首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-1beta (IL-1beta) is a pivotal proinflammatory cytokine. To investigate the mechanism of IL-1beta-induced cell death in human malignant melanoma A375-S2 cells, MTT assay, photomicroscopical observation, DNA agarose gel electrophoresis, radioimmunoassay and Western blot analysis were carried out. IL-1beta did not only induce nuclear condensation and DNA fragmentation, but also increased degradation of two substrates of caspase-3, poly ADP-ribose polymerase (PARP) and inhibitor of caspase-activated DNase (ICAD). Simultaneously, release of precursor of IL-1beta (pro-IL-1beta) and endogenous IL-1beta production were involved in the apoptotic process. IL-1beta enhanced the ratio of Bax/Bcl-2 and Bax/Bcl-xL expression and up-regulated apoptosis inducing factor (AIF) expression, which required the activation of downstream caspases. These results suggest that IL-1beta induces endogenous IL-1beta production, enhances cleavage of caspase downstream substrates and promotes mitochondria mediated apoptosis in A375-S2 cells.  相似文献   

2.
3.
Caspases are instrumental in the implementation of apoptotic cell death, and caspase activation is in most investigated cases closely linked to apoptosis. Recent data demonstrate, however, that caspases are also activated during primary T cell activation in the absence of apoptosis. Here we provide evidence that caspase activity is required for some but not all aspects of T cell activation. CD3-triggered proliferation of mouse T cells was impaired in the presence of the pan-caspase-inhibitor Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) and the number of cells entering the cell cycle was reduced. Costimulation by CD28 or externally added interleukin-2 (IL-2) failed to rescue proliferation. Re-stimulation of pre-activated T cells, however, was not affected by Z-VAD-fmk. Intriguingly, CD3-induced production of IL-2 by primary T cells was not impaired in the presence of Z-VAD-fmk. Likewise, CD3-induced activation of mitogen-activated protein kinases was unaffected by Z-VAD-fmk and intracellular levels of inhibitory kappaBalpha were the same as in control cells. T cells transgenically expressing a dominant negative mutant of the caspase-adaptor Fas-associated molecule with death domain (FADD)/MORT1 displayed the same pattern of reaction, i.e. a reduced proliferative response but normal IL-2-production. These data show a distinct role of caspases during primaryT cell activation and provide evidence for a FADD-caspase-pathway not only in the induction of apoptosis but also of T cell proliferation.  相似文献   

4.
Vaccinia virus (VV) is considered to cause lytic infection of most cells, with lysis being regarded equivalent to necrosis. Activation of caspases has not been associated with necrosis. However, we observed the activation and activity of caspases in epithelial cells HeLa G and BSC-40 lytically infected with VV. Using three different flow-cytometric approaches, we characterized the distinct stages of caspase cascade in VV-infected cells: a cleaved, activated form of caspases detected using a fluorescent pan-caspase inhibitor; caspase activity assayed by cleavage of a non-fluorescent substrate into a fluorescent product; caspase-specific cleavage of death substrates characterized by a fluorescent antibody detecting a neo-epitope in cytokeratin-18. All of these approaches yielded an increased fluorescent signal in VV-infected cells compared to mock-infected controls. Additionally, the signal was decreased by the expression of Bcl-2. The cleavage of cytokeratin-18 was confirmed by western blotting, but another key protein involved in apoptosis, PARP, was not cleaved in VV-infected lytic cells. The necrotic phenotype of the cells was confirmed by increased cell membrane permeability and/or decreased mitochondrial membrane potential. In conclusion, our data suggest that VV infection of the epithelial cells HeLa G and BSC-40 initiates the apoptotic program, however, apoptosis is not completed and switches into necrosis.  相似文献   

5.
Evidence has implicated apoptosis as a mechanism underlying cell death in diverse neurodegenerative diseases including Parkinson's disease (PD). Endogenous agents such as TNF-alpha, INF-gamma, IL-1beta and others stress signals activate the sphingomyelin pathway increasing ceramide levels. Ceramide triggers apoptotic pathways while inhibiting survival signalling, and is involved in the regulation of intracellular Ca(2+) homeostasis and compartmentalisation. The contribution of caspases in neuronal apoptosis has been highlighted by the increased survival exerted by caspase inhibition, but the involvement of calpains during neuronal apoptosis and the potential benefit of their inhibition is still controversial. In the present paper, we have analysed the contribution of caspases and calpains to cell death of CAD cells, a catecholaminergic cell line of mesencephalic origin, following C2-ceramide exposure. Ceramide caused CAD cell death by a dose and time dependant mechanism. 25microM of C2-ceramide caused apoptosis. Analysis of activation of caspases and calpains by differential cleavage of alpha-fodrin showed that although calpains are activated before caspases following C2-ceramide exposure, only caspase inhibition increased cell survival. These results demonstrate the activation of caspases and calpains in C2-ceramide-induced cell death, and support the role of caspase inhibition as a neuroprotective strategy and a plausible therapeutic approach to decrease catecholaminergic cell death.  相似文献   

6.
Lee SM  Kleiboeker SB 《Virology》2007,365(2):419-434
As with a number of other viruses, Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis, although the mechanism(s) involved remain unknown. In this study we have characterized the apoptotic pathways activated by PRRSV infection. PRRSV-infected cells showed evidence of apoptosis including phosphatidylserine exposure, chromatin condensation, DNA fragmentation, caspase activation (including caspase-8, 9, 3), and PARP cleavage. DNA fragmentation was dependent on caspase activation but blocking apoptosis by a caspase inhibitor did not affect PRRSV replication. Upregulation of Bax expression by PRRSV infection was followed by disruption of the mitochondria transmembrane potential, resulting in cytochrome c redistridution to the cytoplasm and subsequent caspase-9 activation. A crosstalk between the extrinsic and intrinsic pathways was demonstrated by dependency of caspase-9 activation on active caspase-8 and by Bid cleavage. Furthermore, in this study we provide evidence of the possible involvement of reactive oxygen species (ROS)-mediated oxidative stress in apoptosis induced by PRRSV. Our data indicated that cell death caused by PRRSV infection involves necrosis as well as apoptosis. In summary, these findings demonstrate mechanisms by which PRRSV induces apoptosis and will contribute to an enhanced understanding of PRRSV pathogenesis.  相似文献   

7.
Members of the caspase family of proteases are important in the implementation of apoptotic cell death. These caspases are intracellularly activated upon a death stimulus, and exhibit a distinctive proteolytic activity which transmits a death signal and readily detected by measuring the cleavage of synthetic substrates in cell extracts. In this report, we show that apoptosis-associated caspase activation can be recorded not only in cell lysates but also in intact lymphoid cells with commercially available peptides which are either biotinylated or carry an amino-methylcoumarin (AMC) group. Incubation of intact cells induced to undergo apoptosis with Ac-Asp-Glu-Val-Asp-AMC (DEVD-AMC) leads to the release of AMC in amounts very similar to the amounts released when cell extracts are prepared and incubated with DEVD-AMC. This release can be detected by a fluorescence read-out and is blocked by caspase-inhibitors such as Ac-DEVD-cho or Z-VAD-fmk. Similarly, labelling of intact cells with the biotinylated peptides Tyr-Val-Ala-Asp-cmk (YVAD-cmk) or YVAD-faom permits the detection of active caspases by affinity blotting and the detection of apoptotic cells by FACS analysis. These methods enable the investigator to detect at the single-cell level those cells which have activated their caspases and to evaluate such activation without the need for lysis of the cells.  相似文献   

8.
Caspases are essential mediators of cytokine release and apoptosis. Additionally, caspase activity is required for the proliferation of naive T lymphocytes. It remained unclear how proliferating cells are able to cope with the pro-apoptotic activity especially of effector caspases-3 and -7. Possible reasons might include limited subcellular localization of active caspases or inhibition by endogenous caspase inhibitors. Here, we compared the activation of various caspases in proliferating human T cells with that in apoptotic cells. We show that cleaved caspases-3/-7 appear to be widely distributed in apoptotic cells while they are largely confined to the cytoplasm in proliferating cells. Additionally, in proliferating T cells caspase-3 remains incompletely cleaved, while in apoptotic cells fully mature caspase-3 is generated. We provide evidence that during T cell proliferation the intracellular caspase inhibitor X-linked inhibitor-of-apoptosis protein (XIAP) interacts with caspases-3/-7, thereby blocking their full activation, substrate cleavage, and cell death. The lack of substrate cleavage might also lead to the observed limited subcellular distribution of caspases-3/-7. After induction of apoptosis, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with low isoelectric point (Smac/DIABLO) is released from mitochondria, resulting in the abrogation of the inhibitory effect of XIAP, full activation of caspases-3/-7, and apoptosis.  相似文献   

9.
BACKGROUND: Caspases are downstream elements of apoptosis-mediating pathways initiated by the Fas ligand/Fas receptor system which is supposed to play a central role in the regulation of apoptosis in the human seminiferous epithelium. However, caspase activity in different cell types of this epithelium has never been addressed. METHODS AND RESULTS: We evaluated caspase activity and DNA integrity in Sertoli and germ cells within in-vitro cultured segments of human seminiferous tubules after induction of apoptosis by FSH or testosterone withdrawal. FSH withdrawal increased the incidence of DNA fragmentation in meiotic (primary spermatocytes) and post-meiotic (spermatids) germ cells without producing any detectable effect on caspase activity in these cells and without affecting DNA integrity or caspase activity in Sertoli cells. Testosterone withdrawal stimulated caspase activity and produced DNA fragmentation in Sertoli cells, but showed only a weak effect on DNA fragmentation in germ cells and did not alter germ cell caspase activity. CONCLUSIONS: These findings confirm the central role of caspases in apoptosis of Sertoli cells. However, they also suggest that acute apoptosis of germ cells in the adult human testis occurs in a caspase-independent way and is controlled by Sertoli cells via an as yet undetermined mechanism.  相似文献   

10.
MST1-JNK promotes apoptosis via caspase-dependent and independent pathways   总被引:12,自引:0,他引:12  
BACKGROUND: MST1 is an upstream kinase of the JNK and p38 MAPK pathways whose expression induces apoptotic morphological changes such as nuclear condensation. During apoptosis, caspase cleavage of MST1 removes a C-terminal regulatory domain, increasing the kinase activity of the MST1 N-terminal domain. Downstream pathways of MST1 in the induction of apoptosis remain to be clarified. RESULTS: In this study, we found that the expression of MST1 resulted in caspase-3 activation. Therefore, MST1 is not only a target of caspases but also an activator of caspases. This caspase activation and apoptotic changes occur through JNK, since the co-expression of a dominant-negative mutant of JNK inhibited MST1-induced morphological changes as well as caspase activation. In contrast, neither a dominant-negative p38 nor the p38 inhibitor SB203580 inhibited them. MST1 induced nucleosomal DNA fragmentation, which was suppressed by caspase inhibitors or ICAD (Inhibitor of Caspase-Activated DNase). Surprisingly, however, other changes such as membrane blebbing and chromatin condensation were not inhibited by caspase inhibitors. CONCLUSION: These results suggest that MST1 most likely promotes two events through JNK activation; first, MST1 induces the activation of caspases, resulting in CAD-mediated DNA fragmentation, and second, MST1 induces chromatin condensation and membrane blebbing without utilizing downstream caspases.  相似文献   

11.
Cytotoxic T lymphocytes induce apoptosis in target cells through the CD95(APO-1/Fas) and the perforin/granzyme B (GrB) pathway. The exact substrate of GrB in vivo is still unknown, but to induce apoptosis GrB requires the activity of caspases in target cells. We show here that in HeLa target cells induction of apoptosis through the perforin/GrB pathway resulted in minor direct cleavage of CPP32 (caspase-3) by GrB. Most caspase-3 cleavage resulted from activation of an upstream caspase. Moreover, target cells derived from caspase-3?/? mice displayed GrB-induced poly(ADP-ribose) polymerase (PARP) cleavage with only partially reduced efficiency compared to wild-type target cells. This indicates that other PARP-cleaving caspases can be activated during perforin/GrB-induced cell death. In contrast to caspase-3, FLICE (caspase-8) was directly cleaved by GrB in HeLa cells. We therefore conclude that FLICE not only plays a central role in CD95(APO-1/Fas)-induced apoptosis but can also be directly activated during perforin/GrB-induced apoptosis.  相似文献   

12.
Se-methylselenocysteine (Se-MSC) has been shown to possess potent chemopreventive and anti-tumor properties. However, its exact mechanism of action is still not well understood. The present study investigated the mechanism of Se-MSC on the induction of apoptosis using U937 human leukemia cells. Se-MSC induced dose- and time-dependent apoptosis of U937 cells as assessed by flow cytometry analysis, DNA fragmentation, and proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP). Se-MSC increased time- and dose-dependent cytochrome c accumulation in the cytosol, which was greatly inhibited by overexpression of Bcl-2, suggesting that the apoptotic effect by Se-MSC in U937 cells is mitochondrial-dependent. Se-MSC also induced activation of caspases, followed by proteolytic cleavage of PKC-delta. The Se-MSC-induced apoptosis required activities of caspases since pretreatment of a pan-caspase inhibitor z-VAD-fmk greatly suppressed the Se-MSC-induced apoptosis as well as proteolytic cleavage of PKC-delta, suggesting activation of caspases is critical for the Se-MSC-induced apoptosis, and caspases lie upstream of PKC-delta. The Se-MSC-induced apoptosis of U937 cells also required activity of PKC-delta because pretreatment of rottlerin, a specific PKC-delta inhibitor greatly blocked the Se-MSC-induced apoptosis as well as processing and activities of caspases, suggesting activation of PKC-delta is also important for the Se-MSC-induced apoptosis of U937 cells, and PKC-delta lies upstream of caspases. Together, our data suggest the apoptotic mechanism by Se-MSC in U937 cells may be related to cytochrome c release from the mitochondria, and mutual activation between caspases and PKC-delta via a positive feedback mechanism, which may potentiate the apoptotic action by Se-MSC in U937 cells.  相似文献   

13.
Hyperoxia induces extensive DNA damage and lung cell death by apoptotic and nonapoptotic pathways. We analyzed the regulation of Poly(ADP-ribose)polymerase-1 (PARP-1), a nuclear enzyme activated by DNA damage, and its relation to cell death during hyperoxia in vitro and in vivo. In lung epithelial-derived A549 cells, which are known to die by necrosis when exposed to oxygen, a minimal amount of PARP-1 was cleaved, correlating with the absence of active caspase-3. Conversely, in primary lung fibroblasts, which die mainly by apoptosis, the complete cleavage of PARP-1 was concomitant to the induction of active caspase-3, as assessed by Western blot and caspase activity. Blockade of caspase activity by Z-VAD reduced the amount of cleaved PARP-1 in fibroblasts. Hyperoxia induced PARP activity in both cell types, as revealed by poly-ADP-ribose accumulation. In A549 cells, the final outcome of necrosis was dependent on PARP activity because it was prevented by the PARP inhibitor 3-aminobenzamide. In contrast, apoptosis of lung fibroblasts was not sensitive to 3-aminobenzamide and was not affected by PARP-1 deletion. In vivo, despite evidence of PARP activation in hyperoxia-exposed mouse lungs, absence of PARP-1 did not change the extent of lung damage, arguing for redundant oxidative stress-induced cell death pathways.  相似文献   

14.
Multiple cell death pathways are activated in cerebral ischaemia. Much of the initial injury, especially in the core of the infarct where cerebral blood flow is severely reduced, is necrotic and secondary to severe energy failure. However, there is considerable evidence that delayed cell death continues for several days, primarily in the penumbral region. As reperfusion therapies grow in number and effectiveness, restoration of blood flow early after injury may lead to a shift towards apoptosis. It is important to elucidate what are the key mediators of apoptotic cell death after stroke, as inhibition of apoptosis may have therapeutic implications. There are two well described pathways that lead to apoptotic cell death; the caspase pathway and the more recently described caspase-independent pathway triggered by poly-ADP-ribose polymers (PARP) activation. Caspase-induced cell death is initiated by release of mitochondrial cytochrome c, formation of the cytosolic apoptosome, and activation of endonucleases leading to a multitude of small randomly cleaved DNA fragments. In contrast caspase-independent cell death is secondary to activation of apoptosis inducing factor (AIF). Mitochondrial AIF translocates to the nucleus, where it induces peripheral chromatin condensation, as well as characteristic high-molecular-weight (50 kbp) DNA fragmentation. Although caspase-independent cell death has been recognized for some time and is known to contribute to ischaemic injury, the upstream triggering events leading to activation of this pathway remain unclear. The two major theories are that ischaemia leads to nicotinamide adenine dinucleotide (NAD+) depletion and subsequent energy failure, or alternatively that cell death is directly triggered by a pro-apoptotic factor produced by activation of the DNA repair enzyme PARP. PARP activation is robust in the ischaemic brain producing variable lengths of poly-ADP-ribose (PAR) polymers as byproducts of PARP activation. PAR polymers may be directly toxic by triggering mitochondrial AIF release independently of NAD+ depletion. Recently, sex differences have been discovered that illustrate the importance of understanding these molecular pathways, especially as new therapeutics targeting apoptotic cell death are developed. Cell death in females proceeds primarily via caspase activation whereas caspase-independent mechanisms triggered by the activation of PARP predominate in the male brain. This review summarizes the current literature in an attempt to clarify the roles of NAD+ and PAR polymers in caspase-independent cell death, and discuss sex specific cell death to provide an example of the possible importance of these downstream mediators.  相似文献   

15.
To date, in vivo apoptosis within the thymus has been assessed using morphological criteria and/or detection of a DNA ladder indicative of oligonucleosomal fragmentation of the DNA. Here, we have used a fluorometric method to investigate activation of the caspase protease family in the thymus following in vivo induction of apoptosis by injection of the synthetic glucocorticoid hydrocortisone. Cleavage of DEVD-MCA by caspase-3 and other group II caspases releases free MCA which can be detected fluorimetrically. We demonstrate a time-dependent increase in DEVD-MCA cleavage activity within this tissue indicating the activation of caspase-3 like enzymes. This activity was inhibited by the specific group II caspase inhibitor DEVD-CHO. The interpretation of increased caspase activity was confirmed by immunoblot analysis to reveal cleavage of the caspase-3 substrate, fodrin. In addition, agarose gel electrophoresis of the DNA yielded a ladder pattern, confirming the occurrence of apoptosis. This study demonstrates that DEVD-MCA cleavage activity may be a useful quantitative method for the analysis of apoptosis in thymus tissue. It is a relatively rapid procedure not requiring thymocyte isolation or gel electrophoresis and detects fairly early biochemical changes occurring during apoptosis. In the present study we have used this method to demonstrate the involvement of caspases in thymocyte apoptotic death induced in vivo by glucocorticoids. Thus, measurement of caspase activity in thymus tissue may have applications for studying the in vivo effects of immunotoxicants.  相似文献   

16.
17.
刘宁  吕丹瑜  吴俊  毕振伍  李英 《解剖学报》2006,37(4):431-435
目的探讨阿糖胞苷(Ara-C)对人肺腺癌细胞株A549的凋亡诱导作用及其机制。方法Ara—C体外作用于/t549细胞,噻唑蓝还原法(MTT法)检测Ara—C对A549细胞增殖的抑制作用;Hoechst33258荧光染色观察细胞核形态学的变化;单细胞凝胶电泳技术(comet assay)测定A549细胞DNA的损伤程度;以Western blotting进一步证明A549细胞发生凋亡。结果Ara-C对A549细胞的增殖有明显抑制作用;观察到特异性的凋亡小体;Ara—C导致A549细胞发生DNA链断裂,并呈明显剂量依赖性增强:Western blotting显示caspase8,9,3都不同程度被激活,多聚ADP核糖聚合酶(PARP)被剪切降解。结论揭示了Ara—C明显诱导A549细胞凋亡;细胞凋亡通路不仅通过线粒体途径,还通过膜受体途径,两条通路协同作用使凋亡信号增强;提示Ara-C对A549细胞有明显的化疗作用。  相似文献   

18.
We demonstrated recently that human leukocyte antigen (HLA) class I human monoclonal antibodies (mAbs) are able to induce apoptosis of resting human lymphocytes as well as Jurkat lymphoblastic T cells. We now analyzed the signaling pathway involved in apoptosis mediated by human HLA class I allele-specific mAb OK2F3 and mouse monomorphic mAb W6/32. An inhibitor of a broad spectrum of caspases had only a moderate inhibiting effect, and an inhibitor of caspase 3 failed to inhibit HLA class I-mediated apoptosis. Although caspase 3 activation was not observed, internucleosomal DNA fragmentation was found in half of the apoptotic cells. Importantly, the mitochondrio-nuclear redistribution of apoptosis inducing factor (AIF), a caspase-independent mitochondrial death effector, was detected after 1 hour of treatment with human anti-HLA mAb and was associated with large-scale DNA fragmentation, whereas the release of cytochrome c, which is responsible for caspase-dependent internucleosomal fragmentation, followed AIF translocation and occurred after 2 hours. Our results indicate that apoptosis mediated through HLA class I molecules represents a unique mechanism of cell death in Jurkat T lymphoblasts that involves two parallel pathways, one caspase-independent and the other caspase-dependent. This study clarifies the precise mechanism of anti-HLA antibody-induced apoptosis which might have clinical implications.  相似文献   

19.
Granzyme B: a natural born killer   总被引:12,自引:0,他引:12  
Summary: A main pathway used by cytotoxic T lymphocytes (CTLs) and natural killer cells to eliminate pathogenic cells is via exocytosis of granule components in the direction of the target cell, delivering a lethal hit of cytolytic molecules. Amongst these, granzyme B and perforin have been shown to induce CTL‐mediated target cell DNA fragmentation and apoptosis. Once released from the CTL, granzyme B binds its receptor, the mannose‐6‐phosphate/insulin‐like growth factor II receptor, and is endocytosed but remains arrested in endocytic vesicles until released by perforin. Once in the cytosol, granzyme B targets caspase‐3 directly or indirectly through the mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis. Caspase activity is required for apoptosis to occur; however, in the absence of caspase activity, granzyme B can still initiate mitochondrial events via the cleavage of Bid. Recent work shows that granzyme B‐mediated release of apoptotic factors from the mitochondria is essential for the full activation of caspase‐3. Thus, granzyme B acts at multiple points to initiate the death of the offending cell. Studies of the granzyme B death receptor and internal signaling pathways may lead to critical advances in cell transplantation and cancer therapy.  相似文献   

20.
Infection with vesicular stomatitis virus (VSV), the prototype rhabdovirus, causes apoptotic DNA fragmentation, but the role of apoptosis in the VSV-host interaction remains unclear. Apoptosis is the gene-regulated mechanism triggered by a wide variety of stimuli that lead to cell death in a choreographed manner. In the present study, infection of the Jurkat T cell line with VSV led to activation of caspase-3 and caspase-7, with subsequent apoptotic events involving poly (ADP ribose) polymerase (PARP) cleavage, DNA fragmentation, and membrane damage. Caspase activation was correlated with viral protein expression suggesting a link between viral replication and apoptosis. We hypothesized that VSV replication might depend on apoptosis and that the inhibition of apoptosis would lead to significant decreases in viral titers. When various inhibitors of apoptosis in VSV-infected cells were used, PARP cleavage and DNA fragmentation were inhibited but the production of infectious progeny was not affected. In addition, we demonstrated that the activation of caspase-3-like proteases is required for VSV-induced apoptosis but not in vitro viral replication. Apoptosis following VSV infection is likely to be either a host-cell attempt to control viral replication or may be a ploy used by the virus to facilitate its in vivo replication and spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号