首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小白蛋白 (PV)神经元作为杏仁核簇基底外侧核 (BL)中局部神经环路成分 ,对杏仁核的情绪、学习和记忆过程等机能发挥重要作用。为探讨 BL中 PV中间神经元的突触形成状态 ,本研究用抗 PV抗体标示 PV神经元 ,以抗多巴胺 (DA)抗体标示多巴胺能轴突及末梢作为传入纤维的标志 ,对大鼠杏仁核做了免疫电镜双标记研究。结果表明 ,突触主要见于 PV免疫阳性神经元的树突结构上 ,包括从树突干到中间及小型树突的各级分支。其中 68%的突触由未标记的轴突终末形成 ,3 2 %分别由 DA(2 1% )和 PV(11% )免疫阳性轴突末梢形成。 PV免疫阳性神经元与未标记末梢所形成的突触大多数是对称性的 ,仅少数为非对称性。这些非对称性突触见于 PV神经元的树突小棘和连续性突触 ,即一个未标记轴突末梢与另一个未标记轴突末梢形成对称性突触 ,后者又与 PV免疫阳性神经元树突形成非对称性突触。 DA和 PV免疫阳性神经元轴突终末与 PV免疫阳性神经元树突之间的突触全部是对称性的。以上结果表明 ,大鼠杏仁核 BL 的 PV中间神经元受非对称性突触所构成的包括多巴胺系统在内的抑制性神经网络支配  相似文献   

2.
The presence of the calcium-binding protein (CaBP) parvalbumin (PV) in the neuronal elements of the cat's dorsal claustrum was studied by immunohistochemistry at the light- and electron-microscopic level. PV-immunoreactive neurons and fibers were detected in all parts of the claustrum. The PV-immunoreactive neurons were divided into several subtypes according to their size and shape. Approximately 7% of all PV-immunoreactive neurons were classified as large, while approximately half of the labeled neurons were medium-sized. The small PV-immunoreactive neurons were 45% of the total PV-immunoreactive neuronal population. Ultrastructurally, many spiny and aspiny dendrites were heavily immunolabeled, and the reaction product was present in dendritic spines as well. Several types of synaptic boutons containing reaction product were also found. These boutons terminated on both labeled and unlabeled postsynaptic targets (soma, dendrites, etc.), forming asymmetric or symmetric synapses. Approximately 70% of all PV-immunoreactive terminals contained round synaptic vesicles and formed asymmetric synapses. The majority of these boutons were of the 'large round' type. A lesser percentage were of the 'small round' type. This paper represents the first study demonstrating the existence of PV, a CaBP, in the cat claustrum, and its distribution at the light and electron microscope level. Beyond the relevance of this research from the standpoint of adding to the paucity of literature on PV immunoreactivity in the claustrum of various other mammals (e.g. monkey, rabbit, rat, mouse), it is of particular significance that the cat claustrum is more similar to the rabbit claustrum than to any other mammalian species studied thus far, noted by the existence of four distinct morphologic subtypes. We also demonstrate a lack of intrinsic, and possibly functional, heterogeneity as evidenced by the uniform distribution of PV throughout the cat claustrum, across the four cell subtypes (i.e. inhibitory interneurons as well as projection neurons). Indeed, the association with, and influence of, the cat claustrum on diverse multisensory mechanisms may have more to do with its afferent than efferent relationships, which speaks strongly for its importance in the sensory hierarchy. Exactly what role PV plays in the claustrum is subject to discussion, but it can be postulated that, since CaBP is associated with GABAergic interneurons, synaptogenesis and neuronal maturation, it may also serve as a neuroprotectant, particularly with regard to pathologies associated with the aging process, such as in Alzheimer's disease.  相似文献   

3.
In the olfactory system of Drosophila melanogaster, axons of olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons typically target 1 of approximately 50 glomeruli. Dscam, an immunoglobulin superfamily protein, acts in ORNs to regulate axon targeting. Here we show that Dscam acts in projection neurons and local interneurons to control the elaboration of dendritic fields. The removal of Dscam selectively from projection neurons or local interneurons led to clumped dendrites and marked reduction in their dendritic field size. Overexpression of Dscam in projection neurons caused dendrites to be more diffuse during development and shifted their relative position in adulthood. Notably, the positional shift of projection neuron dendrites caused a corresponding shift of its partner ORN axons, thus maintaining the connection specificity. This observation provides evidence for a pre- and postsynaptic matching mechanism independent of precise glomerular positioning.  相似文献   

4.
A consortium of inhibitory neurons control the firing patterns of pyramidal cells, but their specific roles in the behaving animal are largely unknown. We performed simultaneous physiological recordings and optogenetic silencing of either perisomatic (parvalbumin (PV) expressing) or dendrite-targeting (somatostatin (SOM) expressing) interneurons in hippocampal area CA1 of head-fixed mice actively moving a treadmill belt rich with visual-tactile stimuli. Silencing of either PV or SOM interneurons increased the firing rates of pyramidal cells selectively in their place fields, with PV and SOM interneurons having their largest effect during the rising and decaying parts of the place field, respectively. SOM interneuron silencing powerfully increased burst firing without altering the theta phase of spikes. In contrast, PV interneuron silencing had no effect on burst firing, but instead shifted the spikes' theta phase toward the trough of theta. These findings indicate that perisomatic and dendritic inhibition have distinct roles in controlling the rate, burst and timing of hippocampal pyramidal cells.  相似文献   

5.
-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate excitatory neurotransmission in the central nervous system, and contain combinations of four subunits (GluR1-4). We developed a GluR3-specific monoclonal antibody and quantified the cellular distribution of GluR3 in rat hippocampus. GluR3 immunoreactivity was detected in all pyramidal neurons and most interneurons. In addition, we found a subset of parvalbumin (PV)-containing interneurons in the hippocampus and neocortex that was notable for its intense GluR3 immunoreactivity and lack of GluR2 immunoreactivity. Such an expression pattern of AMPA receptor subunits is likely to make these interneurons selectively vulnerable to excitotoxicity.  相似文献   

6.
The claustrum (CLA) is a subcortical structure that is reciprocally and topographically connected with the cerebral cortex. The complexity of the cerebral cortex varies dramatically across mammals, raising the question of whether there might also be differences in CLA organization, circuitry, and function. Species variations in the shape of the CLA are well documented. Studies in multiple species have identified subsets of neurochemically distinct interneurons; some data suggest species variations in the nature, distribution, and numbers of different neurochemically identified neuronal types. We have studied the CLA in a smooth-brained primate, the squirrel monkey, using Nissl-stained sections and immunohistochemistry. We found that the shape of the CLA is different from that in other primates. We found several different neurochemically defined populations of neurons equally distributed throughout the CLA. Immunoreactivity to GAD65/67 and GABAA receptors suggest that GABAergic interneurons provide widespread inhibitory input to CLA neurons. Immunoreactivity to glutamate transporters suggests widespread and overlapping excitatory input from cortical and possibly subcortical sources. Comparison of CLA organization in different species suggests that there may be major species differences both in the organization and in the functions of the CLA. Anat Rec, 303:1439–1454, 2020. © 2019 American Association for Anatomy  相似文献   

7.
目的:研究5-羟色胺3A型受体(5-HT3Areceptor;5-HT3AR)在杏仁体基底外侧核中间神经元内的表达。方法:以成年5-HT3AR-BACEGFP转基因小鼠作为材料,利用免疫组织化学技术在激光共聚焦显微镜下观察成年小鼠杏仁体基底外侧核中5-HT3AR在不同类型中间神经元内的表达。结果:杏仁体基底外侧核中分布着大量的5-HT3AR免疫阳性神经元。5-HT3AR在小鼠杏仁体基底外侧核中Calretinin(CR)、血管活性肠肽(Vasoactive in-testinal peptide,VIP)和Reelin免疫阳性的中间神经元中大量表达,而在Calbindin(CB)、Parvalbumin(PV)或Neu-ropeptide Y(NPY)免疫阳性的中间神经元中很少表达。结论:杏仁体基底外侧核中存在5-HT3AR免疫阳性中间神经元,不同类型的中间神经元中5-HT3AR的表达比例不同。  相似文献   

8.
Interactions between inhibitory interneurons and excitatory spiny neurons and also other inhibitory cells represent fundamental network properties which cause the so-called thalamo-cortical response transformation and account for the well-known receptive field differences of cortical layer IV versus thalamic neurons. We investigated the currently largely unknown morphological basis of these interactions utilizing acute slice preparations of barrel cortex in P19-21 rats. Layer IV spiny (spiny stellate, star pyramidal and pyramidal) neurons or inhibitory (basket and bitufted) interneurons were electrophysiologically characterized and intracellularly biocytin-labeled. In the same slice, we stained parvalbumin-immunoreactive (PV-ir) interneurons as putative target cells after which the tissue was subjected to confocal image acquisition. Parallel experiments confirmed the existence of synaptic contacts in these types of connection by correlated light and electron microscopy. The axons of the filled neurons differentially targeted barrel PV-ir interneurons: (1) The relative number of all contacted PV-ir cells within the axonal sphere was 5–17% for spiny (n = 10), 32 and 58% for basket (n = 2) and 12 and 13% for bitufted (n = 2) cells. (2) The preferential subcellular site which was contacted on PV-ir target cells was somatic for four and dendritic for five spiny cells; for basket cells, there was a somatic and for bitufted cells a dendritic preference in each examined case. (3) The highest number of contacts on a single PV-ir cell was 9 (4 somatic and 5 dendritic) for spiny neurons, 15 (10 somatic and 5 dendritic) for basket cells and 4 (1 somatic and 3 dendritic) for bitufted cells. These patterns suggest a cell type-dependent communication within layer IV microcircuits in which PV-ir interneurons provide not only feed-forward but also feedback inhibition thus triggering the thalamo-cortical response transformation.  相似文献   

9.
Virtually nothing is known about the morphology of cortical neurons in the elephant. To this end, the current study provides the first documentation of neuronal morphology in frontal and occipital regions of the African elephant (Loxodonta africana). Cortical tissue from the perfusion-fixed brains of two free-ranging African elephants was stained with a modified Golgi technique. Neurons of different types (N=75), with a focus on superficial (i.e., layers II-III) pyramidal neurons, were quantified on a computer-assisted microscopy system using Neurolucida software. Qualitatively, elephant neocortex exhibited large, complex spiny neurons, many of which differed in morphology/orientation from typical primate and rodent pyramidal neurons. Elephant cortex exhibited a V-shaped arrangement of bifurcating apical dendritic bundles. Quantitatively, the dendrites of superficial pyramidal neurons in elephant frontal cortex were more complex than in occipital cortex. In comparison to human supragranular pyramidal neurons, elephant superficial pyramidal neurons exhibited similar overall basilar dendritic length, but the dendritic segments tended to be longer in the elephant with less intricate branching. Finally, elephant aspiny interneurons appeared to be morphologically consistent with other eutherian mammals. The current results thus elaborate on the evolutionary roots of Afrotherian brain organization and highlight unique aspects of neural architecture in elephants.  相似文献   

10.
Differences in the developmental origin and relative proportions of biochemically distinct classes of cortical neurons have been found between rodents and primates. In addition, species differences in the properties of certain cell types, such as neurogliaform cells, have also been reported. Consequently, in this study we compared the anatomical and physiological properties of parvalbumin (PV)-positive basket interneurons in the prefrontal cortex of macaque monkeys and rats. The somal size, total dendritic length, and horizontal and vertical spans of the axonal arbor were similar in monkeys and rats. Physiologically, PV basket cells could be identified as fast-spiking interneurons in both species, based on their short spike and high-frequency firing without adaptation. However, important interspecies differences in the intrinsic physiological properties were found. In monkeys, basket cells had a higher input resistance and a lower firing threshold, and they generated more spikes at near-threshold current intensities than those in rats. Thus monkey basket cells appeared to be more excitable. In addition, rat basket cells consistently fired the first spike with a substantial delay and generated spike trains interrupted by quiescent periods more often than monkey basket cells. The frequency of miniature excitatory postsynaptic potentials in basket cells was considerably higher in rats than that in monkeys. These differences between rats and monkeys in the electrophysiological properties of PV-positive basket cells may contribute to the differential patterns of neuronal activation observed in rats and monkeys performing working-memory tasks.  相似文献   

11.
The goal of this study was to examine the morpho-physiologic changes in the dorsal subiculum network in the mouse model of temporal lobe epilepsy using extracellular recording, juxtacellular and immunofluorescence double labeling, and anterograde tracing methods. A significant loss of total dorsal subicular neurons, particularly calbindin, parvalbumin (PV) and immunopositive interneurons, was found at 2 months after pilocarpine-induced status epilepticus (SE). However, the sprouting of axons from lateral entorhinal cortex (LEnt) was observed to contact with surviving subicular neurons. These neurons had two predominant discharge patterns: bursting and fast irregular discharges. The bursting neurons were mainly pyramidal cells, and their dendritic spine density and bursting discharge rates were increased significantly in SE mice compared with the control group. Fast irregular discharge neurons were PV-immunopositive interneurons and had less dendritic spines in SE mice when compared with the control mice. When LEnt was stimulated, bursting and fast irregular discharge neurons had much shorter latency and stronger excitatory response in SE mice compared with the control group. Our results illustrate that morpho-physiologic changes in the dorsal subiculum could be part of a multilevel pathologic network that occurs simultaneously in many brain areas to contribute to the generation of epileptiform activity.  相似文献   

12.
Interneurons expressing the calcium-binding protein parvalbumin (PV) are a critical component of the inhibitory circuitry of the basolateral nuclear complex (BLC) of the mammalian amygdala. These neurons form interneuronal networks interconnected by chemical and electrical synapses, and provide a strong perisomatic inhibition of local pyramidal projection neurons. Immunohistochemical studies in rodents have shown that most parvalbumin-positive (PV+) cells are GABAergic interneurons that co-express the calcium-binding protein calbindin (CB), but exhibit no overlap with interneuronal subpopulations containing the calcium-binding protein calretinin (CR) or neuropeptides. Despite the importance of identifying interneuronal subpopulations for clarifying the major players in the inhibitory circuitry of the BLC, very little is known about these subpopulations in primates. Therefore, in the present investigation dual-labeling immunofluorescence histochemical techniques were used to characterize PV+ interneurons in the basal and lateral nuclei of the monkey amygdala. These studies revealed that 90–94% of PV+ neurons were GABA+, depending on the nucleus, and that these neurons constituted 29–38% of the total GABAergic population. CB+ and CR+ interneurons constituted 31–46% and 23–27%, respectively, of GABAergic neurons. Approximately one quarter of PV+ neurons contained CB, and these cells constituted one third of the CB+ interneuronal population. There was no colocalization of PV with the neuropeptides somatostatin or cholecystokinin, and virtually no colocalization with CR. These data indicate that the neurochemical characteristics of the PV+ interneuronal subpopulation in the monkey BLC are fairly similar to those seen in the rat, but there is far less colocalization of PV and CB in the monkey. These findings suggest that PV+ neurons are a discrete interneuronal subpopulation in the monkey BLC and undoubtedly play a unique functional role in the inhibitory circuitry of this brain region.  相似文献   

13.
目的探讨局灶性皮质发育不良(FCD)中N-甲基-D-天冬氨酸(NMDA)受体亚单位组成的变化,并探讨其NMDA受体及微小清蛋白(PV)阳性神经元分布与表达的特点。方法对20例包括FCD全部4种亚型的癫痫手术切除标本及4例对照进行NMDA受体亚单位NR1、NR2A/B及PV免疫组织化学EnVision二步法染色。结果发现NR1亚单位在FCD巨大神经元及形态异常神经元胞质中的表达有增强;NR2A/B亚单位在FCD中的未成熟神经元、巨大神经元及形态异常神经元中有显著表达,并以未成熟神经元的胞质及突起内为著。与对照相比,FCD皮层的PV阳性神经元和纤维呈分散排列,PV阳性神经元的数量及背景染色都有显著下降,上述改变以FCDⅡ型的病灶处为著。结论FCD的异常神经元中有NMDA受体亚单位NR1和NR2A/B表达增加,同时在上述皮层中PV阳性神经元及纤维表达下调且分散。  相似文献   

14.
Summary The distribution of parvalbumin-(PV) immunopositive cell bodies and fibres in the cerebellum of two species of freshwater teleosts (Salmo gairdneri and Barbus meridonalis) was studied using a monoclonal antibody and the avidin-biotin immunoperoxidase technique. A clear laminated pattern of PV immunoreactivity was observed. After PV-immunostaining, Purkinje cells were strongly labelled in their cell bodies, the initial segments of the axons and the dendritic trees. In the molecular layer, only the dendritic branches of the Purkinje cells were PV-positive. In the granule cell layer, extensive axonal plexuses and scattered cell bodies were observed. Most of the immunopositive perikarya were unequivocally identified as displaced Purkinje cells, whereas a reduced number of smaller neurons with unstained dendrites was also found. Eurydendroid cells, the efferent neurons of the teleost cerebellum, were negative; however, they were impinged upon by numerous PV-positive boutons, corresponding to terminals of Purkinje cell axons. Parallel fibres and climbing fibres, as well as stellate cells and granule cells were negative. Basket cells (or deep stellate cells) whose existence in the teleost cerebellum is discussed, were also not observed. The immunoreactivity distribution pattern for PV in the teleost cerebellum differs from previous observations on the localization of this protein in the cerebellum of amniotes.  相似文献   

15.
The laminar distribution and morphological features of parvalbumin-immunoreactive [PV(+l)] neurons, one of the subpopulations of GABAergic neurons, were studied in the rat olfactory bulb at a light microscopic level. In the main olfactory bulb of adult rats, PV(+) neurons were mainly located in the external plexiform layer (EPL), and a few were scattered in the glomerular layer (GL), mitral cell layer (ML), and granule cell layer (GRL); whereas PV(+) neurons were rarely seen in the accessory olfactory bulb. The inner and outer sublayers of the EPL (ISL and OSL) appeared to be somewhat different in the distribution of PV(+) somata and features of PV(+) processes. PV(+) somata were located throughout the OSL, and PV(+) processes intermingled with one another, making a dense meshwork in the OSL; whereas, in the ISL, PV(+) somata were mainly located near the inner border of the EPL, and PV(+) processes made a sparser meshwork than that in the OSL. PV(+) neurons in the EPL were apparently heterogeneous in their structural features and appeared to be classifiable into several groups. Among them there appeared five distinctive types of PV(+) neurons. The most prominent group of PV(+) neurons in the OSL were superficial short-axon cells, located in the superficial portion of this sublayer and giving rise to relatively thick processes, in horizontal or oblique directions, which usually bore spines and varicosities. Another prominent group of PV(+) neurons extended several short, branched dendrites with spines and varicosities, which appeared to intermingle with one another, making a relatively small, spherical or ovoid dendritic field around the cell bodies; most of them resembled Van Gehuchten cells reported in previous Golgi studies. A third distinctive and most numerous group of PV(+) neurons were of the multipolar type; their somata and processes were located throughout the EPL. Their relatively smooth processes with frequent varicosities and a few spines were extended horizontally or diagonally throughout the EPL. A fourth group, which could be a subtype of the multipolar type, were located in or just above th ML and extended several thin, smooth dendrites in the EPL, some of which appeared to reach the border between the GL and EPL. Occasionally, axonlike processes arose from their cell bodies and extended into the ML. This fourth type of PV(+) neuron was named inner short-axon cells. A fifth group of neuron was located in the ML; processes of these neurons were extended horizontally, so they were named inner horizontal cells. PV(+) processes from the fourth and the fifth group of cells appeared to make contacts on mitral cell somata. In the GL some presumably periglomerular cells were also PV(+). In the GRL, PV(+) neurons were small in number, but they were also heterogeneous in their structural features; Some were identified as Golgi cells. This study shows a tremendous heterogeneity in morphological features of a chemically defined subpopulation of GABAergic interneurons in the olfactory bulb.  相似文献   

16.
Transforming synaptic input into action potential output is a fundamental function of neurons. The pattern of action potential output from principal cells of the mammalian hippocampus encodes spatial and nonspatial information, but the cellular and circuit mechanisms by which neurons transform their synaptic input into a given output are unknown. Using a combination of optical activation and cell type-specific pharmacogenetic silencing in vitro, we found that dendritic inhibition is the primary regulator of input-output transformations in mouse hippocampal CA1 pyramidal cells, and acts by gating the dendritic electrogenesis driving burst spiking. Dendrite-targeting interneurons are themselves modulated by interneurons targeting pyramidal cell somata, providing a synaptic substrate for tuning pyramidal cell output through interactions in the local inhibitory network. These results provide evidence for a division of labor in cortical circuits, where distinct computational functions are implemented by subtypes of local inhibitory neurons.  相似文献   

17.
Although the detailed structure and function of the claustrum remain enigmatic, its extensive reciprocal connection with the cortex suggests a role in the integration of multisensory information.Claustrum samples, obtained from necropsy of four dogs, were formalin fixed for paraffin embedding. Sections were either stained for morpho-histological analysis or immunostained for parvalbumin (PV). We focused on PV because in cortical and hippocampal areas it is a marker of the fast-spiking interneurons which have an important role in the information transmission and processing. Soma area, perimeter and circularity were considered as morphological parameters to quantitatively group the PV positive somata by k-means clustering.The histological investigation revealed a superior pyramidoid puddle and a posterior puddle characterized by a “cloud” of neurons in its dorso-lateral part. Immunostaining showed positive somata and fibers throughout the rostro-caudal extent of the dog claustrum, localized principally in the dorsal region. k-Means clustering analysis enabled neuron classification according to size, identifying respectively big (radius = 11.42 ± 1.99 μm) and small (radius = 6.33 ± 1.08 μm) cells. No statistical differences in soma shape were observed. The topographical distribution of PV immunoreactivity suggests that the dog dorsal claustrum might be functionally related to the processing of visual inputs.Taken together our findings may help in the understanding the physiology of claustrum when compared with anatomical and functional data obtained in other species.  相似文献   

18.
19.
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) dynamically communicate visual information from the retina to the neocortex, and this process can be modulated via activation of metabotropic glutamate receptors (mGluRs). Neurons within dLGN express different mGluR subtypes associated with distinct afferent synaptic pathways; however, the physiological function of this organization is unclear. We report that the activation of mGluR(5), which are located on presynaptic dendrites of local interneurons, increases GABA output that in turn produces an increased inhibitory activity on proximal but not distal dendrites of dLGN thalamocortical neurons. In contrast, mGluR(1) activation produces strong membrane depolarization in thalamocortical neurons regardless of distal or proximal dendritic locations. These findings provide physiological evidence that mGluR(1) appear to be distributed along the thalamocortical neuron dendrites, whereas mGluR(5)-dependent action occurs on the proximal dendrites/soma of thalamocortical neurons. The differential distribution and activation of mGluR subtypes on interneurons and thalamocortical neurons may serve to shape excitatory synaptic integration and thereby regulate information gating through the thalamus.  相似文献   

20.
The hippocampus contains a heterogeneous population of interneurons. Parvalbumin (PV) positive neurons constitute an abundant subpopulation of cells that express GABA. The authors observed PV immunoreactivity in the hippocampal CA1 region and dentate gyrus of variously aged dogs. In 1-year-old dogs, PV immunoreactive neurons were detected in the stratum oriens of the CA1 region, and in the polymorphic layer of the dentate gyrus. In addition, weak PV immunoreactive fibers were observed in all layers in the CA1 region and dentate gyrus. In 3-year-old dogs, PV immunoreactivity was significantly higher in the CA1 region and dentate gyrus, and this was maintained in 10-year-old dogs. This finding suggests that PV immunoreactive interneurons may show high resistance to age-dependent neurodegenerative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号