首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed pre-T cell receptor α (pTα) gene expression in cells from various anatomical sites to investigate the lineage specificity of pTα RNA as well as its presence in pro-T cells and in sites of extrathymic T cell development. pTα RNA is found in precursors of αβ T cells but is absent from mature αβ T cells as well as T cells that express the γδ T cell receptor on the cell surface. pTα expression is exquisitely T lineage specific in that mature and immature B cells, myeloid cells, NK cells and pluripotent stem cells are pTα negative. On the other hand, pTα expression is found in pro-T cells outside the thymus as well as in intra- and extra-thymic sites of T cell development. The latter finding is consistent with the notion that early steps of T cell development within and outside the thymus may be similar.  相似文献   

2.
T cells belong to two separate lineages based on surface expression of αβ or γδ T cell receptors (TCR). Since during thymus development TCR β, γ, and δ genes rearrange before α genes, and γδ cells appear earlier than αβ cells, it has been assumed that αδ cells are devoid of TCR α rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic γδ cells undergo VJα rearrangements more frequently than immature αβ lineage thymic precursors. Sequence analysis shows VJα rearrangements in γδ cells to be mostly (70 %) nonproductive. Furthermore, VJα rearrangements in γδ cells are transcribed normally and, as shown by analysis of TCR β-/- mice, occur independently of productive VDJβ rearrangements. These data are interpreted in the context of a model in which precursors of αβ and γδ cells differ in their ability to express a functional pre-TCR complex.  相似文献   

3.
4.
Commitment of the αβ and γδ T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCRγδ-transgenic or TCRβ knockout mice, both of which are unable to generate TCRαβ-positive T cells, develop phenotypically αβ-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCRβ protein, the γδTCR can promote the development of αβ-like thymocytes, which, however, do not expand significantly and do not mature into γδ T cells. These results show that commitment to the αβ lineage can be determined independently of the isotype of the TCR, and suggest that αβ versus γδ T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCRγ and δ gene rearrangements on αβ T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.  相似文献   

5.
In conventional mice, the T cell receptor (TCR)αβ+ CD8αα+ and CD8αβ+ subsets of the intestinal intraepithelial lymphocytes (IEL) constitute two subpopulations. Each comprise a few hundred clones expressing apparently random receptor repertoires which are different in individual genetically identical mice (Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. and Kourilsky, P., J. Exp. Med. 1994. 180: 1345). We analyzed the repertoire diversity of sorted CD8αα and CD8αβ+ IEL populations from the small intestine of individual germ-free mice that contain ten times less TCRαβ+ T cells than conventional mice. The TCRβ repertoire of the CD8αα and the CD8αβ IEL populations of germ-free adult mice shows the same degree of oligoclonality as that of conventional mice. These results show that the intestinal microflora is not responsible for the repertoire oligoclonality of TCRαβ+ IEL. The presence of the microflora leads to an expansion of clones which arise independently of bacteria. To evaluate the degree of expansion of IEL clones in conventional mice, we went on to measure their clone sizes in vivo by quantitative PCR in the total and in adjacent sections of the small intestine of adult animals. We found that both the CD8αα and the CD8αβ TCRαβ IEL clones have a heterogeneous size pattern, with clones containing from 3 × 103 cells up to 1.2 × 106 cells, the clones being qualitatively and quantitatively different in individual mice. Cells from a given IEL clone are not evenly distributed throughout the length of the small intestine. The observation that the TCRαβ IEL populations comprise a few hundred clones of very heterogeneous size and distribution suggests that they arise from a limited number of precursors, which may be slowly but continuously renewed, and undergo extensive clonal expansion in the epithelium.  相似文献   

6.
We have previously reported that a subset of T cells in T cell receptor (TCR)-transgenic mice may express two different α chains on their surface. The expression of two functional α chains has also been demonstrated for human peripheral blood T cells. In this report, we show that a proportion of normal murine lymph node T cells express two functional α chains on their surface. The extrapolated frequency of these cells present in the normal repertoire ranges from 7–21%, with an average of 15%. Our analysis of a small number of antigen-specific T cell clones suggests that the frequency of antigen-responsive cells expressing two surface α chains is relatively low. This raises the possibility that dual α chain T cells may have a selective disadvantage in responding to specific antigen.  相似文献   

7.
8.
An interleukin (IL)-4 dependant mouse T cell clone 8.2 derived from an IL-2-dependent T cell line was characterized. As measured by flow cytometric analysis and Northern blotting, it expresses IL-2 receptor β (IL-2Rβ) and γ (IL-2Rγ) chains, but has lost expression of IL-2 receptor α chain (IL-2Rα). To investigate the properties of the mouse IL-2Rβγ complex and the role of IL-2Rα gene expression, this clone was further studied. T cell clone 8.2 has lost the capacity to bind 125I-labeled human IL-2 under experimental conditions able to detect intermediate-affinity IL-2R in human cells. Mouse IL-2 is unable to block the binding of mAb TMβ1 to 8.2 cells. Under the same experimental conditions, mouse IL-2 blocks the binding of TMβ1 to C30-1 cells expressing the IL-2αβγ complex. Since TMβ1 recognizes an epitope related to the IL-2 binding site of IL-2Rβ, these results can be taken as a demonstration that mouse IL-2Rβγ does not bind mouse IL-2. Furthermore, T cell clone 8.2 does not proliferate in response to recombinant mouse or human IL-2. On the other hand, T cell transfectant lines expressing heterospecific receptors made of the human IL-2Rβ and mouse IL-2Rγ chains bind 125I-labeled human IL-2 and proliferate in response to IL-2. This establishes the difference between mouse and human IL-2Rβ chains. Transfection of T cell clone 8.2 with human IL-2Rα genes restores their capacity to proliferate in response to IL-2. In addition, all transfectants grown in IL-2 express the endogeneous mouse IL-2Rα chain. When grown in IL-4, the endogeneous mouse IL-2Rα gene remains silent in all these transfectants. These results show that, contrary to the human, the mouse does not express an intermediate-affinity IL-2R. Expression of the IL-2Rα gene is therefore required for the formation of the functional IL-2R in mice.  相似文献   

9.
We investigated the ability of the most common TCR‐γ and δ chains to express on the cell surface. Vγ1Cγ4 and Vγ7Cγ1 chains paired with all TCR‐δ chains tested, whereas Vγ4Cγ1 chains were found with Vδ4 and Vδ5, but not with Vδ2 or Vδ6 chains, and Vγ2Cγ2 chains were expressed only with Vδ5. Mapping studies showed that up to four polymorphic residues influence the different co‐expressions of Vγ1 and Vγ2 chains with Vδ chains. Unexpectedly, these residues are not located in the canonical γ/δ interface, but in the outer part of the γδ TCR complex exposed to the solvent. Expression of functional Vδ4 or Vδ6 chains in Vγ2/Vδ5+ cells or of functional Vγ2Cγ2 in Vγ1+ cells reduced cell‐surface expression of the γδ TCR. Taken together, these data show that (i) the Vγ/Vδ repertoire of mouse γδ T cells is reduced by physical constraints in their associations. (ii) Lack of Vγ2/Vδ expression is due to the formation of aberrant TCR complexes, rather than to an intrinsic inability of the chains to pair and (iii) despite not being expressed at the cell surface, the presence of a functionally rearranged Vγ2 chain in γδ T cells results in reduced TCR levels.  相似文献   

10.
Tuberculous pleurisy is a naturally occurring site of Mycobacterium tuberculosis (Mtb) infection. Herein, we describe the expression of activation, natural killer (NK) and cell migration markers, as well as effector functions from γδT cells in peripheral blood (PB) and pleural effusion (PE) from tuberculosis patients (TB). We observed a decreased percentage of circulating γδT from TB patients and differential expression of NK as well as of chemokine receptors on PB and PE. Two subsets of γδT cells were differentiated by the CD3/γδT cell receptor (γδTCR) complex. The γδTCRlow subset had a higher CD3 to TCR ratio and was enriched in Vδ2+ cells, whereas most Vδ1+ cells belonged to the γδTCRhigh subset. In PB from TB, most γδTCRhigh were CD45RA+CCR7 and γδTCRlow were CD45RA+/?CCR7+CXCR3+. In the pleural space the proportion of CD45RACCR7+CXCR3+ cells was higher. Neither spontaneous nor Mtb‐induced interferon (IFN)‐γ production was observed in PB‐γδT cells from TB; however, PE‐γδT cells showed a strong response. Both PB‐ and PE‐γδ T cells expressed surface CD107a upon stimulation with Mtb. Notably, PE‐γδTCRlow cells were the most potent effector cells. Thus, γδT cells from PB would acquire a further activated phenotype within the site of Mtb infection and exert full effector functions. As γδT cells produce IFN‐γ within the pleural space, they would be expected to play a beneficial role in tuberculous pleurisy by helping to maintain a T helper type 1 profile.  相似文献   

11.
We have observed that CD4 T lymphocytes from human immunodeficiency virus (HIV)-infected patients marginally express interleukin-2 receptor (IL-2R)β and IL-2Rγ chains which are essential for IL-2 signal transduction. To analyze this observation further, we studied the influence of gp120 on the cell surface expression of IL-2Rβ and IL-2Rγ by purified CD4 lymphocytes in vitro. Cross-linking of the T cell receptors of these lymphocytes initiates entry into the cell cycle as measured by CD69 and CD71 cell surface expression and [3H]thymidine incorporation. It also induces the cell surface expression of IL-2Rβ and IL-2Rγ. We have shown that treatment of the CD4 T lymphocytes with HIV-1 gp120 before anti-CD3 stimulation impedes cell cycle progression as measured by reduced CD71 expression and inhibition of [3H]thymidine incorporation. Furthermore, cell surface expression of IL-2Rβ and IL-2Rγ subunits, which form the functional intermediate-affinity IL-2R, are significantly inhibited. More importantly, addition of exogenous IL-2 does not restore the proliferation of the CD4 T cells treated with gp120, suggesting that cells are anergic and/or that the remaining IL-2R are not functional. This is the first study of IL-2Rβ and IL-2Rγ dysregulation in the context of HIV infection and shows that CD4 is also involved in IL-2R expression.  相似文献   

12.
13.
The initial T cell receptor (TCR) α gene rearrangements were analyzed in fetal and neonatal thymocyte hybridomas by Southern blotting. Interestingly, in 30% of all thymocyte hybridomas and in all fetal day 16 thymocyte hybridomas the most proximal Jα50 (ΨJα) gene was rearranged. This rearrangement was found on one chromosome only and mostly in association with a δ rearrangement on the homologous chromosome. Jα50 was rearranged to multiple target genes based on the variable size of the restriction fragments. In addition, δ rearrangement was found with a concomitant α rearrangement in the majority of hybridomas and it was not only associated with Jα50 but with several other rearranged Jα genes as well. Our results clearly demonstrate that T cell precursors are not pre-committed to either δ or α rearrangement but a flexible progenitor responds to multiple regulatory signals during T cell differentiation and they do not support the notion that δrec-ΨJα rearrangement is required for cell commitment to TCR α gene rearrangement.  相似文献   

14.
15.
16.
The function of the Fc receptors γ chain (FcRγ) for the expression of the T cell receptor (TCR) complex and for T cell development, especially for T cells localized in epithelia, was investigated by analyzing FcRγ-deficient mice. In wildtype mice, CD8αα+β?TCRαβ+ T cells of intestinal intraepithelial lymphocytes (i-IEL) utilized CD3ζ homodimers and ζ-FcRγ heterodimers, whereas CD8α α+β?TCRγδ+ i-IEL used ζ-FcRγ and FcRγ homodimers in the TCR complex. On the other hand, these T cells in FcRγ-deficient mice contained only ζ homodimers. The surface expression of the TCR complex was reduced in CD8αα+β?i-IEL and dendritic epidermal T cells (DETC) in these mice, whereas the development of these T cells was normal. The degree of reduction appeared to depend on the expression level of FcRγ. In contrast to these populations, TCRγδ+ intraepithelial T cells in reproductive organs (r-IEL) were dramatically decreased, suggesting that the development of r-IEL is FcRγ-dependent, probably due to the predominant usage of FcRγ homodimers in the TCR complex. These results indicate that the FcRγ chain contributes differently to the TCR expression and to the development of T cells localized in epithelia.  相似文献   

17.
Three monoclonal antibodies (mAb; SC-6, SC-12, and SC-29) reactive with the γδ T cell-restricted antigen WC1 were obtained immunizing mice with an ovine interleukin (IL)-2-dependent γδ T cell line. These mAb strongly inhibited DNA synthesis in IL-2-dependent γδ T cell lines with cell cycle arrest in G0/G1 phase, but did not induce apoptosis. The mAb-induced growth arrest was reversible, either by removing the mAb or by co-culture with mitogen or anti-CD3 in the presence of IL-2. In contrast, addition of phorbol ester, ionomycin and IL-2 had no effect on the mAb-induced growth arrest. The observations define a biologically important role for the cell surface molecule WC1 in the regulation of γδ T cell proliferation and also provide a suitable system to study the relevant signal transduction events.  相似文献   

18.
We examined T cell development and T cell repertoire in transgenic mice expressing a single T cell receptor (TCR) α chain derived from the H-2Db -lymphocytic choriomeningitis virus (LCMV)-specific cytolytic T lymphocyte (CTL) clone P14. To generate these α P14 mice, mice transgenic for the P14 TCR α chain were backcrossed to TCR α-deficient mice. Thymi from α P14 mice exhibited a marked decrease of mature CD4+8? and CD8+4? single-positive thymocytes comparable to thymi from TCR α-deficient mice. Correspondingly, the number of peripheral T cells was reduced in the CD4 (tenfold) and in the CD8 (twofold) subsets when compared to normal mice. T cells from α P14 mice generated a primary anti-LCMV CTL response when stimulated in vitro with LCMV in contrast to normal mice which require priming in vivo; elimination of LCMV in vivo was, however, not improved. Flow cytometric analysis of T cells with Vβ-specific antibodies showed a diverse endogenous TCR Vβ repertoire. Functional analysis of the T cell repertoire, however, revealed a strongly reduced (30-fold) allogeneic and the absence of a vesicular stomatitis virus-specific CTL response and an impaired ability to provide T cell help for antibody isotype switching. Thus, T cell selection in the thymus was impaired and the T cell repertoire was limited in mice expressing only one type of TCR α chain.  相似文献   

19.
We have previously demonstrated that grafting of CBF1(H-2b/d) fetal thymus (FTG) under the kidney capsule of congenitally athymic nude mice of BALB/c background (H-2d) generates a substantial number of T cell receptor (TCR) γδ intestinal intraepithelial lymphocytes (IEL) that were of FTG origin (H-2b+) (see accompanying report). Here we investigated the characteristics of these FTG-derived TCR γδ IEL and compared them to the extrathymically derived TCR γδ IEL found in nude mice. Phenotypically, FTG-derived TCR γδ IEL were similar to their extrathymically derived counterparts in that most were Thy-1 ?, CD5? and CD8αα (homodimer). Vγ and Vδ gene usage in thymus-derived and extrathymically derived TCR γδ IEL were found to be virtually the same. Functionally, FTG-derived TCR γδ IEL were similar to the TCR γδ IEL found in euthymic mice as both were relatively anergic to TCR cross-linking in vitro. However, FTG-derived TCR γδ IEL differed slightly from extrathymically derived TCR γδ IEL, which were completely nonresponsive to the same in vitro stimulation. Overall, these findings support the view that FTG-derived and extrathymically derived TCR γδ IEL are almost indistinguishable. Lastly, we demonstrate that despite their thymic origin, development of FTG-derived TCR γδ IEL partially takes place extrathymically; that is positive selection of FTG-derived Vδ4 IEL occurs extrathymically. In addition, we demonstrate that the CD8 molecule is not necessary for development and homing of FTG-derived TCR γδ IEL. This later finding suggests that the CD8αα molecule develops extrathymically for FTG-derived CD8αα TCR γδ IEL.  相似文献   

20.
An inflammatory bowel disease (IBD) comparable to human ulcerative colitis is induced upon transfer of T cell-depleted wild-type (F1) bone marrow into syngeneic T cell-deficient (tgε26) mice (F1 → tgε26). Previously we have shown that activated CD4+ T cells predominate in transplanted tgε26 mice, and adoptive transfer experiments verified the potential of these cells to cause disease in immunodeficient recipient mice. Using flow cytometry for the detection of intracellular cytokine expression, we demonstrate in the present study that large numbers of CD4+ and CD8+ TCRαβ+ T cells from the intraepithelial region and lamina propria of the colon of diseased, but not from disease-free mice, produced interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Large numbers of T cells from peripheral lymphoid tissues of these animals also expressed IFN-α and TNF-α, but few expressed interleukin-4, demonstrating g strong bias towards Th1-type T cell responses in these animals. TCRγδ+ T cells, typically minor constituents of the inflammatory infiltrate of the colon in F1 → tgε26 mice, also expressed IFN-γ at a high frequency upon CD3 stimulation. In light of these findings we examined the potential involvement of TCRγδ+ T cells by testing their ability to induce colitis in tgε26 mice. We report here that tgε26 mice transplanted with T cell-depleted bone marrow from TCRαnull and TCRβnull animals developed IBD. Furthermore, disease in these mice correlated with the development of peripheral and colonic TCRαδ+ T cells capable of IFN-γ production. These results suggest that IFN-γ may be a common mediator of IBD utilized by pathogenic T cells of distinct phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号