首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We studied the mechanism by which endothelin-1 (ET-1) affects the mobility of intracellular free Ca2+ ([Ca2+]i) in cultured A7r5 aortic smooth muscle cells. ET-1 at 10(-9) to 10(-7) M increased [Ca2+]i in Ca2+-containing buffer and Ca2+-free buffer. Pretreatment with ET-1 inhibited thapsigargin- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca2+]i increases in Ca2+-free buffer. Pretreatment with thapsigargin and CCCP partially abolished the [Ca2+]i increase induced by ET-1. The ET-1-induced Ca2+ signal was partially suppressed by the ETA receptor antagonist BQ123 and the ETB receptor antagonist BQ788 and nifedipine. Pretreatment of cells with the phospholipase C inhibitor U73122 reduced the ET-1-induced [Ca2+]i increase. These results suggest that the ET-1-induced [Ca2+]i increase in A7r5 smooth muscle cells initially activates the ETA receptor, leading to Ca2+ influx and increased internal Ca2+ release from endoplasmic reticulum and mitochondrial Ca2+ stores. The ETB receptor and L-type Ca2+ channel are involved in maintaining further extracellular Ca2+ influx. ET-1-induced intracellular Ca2+ release was also modulated by phospholipase C-coupled events.  相似文献   

2.
3.
Cytoskeletal proteins are known to sculpt the structural architecture of cells. However, their role as bridges linking the functional crosstalk of different ion channels is unknown. Here, we demonstrate that a small conductance Ca(2+)-activated K(+) channels (SK2 channel), present in a variety of cells, where they integrate changes in intracellular Ca(2+) concentration [Ca(2+)(i)] with changes in K(+) conductance and membrane potential, associate with L-type Ca(2+) channels; Ca(v)1.3 and Ca(v)1.2 through a physical bridge, alpha-actinin2 in cardiac myocytes. SK2 channels do not physically interact with L-type Ca(2+) channels, instead, the 2 channels colocalize via their interaction with alpha-actinin2 cytoskeletal protein. The association of SK2 channel with alpha-actinin2 localizes the channel to the entry of external Ca(2+) source, which regulate the channel function. Furthermore, we demonstrated that the functions of SK2 channels in atrial myocytes are critically dependent on the normal expression of Ca(v)1.3 Ca(2+) channels. Null deletion of Ca(v)1.3 channel results in abnormal function of SK2 channel and prolongation of repolarization and atrial arrhythmias. Our study provides insight into the molecular mechanisms of the coupling of SK2 channel with voltage-gated Ca(2+) channel, and represents the first report linking the coupling of 2 different types of ion channels via cytoskeletal proteins.  相似文献   

4.
Hall J  Jones RD  Jones TH  Channer KS  Peers C 《Endocrinology》2006,147(6):2675-2680
Testosterone has marked beneficial cardiovascular effects, many of which have been attributed to a vasodilatory action. However, the molecular target of testosterone underlying this effect is subject to debate. In this study, we have used microfluorimetry as a noninvasive means of examining whether testosterone could exert dilatory effects via inhibition of voltage-gated Ca2+ entry in the model vascular smooth muscle cell line, A7r5. Rises of [Ca2+]i evoked by 50 mm K+ -containing solution were suppressed in a concentration-dependent manner by testosterone (IC50, 3.1 nm) and by the nonaromatizable analog, 5beta-dihydrotestosterone (IC50, 6.9 nm). The effects of testosterone were apparent in the presence of pimozide (to block T-type Ca2+ channels) but not nifedipine (to block L-type Ca2+ channels). Testosterone did not alter Ca2+ mobilization from intracellular stores by the prostaglandin analog U46619 or capacitative Ca2+ entry in cells pretreated with thapsigargin. Our results indicate that testosterone, at physiological concentrations, can selectively suppress Ca2+ entry into A7r5 cells via L-type Ca2+ channels. We suggest this effect is a likely mechanism underlying its vasodilatory actions and beneficial cardiovascular effects.  相似文献   

5.
6.
Ca2+-activated K+ channels (PKCa channels) account for the predominant K+ permeability of many types of smooth muscle cells. When activated, they oppose depolarization due to Na+ and Ca2+ channel activity. Several vasodilatory agents that increase intracellular cGMP levels (e.g., nitroprusside, adenosine, and atrial natriuretic factor) enhance the activity of these high-conductance PKCa channels in on-cell patches of bovine aortic smooth muscle cells. In addition, dibutyryl-cGMP (1.0 mM) causes a similar increase in channel activity. To pursue the mechanism of channel modulation by these agents, a series of guanine and adenine nucleotides were evaluated by using inside-out excised patches. Whereas cAMP, AMP, ADP, and ATP were ineffective, all of the corresponding guanine nucleotides potentiated PKCa channel activity when tested at a high concentration (500 microM). However, only GMP consistently enhanced channel activity in the 1-100 microM range by increasing the percent open time and frequency of opening of these channels over a wide range of potentials and Ca2+ levels without affecting single-channel conductance. Thus, GMP is a potent modulator of PKCa channels and it, rather than cGMP, may mediate the action of the vasodilators examined in this study.  相似文献   

7.
In the cardiac dyad, sarcolemmal L-type Ca(2+) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (RyR) are structurally in close proximity. This organization provides for an efficient functional coupling, tuning SR Ca(2+) release for optimal contraction of the myocyte. Given that LCC are regulated by the prevailing [Ca(2+)], this structural organization is the setting for feedback mechanisms and crosstalk. A defective coupling of Ca(2+) influx via LCC to activation of RyR has been implicated in reduced SR Ca(2+) release in heart failure. Both functional changes in LCC properties and structural re-organization of LCC in T-tubules could be involved. LCC are regulated by cytosolic Ca(2+), and crosstalk with SR Ca(2+) handling occurs on a long-term basis, i.e. during steady-state changes in heart rate, on an intermediate-term basis, i.e. on a beat-to-beat basis during sudden rate changes, and on a very short- or immediate-term basis, i.e. during a single heartbeat. We review the properties and consequences of these different feedback mechanisms and the changes in heart failure and cardiac hypertrophy that have thus far been studied.  相似文献   

8.
9.
This article summarizes the literature on receptor-operated Ca2(+)-permeable nonselective cation channels in vascular smooth muscle cells. One of these conductances, the P2X1 receptor, is a classic ligand-gated channel, but others are likely to be mediated via G-protein-coupled receptors. The most studied receptor-operated channel in vascular myocytes is the norepinephrine-evoked nonselective cation channel in rabbit portal vein myocytes. The data regarding the transduction mechanisms and biophysical properties of whole-cell and single-channel currents in this preparation are described. The channels have a conductance of 20 to 25 pS and complex kinetic behavior with at least two open and two closed states. These channels are activated by norepinephrine and acetylcholine via G-protein-coupled receptors linked to phospholipase C and by diacylglycerol (DAG). The action of DAG occurs by a mechanism independent of protein kinase C, but other kinases may mediate the responses to norepinephrine and DAG. In addition, activation of tyrosine kinases leads to opening of this channel. Other vasoconstrictors, such as endothelin, vasopressin, serotonin, and angiotensin II, open Ca2(+)-permeable nonselective cation channels, but there may be differences between these conductances and the norepinephrine-evoked channels. A homologue of the transient receptor potential protein (TRPC6) is an essential component of the norepinephrine-activated channel in rabbit portal vein, and it is likely that this family of proteins plays an important role in mediating Ca2+ influx in vascular smooth muscle.  相似文献   

10.
NO causes pulmonary vasodilation in patients with pulmonary hypertension. In pulmonary arterial smooth muscle cells, the activity of voltage-gated K+ (Kv) channels controls resting membrane potential. In turn, membrane potential is an important regulator of the intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. We used patch clamp methods to determine whether the NO-induced pulmonary vasodilation is mediated by activation of Kv channels. Quantitative fluorescence microscopy was employed to test the effect of NO on the depolarization-induced rise in [Ca2+]i. Blockade of Kv channels by 4-aminopyridine (5 mM) depolarized pulmonary artery myocytes to threshold for initiation of Ca2+ action potentials, and thereby increased [Ca2+]i. NO (approximately 3 microM) and the NO-generating compound sodium nitroprusside (5-10 microM) opened Kv channels in rat pulmonary artery smooth muscle cells. The enhanced K+ currents then hyperpolarized the cells, and blocked Ca(2+)-dependent action potentials, thereby preventing the evoked increases in [Ca2+]i. Nitroprusside also increased the probability of Kv channel opening in excised, outside-out membrane patches. This raises the possibility that NO may act either directly on the channel protein or on a closely associated molecule rather than via soluble guanylate cyclase. In isolated pulmonary arteries, 4-aminopyridine significantly inhibited NO-induced relaxation. We conclude that NO promotes the opening of Kv channels in pulmonary arterial smooth muscle cells. The resulting membrane hyperpolarization, which lowers [Ca2+]i, is apparently one of the mechanisms by which NO induces pulmonary vasodilation.  相似文献   

11.
12.
Endothelin is a potent endothelium-derived vasoconstrictor peptide recently characterized from porcine and human vascular endothelial cells. Here we provide evidence that endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in porcine coronary artery smooth muscle. The vasoconstrictor action of endothelin is efficiently antagonized by low doses of the dihydropyridine Ca2+-channel blocker nicardipine. Endothelin augments the Ca2+-induced contraction in a high-K+ depolarizing solution, markedly enhances high-threshold Ca2+-channel current on the whole-cell patch clamp recording, and causes a sustained increase in the intracellular Ca2+ that is largely dependent on extracellular Ca2+. These findings suggest that endothelin exerts its vasoconstrictor effect by either directly or indirectly activating the voltage-dependent Ca2+ channel.  相似文献   

13.
BackgroundEicosapentaenoic acid is a fish oil fatty acid that has been shown to decrease blood pressure (BP) in humans. The mechanism by which this fatty acid produces this effect is unknown. Angiotensin II increases BP by inducing vasoconstriction of vascular smooth muscle cells, an event that is mediated by an increase of intracellular calcium and an increase of protein kinase C activity.MethodsWe determined the effects of eicosapentaenoic acid on angiotensin II-induced calcium signaling, and protein kinase C activity in cultured rat aortic smooth muscle cells. Incorporation of eicosapentaenoic acid into cell phospholipids was determined by gas chromatography/mass spectrometry. Intracellular calcium concentration was determined using fura-2, and protein kinase C activity was assessed by an ELISA assay using a phospho-specific antiserum for protein kinase C substrates.ResultsWe found that eicosapentaenoic acid was incorporated into cell phospholipids within 20 min. Eicosapentaenoic acid (10 or 25 μmol/L) did not alter basal intracellular calcium concentration, but decreased the peak response to 100 nmol/L angiotensin II. Eicosapentaenoic acid also decreased the amount of calcium released by thapsigargin, a drug that releases calcium from the sarcoplasmic reticulum, and decreased cation influx after angiotensin II stimulation. Angiotensin II stimulated phosphorylation of protein kinase C substrates. Preincubation of cells with 10 or 25 μmol/L eicosapentaenoic acid significantly inhibited this phosphorylation.ConclusionsOur results demonstrate that acute incorporation of eicosapentaenoic acid into vascular smooth muscle cell phospholipids inhibits intracellular calcium mobilization and protein kinase C activation. These are potential mechanisms by which eicosapentaenoic acid reduces vasoconstriction.  相似文献   

14.
15.
Angiostensin II (Ang II) regulates the migration and proliferation of vascular smooth muscle cells. Recent studies indicate that intermediate-conductance Ca2+ -activated K+ (IKca) channels have an important role in cell migration and proliferation. It is not known, however, whether the action of Ang II is linked to IKca channel regulation. Here, we investigated the modulation of IKca channels by Ang II in artery smooth muscle cells. Functional IKca channel expression in cultured embryonic rat aorta smooth muscle (A10) cells was studied using the patch-clamp technique. These cells predominantly express IKca channels. In contrast, large-conductance Ca2+ -activated K+ (BKca) currents were rarely observed in excised patches. Ang II increased the IKca current in a contration-dependent manner. Losartan (1.0 microM), an AT1 selective antagonist, abolished the activation of IKca channels by Ang II. Pretreatment with 100 microM myristoylated protein kinase C inhibitor peptide 20-28 or 10 microM GF109203X completely abolished the AngII-induced activation of IKca currents, whereas the action of Ang II was not prevented in the presence of 100 microM Rp-cyclic 3', 5'-hydrogen phosphotiate adenosine triethylammonium, a protein kinase A inhibitor, or 1.0 microM KT-5823, a protein kinase G inhibitor. A membrane permeant analogue of diacylglycerol 1, 2-dioctanoyl-sn-glycerol (10 microM) induced the activation of IKca currents. These data suggest that Ang II activates IKca channels through the activation of protein kinase C, and the AT1 receptor is involved in the regulation of these channels.  相似文献   

16.
钙信号是调控气道平滑肌细胞功能的重要机制.细胞内钙离子浓度受肌浆网内钙释放和胞外钙内流的双重调控.钙池操纵的钙通道(SOC)是哮喘气道平滑肌细胞外钙内流的重要机制,在哮喘气道高反应性和气道重塑中具有重要作用.近年来,通过分子生物学方法,已经发现了SOC相关调控分子STIM1和通道组成分子Orail,为深入研究气道平滑肌SOC的结构和功能关系,以及在哮喘防治中的作用提供了基础.本文就SOC及其与气道平滑肌功能的关系作一综述.  相似文献   

17.
Recent antihypertensive studies have demonstrated that small peptides with angiotensin I-converting enzyme (ACE) inhibitory activity had an ability to lower or to modulate a pressor blood pressure response in mild hypertensive subjects. However, the underlying mechanisms still remain unclear. Based on our previous finding that a small peptide, Val-Tyr (VY), was accumulated in the rat aorta and kidney as well as in the circulating blood system, we here investigated whether antihypertensive small peptides exert an antiproliferative effect on serum- or mitogen-induced human vascular smooth muscle cells (VSMCs). Treatment with some ACE inhibitory small peptides (VY, Ile-Trp [IW], and Ile-Val-Tyr [IVY]) had diverse effects on serum-stimulated VSMC proliferation that were independent of their ACE inhibitory activity, though only VY exerted a potent antiproliferative action. VY also showed a greater inhibition of WST-8 incorporation in response to angiotensin (Ang) II-stimulation than the other two small peptides. The attenuation of Ang II-stimulated WST-8 incorporation by VY was not affected by Ang II receptor antagonists (losartan and saralasin ([Sar1, Ile8]-Ang II)), indicating that the antiproliferative action of VY may not be due to the peptide's antagonistic effect against Ang II receptors. Treatment with VY had a significant inhibitory effect on the WST-8 incorporation induced by the stimulation of a voltage-gated L-type Ca2+ channel agonist, Bay K 8644. Even in the presence of a K+ channel blocker (paxillin) the inhibition was apparent, suggesting that VY inhibited the proliferation of VSMCs by serving as a natural L-type Ca2+ channel blocker, but not as a K+ channel agonist.  相似文献   

18.
Testosterone-induced vasodilatation is proposed to contribute to the beneficial effects associated with testosterone replacement therapy in men with cardiovascular disease, and is postulated to occur via either direct calcium channel blockade, or through potassium channel activation via increased production of cyclic nucleotides. We utilised flow cytometry to investigate whether testosterone inhibits the increase in cellular fluorescence induced by prostaglandin F(2alpha) in A7r5 smooth muscle cells loaded with the calcium fluorescent probe indo-1-AM, and to study the cellular mechanisms involved. Two-minute incubation with testosterone (1 microM) significantly inhibited the change in cellular fluorescence in response to prostaglandin F(2alpha) (10 microM) (3.6+/-0.6 vs 7.6+/-1.0 arbitrary units, P=0.001). The change in cellular fluorescence in response to prostaglandin F(2alpha) (10 microM) was also significantly attenuated in the absence of extracellular calcium (3.6+/-0.3 vs 15.6+/-0.7 arbitrary units, P=0.0000002), and by a 2-min incubation with the store-operated calcium channel blocker SK&F 96365 (50 microM) (4.7+/-0.8 vs 8.1+/-0.4 arbitrary units, P=0.003). The response was insensitive to similar incubation with the voltage-operated calcium channel blockers verapamil (10 microM) (12.6+/-1.2 vs 11.9+/-0.2 arbitrary units, P=0.7) or nifedipine (10 microM) (13.9+/-1.3 vs 13.3+/-0.5 arbitrary units, P=0.7). Forskolin (1 microM) and sodium nitroprusside (100 microM) significantly increased the cellular concentration of cyclic adenosine monophosphate and cyclic guanosine monophosphate respectively, but testosterone (100 nM-100 microM) had no effect. These data indicate that the increase in intracellular calcium in response to prostaglandin F(2alpha) occurs primarily via extracellular calcium entry through store-operated calcium channels. Testosterone inhibits the response, suggesting an antagonistic action upon these channels.  相似文献   

19.
Despite a high density of atrial natriuretic factor (ANF) receptors, cultured vascular smooth muscle cells of the spontaneously hypertensive rat (SHR) manifest a blunted cyclic GMP (cGMP) response to ANF. We explored the role of cytosolic free Ca2+ ([Ca2+]i) in the ANF-induced cGMP response of cultured aortic vascular smooth muscle cells from SHR and two normotensive rat strains: Wistar-Kyoto (WKY) and American Wistar. Exposure to 500 nmol/l A23187 in Ca2+-containing but not in Ca2+-deficient medium resulted in a decline in the ANF-induced cGMP response at maximal ANF concentration (500 nmol/l; SHR from 1004 +/- 98 to 423 +/- 67, P less than 0.001; WKY from 1791 +/- 209 to 625 +/- 90, P less than 0.001; American Wistar from 1496 +/- 125 to 559 +/- 96 fmol/10(6) cells/4 min, P less than 0.001). The same phenomenon was observed by depolarization with 50 mmol/l KCl in Ca2+-containing medium. There were no significant differences among the rat strains in basal levels of [Ca2+]i. If Ca2+ plays a role in the blunted cGMP response to ANF in vascular smooth muscle cells of the SHR, this effect may be exerted by a distinct pool of the ion in the submembrane domain which is associated with the particulate guanylate cyclase system.  相似文献   

20.
Malignant hyperthermia (MH) susceptibility is a dominantly inherited disorder in which volatile anesthetics trigger aberrant Ca(2+) release in skeletal muscle and a potentially fatal rise in perioperative body temperature. Mutations causing MH susceptibility have been identified in two proteins critical for excitation-contraction (EC) coupling, the type 1 ryanodine receptor (RyR1) and Ca(V)1.1, the principal subunit of the L-type Ca(2+) channel. All of the mutations that have been characterized previously augment EC coupling and/or increase the rate of L-type Ca(2+) entry. The Ca(V)1.1 mutation R174W associated with MH susceptibility occurs at the innermost basic residue of the IS4 voltage-sensing helix, a residue conserved among all Ca(V) channels [Carpenter D, et al. (2009) BMC Med Genet 10:104-115.]. To define the functional consequences of this mutation, we expressed it in dysgenic (Ca(V)1.1 null) myotubes. Unlike previously described MH-linked mutations in Ca(V)1.1, R174W ablated the L-type current and had no effect on EC coupling. Nonetheless, R174W increased sensitivity of Ca(2+) release to caffeine (used for MH diagnostic in vitro testing) and to volatile anesthetics. Moreover, in Ca(V)1.1 R174W-expressing myotubes, resting myoplasmic Ca(2+) levels were elevated, and sarcoplasmic reticulum (SR) stores were partially depleted, compared with myotubes expressing wild-type Ca(V)1.1. Our results indicate that Ca(V)1.1 functions not only to activate RyR1 during EC coupling, but also to suppress resting RyR1-mediated Ca(2+) leak from the SR, and that perturbation of Ca(V)1.1 negative regulation of RyR1 leak identifies a unique mechanism that can sensitize muscle cells to MH triggers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号