首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.  相似文献   

2.
The Ebola virus is highly infectious and characterized by hemorrhagic fever, headache, and so on with a high mortality rate. Currently, there are neither therapeutic drugs or vaccines against the Ebola virus nor fast diagnostic methods for the detection of Ebola virus infection. This study reported the induction and isolation of two monoclonal antibodies that specifically recognized the glycoprotein (GP) and secreted glycoprotein (sGP) of the Ebola virus. Plasmids encoding either GP or sGP were constructed and immunized BALB/c mice, accordingly purified sGP was boosted. The antisera were analyzed for binding activity against sGP protein in enzyme-linked immunosorbent assay (ELISA) and neutralization activity in a pseudotyped virus neutralization assay. A number of reactive clones were isolated and two monoclonal antibodies T231 and T242 were identified to react with both GP and sGP. Western blot and ELISA assays showed that the monoclonal antibodies could react with GP and sGP, respectively. Moreover, they could recognize Ebola pseudovirus by cellular immunochemistry assay. We labeled the monoclonal antibody T231 with biotin and analyzed the competitiveness of the two antibodies by the ELISA test. The results showed that the binding epitopes of the two monoclonal antibodies to sGP were partially overlapped. In summary, two GP-specific mAbs were identified, which will be used to detect the Ebola virus or investigate GP.  相似文献   

3.
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses.  相似文献   

4.
Ebola virus (EBOV) infects several cell types and while viral entry is known to be pH-dependent, the exact entry pathway(s) remains unknown. To gain insights into EBOV entry, the role of several inhibitors of clathrin-mediated endocytosis in blocking infection mediated by HIV pseudotyped with the EBOV envelope glycoprotein (EbGP) was examined. Wild type HIV and envelope-minus HIV pseudotyped with Vesicular Stomatitis Virus glycoprotein (VSVg) were used as controls to assess cell viability after inhibiting clathrin pathway. Inhibition of clathrin pathway using dominant-negative Eps15, siRNA-mediated knockdown of clathrin heavy chain, chlorpromazine and sucrose blocked EbGP pseudotyped HIV infection. Also, both chlorpromazine and Bafilomycin A1 inhibited entry of infectious EBOV. Sensitivity of EbGP pseudotyped HIV as well as infectious EBOV to inhibitors of clathrin suggests that EBOV uses clathrin-mediated endocytosis as an entry pathway. Furthermore, since chlorpromazine inhibits EBOV infection, novel therapeutic modalities could be designed based on this lead compound.  相似文献   

5.
Thirteen hybridoma strains producing monoclonal antibodies (Mabs) to Ebola virus were prepared by fusion of NS-O mouse myeloma cells with splenocytes of BALB/c mice immunized with purified and inactivated Ebola virus (Mayinga strain). Mabs directed against viral proteins were selected and tested by ELISA. Protein specificity of 13 Mabs was determined by immunoblotting with SDS-PAGE proteins of Ebola virus. Of these, 11 hybridoma Mabs reacted with 116 kDa protein (NP) and 2 with Ebola virus VP35. Antigenic cross-reactivity between Ebola and Marburg viruses was examined in ELISA and immunoblotting with polyclonal and monoclonal antibodies. In ELISA, polyclonal antibodies of immune sera to Ebola or Marburg viruses reacted with heterologous filoviruses, and two anti-NP Ebola antibodies (Mabs 7E1 and 6G8) cross-reacted with both viruses. Target proteins for cross-reactivity, Ebola NP (116 kDa) and Marburg NP (96 kDa), and VP35 of both filoviruses were detected by immunoblotting with polyclonal and monoclonal antibodies (6G8) to Ebola virus.  相似文献   

6.
马尔堡、埃博拉病毒双重荧光定量PCR检测方法的建立   总被引:1,自引:0,他引:1  
目的 建立一种快速、敏感、特异的双重实时荧光定量PCR方法,可同时检测马尔堡病毒和埃博拉病毒.方法 通过序列比对挑选出两种病毒基因组中高度保守的序列,分别设计引物及Taqman探针,两条探针分别标记FAM和Texas Red荧光报告基因,建立双重实时荧光定量PCR反应体系.结果 双重荧光定量PCR方法检测两种病毒阳性标准品的灵敏度分别为30.5拷贝/μl和28.6拷贝/μl,通过检测日本脑炎病毒、黄热病毒、登革热病毒无交叉反应,有较好的灵敏度和特异性.结论 建立了马尔堡、埃博拉病毒双重荧光定量PCR检测方法,实现了两种病毒同时实时定量检测,在传染病防控领域有较好的应用前景.  相似文献   

7.
The filoviruses, Marburg virus (MARV) and Ebola virus (EBOV), are causative agents of severe hemorrhagic fever with high mortality rates in humans and non-human primates. Sporadic outbreaks of filovirus infection have occurred in Central Africa and parts of Asia. Identification of the natural reservoir animals that are unknown yet and epidemiological investigations are current challenges to forestall outbreaks of filovirus diseases. The filovirus species identified currently include one in the MARV group and five in the EBOV group, with large genetic variations found among the species. Therefore, it has been difficult to develop a single sensitive assay to detect all filovirus species, which would advance laboratory diagnosis greatly in endemic areas. In this study, a highly sensitive universal RT-PCR assay targeting the nucleoprotein (NP) gene of filoviruses was developed. The genomic RNAs of all known MARV and EBOV species were detected by using an NP-specific primer set. In addition, this RT-PCR procedure was verified further for its application to detect viral RNAs in tissue samples of animals infected experimentally and blood specimens of infected patients. This assay will be a useful method for diagnostics and epidemiological studies of filovirus infections.  相似文献   

8.
Han Z  Licata JM  Paragas J  Harty RN 《Virus genes》2007,34(3):273-281
The glycoprotein (GP) of Ebola virus (EBOV) is a multifunctional protein known to play a role in virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. EBOV GP is synthesized as a precursor which is subsequently cleaved to yield two disulfide-linked subunits: GP1 (surface-exposed [SU] subunit) and GP2 (membrane-anchored [TM] subunit). We sought to determine the effect of membrane-anchored GP2 protein expression on the integrity of host cell lipid membranes. Our findings indicated that: (i) expression of GP2 enhanced membrane permeability to hygromycin-B (hyg-B), (ii) the transmembrane (TM) domain of GP2 was essential for enhanced membrane permeability, (iii) amino acids (aa) 667ALF669 within the TM region of GP2 were important for enhanced membrane permeability, and (iv) EBOV infected cells were more permeable to hyg-B than mock infected cells. Together, these data suggest that the TM region of GP2 modifies the permeability of the plasma membrane. These findings may have important implications for GP-induced cell damage and pathogenesis of EBOV infection.  相似文献   

9.
Ebolaviruses are the etiologic agents of severe viral hemorrhagic fevers in primates, including humans, and could be misused for the development of biological weapons. The ability to rapidly detect and differentiate these viruses is therefore crucial. Antibodies that can detect reliably the ebolavirus surface envelope glycoprotein GP?,? or a truncated variant that is secreted from infected cells (sGP) are required for advanced development of diagnostic assays such as sandwich ELISAs or Western blots (WB). We used a GP?,? peptide conserved among Bundibugyo, Ebola, Reston, Sudan, and Ta? Forest viruses and a mucin-like domain-deleted Sudan virus GP?,? (SudanGPΔMuc) to immunize mice or rabbits, and developed a panel of antibodies that either cross-react or are virus-specific. These antibodies detected full-length GP?,? and sGP in different assays such as ELISA, FACS, or WB. In addition, some of the antibodies were shown to have potential clinical relevance, as they detected ebolavirus-infected cells by immunofluorescence assay and gave a specific increase in signal by sandwich ELISA against sera from mouse-adapted Ebola virus-infected mice over uninfected mouse sera. Rabbit anti-SudanGPΔMuc polyclonal antibody neutralized gammaretroviral particles pseudotyped with Sudan virus GP?,?, but not particles pseudotyped with other ebolavirusGP?,?. Together, our results suggest that this panel of antibodies may prove useful for both in vitro analyses of ebolavirus GP?,?, as well as analysis of clinically relevant samples.  相似文献   

10.
The entire genomic RNA of the Gulu (Uganda 2000) strain of Ebola virus was sequenced and compared to the genomes of other filoviruses. This data represents the first comprehensive genetic analysis for a representative isolate of the Sudan species of Ebola virus. The genome organization of the Sudan species is nearly identical to that of the Zaire species, but the presence of a gene overlap (between GP and VP30 genes) and a longer trailer sequence distinguish it from that of the Reston species. As has been observed with other filoviruses, stemloop structures were predicted to form at the 5' end of Ebola Sudan mRNA molecules, and the genomic RNA termini showed a high degree of sequence complimentarity. Comparisons of the amino acid sequences of encoded gene products shows that there is a comparable level of identity or similarity between Ebola virus species, with Sudan and Zaire actually showing a slightly closer relationship to the Reston species than to one another. These comparisons also indicated that the VP24 is the most conserved Ebola virus protein (followed closely by the VP40 and L proteins), while the GP is the least conserved gene product. The most divergent regions were seen in the C-terminus of GP1 (mucin-like region) and within the C-terminal third of the nucleoprotein sequence.  相似文献   

11.
Marzi A  Wegele A  Pöhlmann S 《Virology》2006,352(2):345-356
The filoviruses Ebolavirus (EBOV) and Marburgvirus (MARV) cause severe hemorrhagic fever in humans and are potential agents of biological warfare. The envelope glycoprotein (GP) of filoviruses mediates viral entry into cells and is an attractive target for therapeutic intervention and vaccine design. Here, we asked if the efficiency of virion incorporation of EBOV-GP impacts attachment and entry into target cells and modulates susceptibility to neutralizing antibodies. In order to control the level of EBOV-GP expression, we generated cell lines expressing the GPs of the four known EBOV subspecies in an inducible fashion. Regulated expression of GP on the cell surface allowed production of reporter viruses harboring different amounts of GP. A pronounced reduction of virion incorporation of EBOV-GP had relatively little effect on virion infectivity, suggesting that only a few copies of GP might be sufficient for efficient engagement of cellular receptors. In contrast, optimal interactions with cellular attachment factors like the DC-SIGN protein required incorporation of high amounts of GP. Antibody-mediated neutralization of virions bearing high amounts of GP was slightly more efficient than neutralization of virions harboring low amounts of GP, suggesting that the efficiency of GP incorporation into virions might modulate susceptibility to neutralizing antibodies. Finally, regulated expression of GP in permissive 293 cells did not reduce EBOV-GP-driven infection but diminished vesicular stomatitis virus GP (VSV-G) and amphotropic murine leukemia virus (A-MLV) GP mediated entry in a dose-dependent manner. Therefore, intracellular GP does not seem to downmodulate expression of its receptor(s) but might alter expression and/or function of molecules involved in VSV-G and A-MLV-GP-dependent entry. Our results suggest that the efficiency of virion incorporation of GP could impact EBOV attachment to target cells and might modulate control of viral spread by the humoral immune response.  相似文献   

12.
Arenaviruses and filoviruses are capable of causing hemorrhagic fever syndrome in humans. Limited therapeutic and/or prophylactic options are available for humans suffering from viral hemorrhagic fever. In this report, we demonstrate that pre-treatment of host cells with the kinase inhibitors genistein and tyrphostin AG1478 leads to inhibition of infection or transduction in cells infected with Ebola virus, Marburg virus, and Lassa virus. In all, the results demonstrate that a kinase inhibitor cocktail consisting of genistein and tyrphostin AG1478 is a broad-spectrum antiviral that may be used as a therapeutic or prophylactic against arenavirus and filovirus hemorrhagic fever.  相似文献   

13.
Yechiel Becker 《Virus genes》1996,13(3):189-201
The primary amino acid sequences of the proteins coded by Marburg and Ebola-Zaire filoviruses were studied by computer programs to search for putative proteolytic cleavages which yield nonapeptides with motifs of binding to known HLA class I haplotypes. The computer analyses predicted that numerous nonapeptides with motifs to bind HLA class I A68 and A2 haplotypes were detected. A few nonapeptides with motifs HLA class I A24, B8, B27 and B35 were predicted in Marburg virus proteins. A similar finding is reported for Ebola-Zaire viral proteins (the viral polymerase was not studied). The search for antigenic domains that may induce the humoral immune response in the viral glycoproteins was based on computer analyses of the physical properties and antigenicity predictions of amino acids in certain domains of the primary amino acid sequences. Twelve putative antigenic domains were detected in Marburg virus glycoprotein and 11 putative antigenic domains in Ebola-Zaire virus glycoprotein. Despite the marked differences in the primary amino acid sequences in the putative antigenic domains of the two viral glycoproteins, 8 antigenic domains were found to have similar locations in the viral glycoproteins of the two viruses. Each pair of antigenic domains resemble each other in the physical properties of the amino acids that are different. These computer analyses may provide an approach to developing synthetic peptides capable of induction of both the cellular and humoral responses to protect against infection with Marburg or Ebola viruses.  相似文献   

14.
Ye L  Lin J  Sun Y  Bennouna S  Lo M  Wu Q  Bu Z  Pulendran B  Compans RW  Yang C 《Virology》2006,351(2):260-270
Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.  相似文献   

15.
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.  相似文献   

16.
The arenavirus family contains several important human pathogens including Lassa fever virus (LASV), lymphocytic choriomeningitis virus (LCMV) and the New World clade B viruses Junin (JUNV) and Machupo (MACV). Previously, alpha-dystroglycan (alpha-DG) was identified as a receptor recognized by LASV and certain strains of LCMV. However, other studies have suggested that alpha-DG is probably not used by the clade B viruses, and the receptor(s) for these pathogens is currently unknown. Using pseudotyped retroviral vectors displaying arenavirus glycoproteins (GPs), we are able to explore the role played by the GP in viral entry in the absence of other viral proteins. By examining the ability of the vectors to transduce DG knockout murine embryonic stem (ES) cells, we have confirmed that LASV has an absolute requirement for alpha-DG in these cells. However, the LCMV GP can still direct substantial entry into murine ES cells in the absence of alpha-DG, even when the GP from the clone 13 variant is used that has previously been reported to be highly dependent on alpha-DG for entry. We also found that neither LASV or LCMV pseudotyped vectors were able to transduce human or murine lymphocytes, presumably due to the glycosylation state of alpha-DG in these cells. In contrast, the JUNV and MACV GPs displayed broad tropism on human, murine and avian cell types, including lymphocytes, and showed no requirement for alpha-DG in murine ES cells. These findings highlight the importance of molecules other than alpha-DG for arenavirus entry. An alternate receptor is present on murine ES cells that can be used by LCMV but not by LASV, and which is not available on human or murine lymphocytes, while a distinct and widely expressed receptor(s) is used by the clade B viruses.  相似文献   

17.
For more than 30 years the filoviruses, Marburg virus and Ebola virus, have been associated with periodic outbreaks of hemorrhagic fever that produce severe and often fatal disease. The filoviruses are endemic primarily in resource‐poor regions in Central Africa and are also potential agents of bioterrorism. Although no vaccines or antiviral drugs for Marburg or Ebola are currently available, remarkable progress has been made over the last decade in developing candidate preventive vaccines against filoviruses in nonhuman primate models. Due to the generally remote locations of filovirus outbreaks, a single‐injection vaccine is desirable. Among the prospective vaccines that have shown efficacy in nonhuman primate models of filoviral hemorrhagic fever, two candidates, one based on a replication‐defective adenovirus serotype 5 and the other on a recombinant VSV (rVSV), were shown to provide complete protection to nonhuman primates when administered as a single injection. The rVSV‐based vaccine has also shown utility when administered for postexposure prophylaxis against filovirus infections. A VSV‐based Ebola vaccine was recently used to manage a potential laboratory exposure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Wang Z  Nie Y  Wang P  Ding M  Deng H 《Virology》2004,330(1):332-341
Classical swine fever virus (CSFV) is the causative agent of classical swine fever. Its envelope comprises glycoproteins E(rns), E1, and E2. In this study, we showed that the unmodified CSFV glycoproteins could incorporate into the HIV core to generate an infectious CSFV pseudotyped virus. The infection was specific to several porcine cell lines, and could be neutralized by anti-E2 monoclonal antibodies (mAbs) completely and by anti-E(rns) mAbs partially, indicating that this pseudotyped virus can mimic the early infection steps of parental CSFV. To investigate the specific role of each envelope protein involved in viral entry, a series of pseudotyped viruses were generated bearing CSFV glycoproteins in various combinations. It was found that specific infectivity was also achieved with non-E(rns) pseudotyped virus carrying E1 and E2 glycoproteins. This indicated that E1 and E2 are sufficient to mediate CSFV entry, and E(rns) is not indispensable in this process.  相似文献   

19.
Using site-directed mutagenesis and retroviral vector pseudotyping of the wild type or mutated glycoprotein of Zaire ebolavirus (ZEBOV), we analyzed 15 conserved residues in the N-terminus of the filovirus glycoprotein 1 (GP1) in order to identify residues critical for cell entry. Results from infectivity assays and Western blot analyses identified two phenylalanine residues at positions 88 and 159 that appear to be critical for ZEBOV entry in vitro. We extended this observation by introduction of alanines at either position 88 or 159 of Ivory Coast Ebolavirus (CIEBOV) and observed the same phenotype. Further, we showed that introduction of each of the two mutations in a recombinant full-length clone of ZEBOV (Mayinga strain) that also carried the coding sequence for GFP could not be rescued, suggesting the mutants rendered the virus non-infectious. The two phenylalanines that are critical for both ZEBOV and CIEBOV entry are found in two linear domains of GP1 that are highly conserved among filoviruses, and thus could provide a target for rational development of broadly cross-protective vaccines or antiviral therapies.  相似文献   

20.
Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号