic maturation of both cord and adult blood cells, though in a lower extent than live parasites. These results strongly support a central role for extracellular trypomastigotes in activation of mDCs when parasites are incubated with whole blood cells. However, viability of trypomastigotes was not absolutely required for mDC activation.  相似文献   

13.
目前对于浆细胞样树突状细胞(pDC)的来源、分布和功能研究不断深入,对于pDC在疾病发病、诊断、治疗中的作用正越来越受到关注。本文综述了pDC与抗病毒免疫特别是HIV感染、肿瘤、自身免疫病的关系,并总结了目前所发现的可以调控pDC生成和功能的药物,希望能为某些疾病的防治提供新的思路和方法。  相似文献   

14.
15.
Mechanisms of particulate matter toxicity   总被引:5,自引:0,他引:5  
  相似文献   

16.
17.
Myeloid dendritic cells (DC) and macrophages evolve from a common precursor. However, factors controlling monocyte differentiation toward DC or macrophages are poorly defined. We report that the surface density of the GM-CSF receptor (GM-CSFR) alpha subunit in human peripheral blood monocytes varies among donors. Although no correlation was found between the extent of GM-CSFR and monocyte differentiation into DC driven by GM-CSF and IL-4, GM-CSFR expression strongly influenced the generation of CD1a(+) dendritic-like cells in the absence of IL-4. CD1a(+) cells generated in the presence of GM-CSF express CD40, CD80, MHC class I and II, DC-SIGN, MR, CCR5, and partially retain CD14 expression. Interestingly, they spontaneously induce the expansion of CD4(+) and CD8(+) allogeneic T lymphocytes producing IFN-gamma, and migrate toward CCL4 and CCL19. Upon stimulation with TLR ligands, they acquire the phenotypic features of mature DC. In contrast, the allostimulatory capacity is not further increased upon LPS activation. However, by blocking LPS-induced IL-10, a higher T cell proliferative response and IL-12 production were observed. Interestingly, IL-23 secretion was not affected by endogenous IL-10. These results highlight the importance of GM-CSFR expression in monocytes for cytokine-induced DC generation and point to GM-CSF as a direct player in the generation of functionally distinct DC.  相似文献   

18.
《Mucosal immunology》2020,13(2):371-380
Insufficient T-cell responses contribute to the increased burden of viral respiratory disease in infancy. Neonatal dendritic cells (DCs) often provide defective activation of pathogen-specific T cells through mechanisms that are incompletely understood, which hinders vaccine design for this vulnerable age group. Enhancing our characterization of neonatal DC sub-specialization and function is therefore critical to developing their potential for immunomodulation of T-cell responses. In this study, we engineered respiratory syncytial virus (RSV) to express a model protein, ovalbumin, to track antigen-presenting DCs in vivo. We found that murine neonatal conventional DC1s (cDC1s) efficiently migrated and presented RSV-derived antigen, challenging the paradigm that neonatal DCs are globally immature. In a key observation, however, we discovered that during infection neonatal cDC1s presenting viral antigen were unable to upregulate costimulatory molecules in response to type I interferons (IFN-I), contributing to poor antiviral T-cell responses. Importantly, we showed that the deficient response to IFN-I was also exhibited by human neonatal cDC1s, independent of infection. These findings reveal a functionally distinct response to IFN-I by neonatal cDC1s that may leave young infants susceptible to viral infections, and provide a new target for exploration, in light of failed efforts to design neonatal RSV vaccines.  相似文献   

19.
20.
Pasteurella multocida toxin (PMT) is a potent mitogen for fibroblasts and osteoblastic cells. PMT activates phospholipase C-beta through G(q)alpha, and the activation of this pathway is responsible for its mitogenic activity. Here, we investigated the effects of PMT on human monocyte-derived dendritic cells (MDDC) in vitro and show a novel activity for PMT. In this regard, PMT activates MDDC to mature in a dose-dependent manner through the activation of phospholipase C and subsequent mobilization of calcium. This activation was accompanied by enhanced stimulation of naive alloreactive T cells and dominant inhibition of interleukin-12 production in the presence of saturating concentrations of lipopolysaccharide. Surprisingly, although PMT mimics the activating effects of cholera toxin on human MDDC and mouse bone marrow-derived dendritic cells, we found that PMT is not a mucosal adjuvant and that it suppresses the adjuvant effects of cholera toxin in mice. Together, these results indicate discordant effects for PMT in vitro compared to those in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号