首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether priming monocytes (MO) with lipopolysaccharide (LPS) influenced their further differentiation into either macrophages (Mphi) or dendritic cells (DC). LPS-primed MO differentiated into Mphi when cultured further with Mphi colony-stimulating factor (M-CSF) but, if cultured then with granulocyte/Mphi (GM)-CSF and IL-4 (interleukin-4), only about 30% of the cells differentiated into CD1a+ CD14- DC and half became CD1a- CD14+ Mphi. Cytokines present during LPS priming could affect subsequent MO differentiation. Relative to priming with LPS alone, adding M-CSF to LPS did not modify differentiation of MO to Mphi in further culture with M-CSF, nor did it change the way of differentiation of MO into DC was altered if culture was later switched to GM-CSF/IL-4. Using GM-CSF/IL-4 plus LPS upon priming did not modify differentiation of MO to Mphi in further culture with M-CSF, as compared to priming with GM-CSF/IL-4 alone, but it counteracted the effect of LPS on the differentiation of MO to DC in further culture with GM-CSF/IL-4: about 75% of cells then became DC. Alternatively, despite activation by LPS, mature M-CSF-induced Mphi preserved the potential to differentiate into DC on subsequent culture with GM-CSF/IL-4. Thus, LPS, a bacterial product known to sustain maturation of MO/Mphi as well as of DC, may block the differentiation of MO into DC, except if signal triggering DC differentiation is delivered concomitantly, and modulate in this manner the induction of adaptive immune responses to infection.  相似文献   

2.
Since either macrophages (M?) or dendritic cells (DC) differentiate from monocytes (MO) depending on culture conditions, we investigated the relationship of the DC and M? differentiation pathways. Culturing MO-enriched blood mononuclear cells with M? colony-stimulating factor (M-CSF) or with granulocyte/M? (GM)-CSF induced M? with a different morphology and CD14/CD1a expression. In contrast, in cultures with GM-CSF and interleukin (IL)-4, cells rapidly became nonadherent and acquired DC morphology, ultrastructure, CD1a expression, and most DC markers; they lost membrane CD14 and CD64 and capacity of phagocytosis, displayed less CD68 than M?, but retained nonspecific esterase activity. These DC directly developed from MO without proliferation inasmuch as only day 0 FACS-sorted MO, but not small CD14? cells, differentiated into DC when cultured with GM-CSF and IL-4, or to M? with M-CSF. While overall cell numbers declined, DC numbers plateaued from culture day 2 onwards, indicating that most had differentiasted by then. This differentiation was radioresistant and occurred without [3H]thymidine incorporation. Commitment to differentiate into DC with GM-CSF and IL-4 was irreversible by day 2, since discontinuing IL-4 at this point did not revert cells to M?. Alternatively, cells rapidly converted to DC when IL-4 was added from day 2 to cultures initiated with GM-CSF only. If cultures were initiated with M-CSF and switched to GM-CSF and IL-4 after 2 or 5 days, about half of the cells still converted to DC. Thus, the capacity of MO and even of M? to differentiate into DC was conserved for at least this period. The increased capacity to stimulate the mixed leukocyte reaction correlated with the relative number of CD1a? cells at any time and under each condition tested, a confirmation that these cells functionally qualify as DC. Thus, MO and even M? can be directed to differentiate into DC depending on the cytokine microenvironment.  相似文献   

3.
Dendritic cells (DC), with potentially important clinical applications, have been generated from human peripheral blood monocytes in the presence of GM-CSF and IL-4 (G4 DC). In the present report we show that DC with a novel phenotype can be generated from blood adherent mononuclear cells in the presence of GM-CSF and IL-7 (G7 DC).

Adherent cells from PBMC, cultured in GM-CSF (600 U/ml) and IL-7 (6 U/ml), were transformed over 7 days into cells with DC morphology, at a yield of 1.2 − 1.6 × 106 per 107 PBMC. G7 DC not only expressed class I and class II MHC, CD1a, CD11c, CD23, CD40, CD54, CD58, CD80, CD86 and CD95, like G4 DC, but also CD21, which is the complement receptor type 2, a ligand for CD23 and a receptor for EBV and IFN-.

G7 DC were at least one log more effective in the autologous MLR and at least two logs more effective in the allogeneic MLR, than PBMC. They elicited proliferative responses of CD4 T cells to tetanus toxoid and CD8 T cells to an EBV peptide, and stronger T-cell cytotoxicity to EBV peptide than G4 DC. Expression of CD21 by G7 DC suggests that IL-7 delivers a distinct signal to DC precursors and that G7 DC may be functionally distinct.  相似文献   


4.
Myeloid dendritic cells (DC) and macrophages evolve from a common precursor. However, factors controlling monocyte differentiation toward DC or macrophages are poorly defined. We report that the surface density of the GM-CSF receptor (GM-CSFR) alpha subunit in human peripheral blood monocytes varies among donors. Although no correlation was found between the extent of GM-CSFR and monocyte differentiation into DC driven by GM-CSF and IL-4, GM-CSFR expression strongly influenced the generation of CD1a(+) dendritic-like cells in the absence of IL-4. CD1a(+) cells generated in the presence of GM-CSF express CD40, CD80, MHC class I and II, DC-SIGN, MR, CCR5, and partially retain CD14 expression. Interestingly, they spontaneously induce the expansion of CD4(+) and CD8(+) allogeneic T lymphocytes producing IFN-gamma, and migrate toward CCL4 and CCL19. Upon stimulation with TLR ligands, they acquire the phenotypic features of mature DC. In contrast, the allostimulatory capacity is not further increased upon LPS activation. However, by blocking LPS-induced IL-10, a higher T cell proliferative response and IL-12 production were observed. Interestingly, IL-23 secretion was not affected by endogenous IL-10. These results highlight the importance of GM-CSFR expression in monocytes for cytokine-induced DC generation and point to GM-CSF as a direct player in the generation of functionally distinct DC.  相似文献   

5.
用GM-CSF和 IL-4在体外诱导高纯度CD14+树突状细胞   总被引:4,自引:0,他引:4  
本研究改进传统的树突状细胞(DC)诱导方法,用GM-CSF(150ng/ml)和IL-4(80U/ml),在体外经7d从健康人外周血中诱导出了大量高纯度DC,其高表达HLA-I、HLA-II类分子,共刺激分子和黏附分子,同时还高表达其前体单核细胞的特异性标志CD14分子,显示出成熟 DC的特征。这些CD14^ DC能强烈诱导同种异体淋巴细胞的增殖,其内吞能力在第3天达最高,之后明显下降。此结果丰富了DC的类型,并为CD14^ DC的深入研究和应用奠定了基础。  相似文献   

6.
Previous studies have demonstrated an infiltration of monocytes and increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the asthmatic lung. To study the possible effects of this cytokine upon the differentiation and function of these newly recruited monocytes, we have developed a model in which monocytes isolated from human peripheral blood were differentiated into macrophages in serum in the presence or absence of GM-CSF. After 7 days, the macrophages increased in size and granularity, had increased phagocytic activity, and expressed various adhesion molecules, CD14 and major histocompatibility complex (MHC) class II. The effects of GM-CSF on antigen presentation by cultured macrophages on the antigen-specific proliferative response of CD4+ T cells to Dermatophagoides pteronyssinus or purified protein derivative of tuberculin and the mitogen phytohaemagglutinin was determined. CD4+ T-cell proliferation was reduced when either antigen was presented by macrophages cultured in serum alone, compared with the values obtained with freshly isolated monocytes. However, CD4+ cell proliferation was comparable to that observed with monocytes when antigen was presented by macrophages which had been pre-cultured with 50 U/ml GM-CSF. CD4+ T-cell proliferation to phytohaemagglutinin was similar when all three populations were used as accessory cells. High numbers of macrophages partially suppressed CD4+ T-cell proliferation in response to antigen presented by monocytes, but there was no significant difference between macrophages cultured in the presence or absence of GM-CSF. This data suggests that GM-CSF directs monocyte differentiation into macrophages with an antigen-presenting, rather than a suppressive, phenotype. Elevated levels of GM-CSF in the asthmatic lung may therefore maintain recently recruited monocytes in an inflammatory and T-cell activating state.  相似文献   

7.
We evaluated the effects of interleukin (IL)-10 on the differentiation of dendritic cells (DC) obtained by culturing plastic-adherent peripheral blood mononuclear cells for 7 days in presence of granulocyte/macrophage-colony-stimulating factor (GM-CSF)+IL-4. The addition of IL-10 at the initiation of culture resulted in the generation of macrophage-like cells with expressing high levels of CD14 and decreased levels of CD1a and CD1c. Furthermore, cells generated in presence of IL-10 secreted lower levels of IL-12, but higher levels of IL-8 compared with DC generated in absence of IL-10, both spontaneously and after CD40 engagement. Finally, cells generated in presence of IL-10 were less efficient than DC in stimulating the production of IL-2, interferon-γ, and IL-4 by allogeneic T cells. We conclude that IL-10 prevents the generation of DC induced by GM-CSF+IL-4 and favors the development of macrophages with a lower T cell stimulatory potential, but secreting higher levels of IL-8 than DC.  相似文献   

8.
OBJECTIVE: We investigated how melanoma cells and membrane-bound granulocyte/macrophage colony stimulating factor (mbGM-CSF) melanoma cell lines affect the differentiation of dendritic cells (DC) from CD14+ monocytes. METHOD OF STUDY: The malignant melanoma cell lines (Conley and Jorp) and mbGM-CSF-positive cell lines (Conley B-F8 and Jorp C-E6) were cultured and cell-free supernatants were collected from each cell line cultures to assess the GM-CSF level. Adherent monocytes were cocultured for 6-7 days with irradiated mbGM-CSF and wild type melanoma cells (50 Gy) at each 1:1 and 0.1:1 ratio in six-well culture plates in ex vivo culture medium containing interleukin (IL)-4. Immunophenotyping was performed by triple color immunofluorescence staining with flow cytometry analysis. RESULTS: GM-CSF was detected at low levels in the culture supernatants of Conley B-F8 (0.48 ng/10(6) cells/24 hr), whereas there was no detectable GM-CSF in that of Conley melanoma cell line. Monocytes cultured with GM-CSF/IL-4 generated the expression of high levels of HLA DR, CD1a and CD86, while the expression of CD14 and CD83 were in low amounts. However, the addition of GM-CSF to these cultures resulted in an increased expression of these markers and decreased that of CD14. Monocytes cocultured with Jorp C-E6 illustrated similar expression pattern of CD1a, HLA DR and CD14 in the presence or absence of GM-CSF as Conley B-F8 melanoma cell line. Monocytes cocultured with Conley B-F8 melanoma cells at 1:1 and 0.1:1 ratio showed no significant difference in expression of CD1a, CD14 and CD83 between the two ratios. CONCLUSION: Our results illustrate the feasibility to generate monocyte-derived DC from coculture with melanoma tumor cells in the presence of GM-CSF and IL-4. However, mbGM-CSF tumor cells did not significantly enhance the DC differentiation through juxtacrine stimulation unless soluble GM-CSF was added in the culture media.  相似文献   

9.
Blockade of the CD40/CD40L pathway of monocyte/macrophage activation represents a promising strategy for the treatment of several inflammatory disorders. So far, most pharmacological agents developed for that purpose target CD40L (CD154) expressed on activated T cells. Herein, we provide evidence that triazolopyrimidine, a chemical compound primarily developed for the prevention of arterial thrombosis, strongly inhibits the response of human monocytes to CD40 ligation. First, we found that triazolopyrimidine inhibits the production of IL-12, TNF-alpha, and IL-6 by monocytes activated by coculture with fibroblasts transfected with the CD40L gene as well as the induction of procoagulant activity at their membrane. This was related to a decreased expression of CD40 on monocytes exposed to triazolopyrimidine, an effect that was already apparent at the mRNA level. Furthermore, the addition of triazolopyrimidine to monocytes cultured with IL-4 and GM-CSF prevented their differentiation into fully competent dendritic cells (DC) as DC differentiated in the presence of triazolopyrimidine expressed less CD40 at their surface and were profoundly deficient in the production of IL-12 upon exposure to CD40L transfectants. We conclude that triazolopyrimidine strongly inhibits the CD40 pathway of monocyte activation at least in part by downregulating the gene expression of CD40.  相似文献   

10.
李杰  王芹  宋强  赵川莉  秦平  彭军 《现代免疫学》2002,22(6):411-413
为了比较GM CSF与IL 4 (IL 4DC )以及GM CSF与IL 3(IL 3DC )共刺激培养制备的两种树突状细胞 (DC )的差异 ,采用GM CSF (10 0 0U/ml)和IL 4 (10~ 2 0ng/ml)或IL 3(10~ 2 0ng/ml)从小鼠骨髓培养制备DC ,流式细胞仪分析表型 ,体外饲以颗粒化抗原 (与Latexbead交联的Ovalbumin ,微粒 OVA )或抗原多肽 (Ovalbumin的SL8表位 ,即SIIFEKL )后 ,测定两种DC体外对颗粒化抗原的摄取能力和对抗原多肽的递呈能力 ,以及体内对特异性CTL的诱导能力。结果显示 ,IL 3DC较IL 4DC胞体略大 ,但树突状分支略少 ,表达更高的F4 / 80和更低的NLDC14 5、CD4 0 ,而两者的共刺激分子CD80、CD86和MHCI类分子的表达率无显著差异。体外IL 3DC对颗粒化抗原具有更高的摄取能力和对SIIFEKL多肽有更强的递呈能力 ,但体内对特异性CTL的诱导能力二者无显著差异。研究表明 ,两种方法制备的DC在形态、表型、体外抗原多肽递呈和抗原摄取能力方面存在一定差别 ,但具有相似的体内细胞免疫应答诱导能力  相似文献   

11.
The local cytokine environment and presence of stimulatory signals determine whether monocytes acquire dendritic cell (DC) or macrophage characteristics and functions. Because enhanced platelet activation is reported in patients with many allergic disorders, such as atopic dermatitis, platelet-derived factors may influence monocytic differentiation into DC. In this study we examined the effect of serotonin, a prototypic mediator of allergic inflammation released mainly by activated platelets at the inflammatory site, on the granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4-driven differentiation of monocytes into monocyte-derived DC. Monocytes from healthy adult donors were cultured with GM-CSF and IL-4 in the presence or absence of serotonin, and the phenotypes and function of these cells were analysed. In the presence of serotonin, monocytes differentiated into DC with reduced expression of co-stimulatory molecules and CD1a, whereas expression of CD14 was increased. These serotonin-treated DC exhibited significantly reduced stimulatory activity toward allogeneic T cells. However, these cells showed enhanced cytokine-producing capacity, including IL-10 but not IL-12. There was no significant difference between both types of DC in phagocytic activity. Experiments using agonists and antagonists indicated that serotonin 5-hydroxytryptamine (5-HT) induced the alteration of their phenotype and reduction in antigen-presenting capacity were mediated via 5-HTR(1/7). It is therefore suggested that serotonin-driven DC may have a regulatory function in the inflammatory process.  相似文献   

12.
人外周血树突状细胞培养和地塞米松对其分化的影响作用   总被引:1,自引:0,他引:1  
目的分离培养和鉴定人外周血树突状细胞(DC),以及探讨地塞米松对其分化的影响作用。方法密度梯度离心法分离人外周血单个核细胞,贴壁后加入GM-CSF、IL-4和LPS培养,部分组另加入地塞米松,观察细胞形态学、流式标志和DC与T淋巴细胞共培养后的增殖变化。结果外周血单核细胞诱导培养后具有DC形态学特征,CD83表达上调,CD14表达下调,DC与T淋巴细胞共培养后呈增殖反应。培养液中加入地塞米松后CD83表达下调,CD14表达上调,DC与T淋巴细胞共培养后增殖反应减弱。结论外周血单核细胞经联合细胞因子可诱导为DC;地塞米松可使DC在功能上处于不成熟状态。  相似文献   

13.
Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34(+) stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34(+) cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-alpha/TNF-alpha. Starting from 2 x 10(7) monocytes, the optimal expansion/maturation process yielded 1.73 +/- 0.52 x 10(6) CD86(+) DC. Optimal expansion of CD34(+) cells (83.9 +/- 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 +/- 2.72 x 10(6) CD86(+) DC from 1 x 10(6) CD34(+) cells. Mature DC from PBMC or CD34(+) cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR(+)). CD34(+) DC matured with CD40L or IFN-alpha/TNF-alpha had reduced phagocytic capability (34 and 31% of HLA-DR(+) DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.  相似文献   

14.
Buisson S  Triebel F 《Immunology》2005,114(3):369-374
Major histocompatibility complex (MHC) class II molecules expressed on monocytes may play a role in the control of differentiation of antigen-presenting cells. A soluble LAG-3 (CD223) molecule (sLAG-3) is a natural, high-affinity ligand for MHC class II. It is known to induce maturation of monocyte-derived dendritic cells in vitro and is used as a vaccine adjuvant to induce CD4 T helper type 1 responses and CD8 T-cell responses in vivo. Here, we demonstrate that sLAG-3 (but not an MHC class II-specific monoclonal antibody) reduces the differentiation of monocytes into macrophages in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as their differentiation into dendritic cells in the presence of GM-CSF and interleukin-4, as shown by a decrease in CD14 and CD1a expression, respectively. Dendritic cells derived from monocytes in the presence of sLAG-3 showed impaired antigen-presentation function, as assessed by the reduced capability to induce proliferation of T cells. Our results suggest that activated LAG-3(+) lymphocytes present at sites of inflammation may reduce the differentiation of monocytes into macrophages or fully competent antigen-presenting dendritic cells, thus limiting the magnitude of the ongoing T-cell immune responses.  相似文献   

15.
Dendritic cells (DC) of myeloid origin can be generated from mouse bone marrow (BM) using granulocyte macrophage-colony stimulating factor (GM-CSF). Immature major histocompatibility complex (MHC) II(low) DC are known to bear a high endocytosis capacity, in contrast to DC precursors and mature DC. Now we found that a subset of MHC II(low) DC in BM-DC cultures is unable to exert mannose receptor-mediated endocytosis of fluorescein isothiocyanate (FITC)-dextran (DX) and resembles immature Langerhans cells (LC). The FITC-DX endocytosis activity of LC-like cells occurs at an earlier stage of development, where the surface MHC II expression is absent or very weak. This LC-like subset expresses higher levels of E-cadherin but lower amounts of the markers Gr-1, scavenger receptor 2F8, and CD11b, when compared with the highly endocytic DC subset. The latter myeloid DC resemble monocyte-derived DC (MoDC). The sorted LC-like population develops completely and exclusively into mature MHC IIhigh DC, and the MoDC-like cells remain immature MHC II(low) DC or develop into adherent MHC IIneg macrophages or mature into MHC IIhigh DC. The development of LC-like cells is promoted by interleukin-4. Thus, we show here that the simultaneous development of LC-like and MoDC-like DC subsets occurs in standard bulk cultures with GM-CSF, suggesting the existence of two different precursors for LC and MoDC in BM.  相似文献   

16.
Macrophages and dendritic cells (DC) are APC, which regulate innate and adaptive immune responses. Macrophages function locally mainly, maintaining inflammatory responses in tissues, whereas DC take up microbes, mature, and migrate to local lymph nodes to present microbial antigens to na?ve T cells to elicit microbe-specific immune responses. Blood monocytes can be differentiated in vitro to macrophages or DC by GM-CSF or GM-CSF + IL-4, respectively. In the present study, we performed global gene expression analyses using Affymetrix HG-U133A Gene Chip oligonucleotide arrays during macrophage and DC differentiation. During the differentiation process, 340 and 350 genes were up-regulated, and 190 and 240 genes were down-regulated in macrophages and DC, respectively. There were also more that 200 genes, which were expressed differentially in fully differentiated macrophages and DC. Macrophage-specific genes include, e.g., CD14, CD163, C5R1, and FcgammaR1A, and several cell surface adhesion molecules, cytokine receptors, WNT5A and its receptor of the Frizzled family FZD2, fibronectin, and FcepsilonR1A were identified as DC-specific. Our results reveal significant differences in gene expression profiles between macrophages and DC, and these differences can partially explain the functional differences between these two important cell types.  相似文献   

17.
High expression of MHC antigens and adhesion/costimulation molecules is considered as one of the major characteristics qualifying macrophages (M) and dendritic cells (DC) as professional antigen presenting cells. Since accessory activity of M is known to be weaker than that of DC but both M or DC can differentiate from blood monocytes (MO) depending on culture conditions (i.e. GM-CSF vs GM-CSF/IL-4), we investigated the kinetics of expression of MHC antigens and several adhesion/costimulation molecules during the differentiation of DC or M from blood MO. Blood MO cultured with GM-CSF consistently induced M that showed adherence to plastic and CD14 expression. In contrast, MO cultured with GM-CSF/IL-4 rapidly became nonadherent, acquired DC morphology and lost CD14 expression. M but not DC proliferated as demonstrated by [H3]thymidine incorporation. MHC Class I was highly expressed in both M and DC. In contrast, MHC Class II molecules were significantly higher on DC compared to M. CD80 was upregulated on both DC and M but only on a subset of cells. CD80 expression peaked at day 3 on M and declined thereafter, while on DC expression increased significantly until day 10. CD86 was upregulated on the majority of DC and M. However, while M maintained stable expression of CD86 after day 3, DC progressively upregulated CD86 throughout the culture period. CD1a expression was initially low in both cell types and peaked at day 3 in M declining thereafter, while expression remained stable on DC until day 10. ICAM-1 expression was significantly upregulated on M when compared to DC at day 3. However, on M, ICAM-1 expression became undetectable by day 5 while on DC it increased through day 10. Similarly, CD40 was transiently expressed on M until day 5, while on DC it continuously increased until day 10. Finally, in contrast to other antigens, LFA-3 was always more strongly expressed on M than DC at all culture periods. Taken together, these data suggest that M showed a rapid but transient upregulation in the expression of adhesion/costimulation molecules, suggesting that maximal accessory ability is reached by M at an earlier time point than DC. Significant differences in surface antigen expression DC vs M were recognizable for MHC class II, CD86, CD80, CD1a, CD40 and ICAM-1. Specifically, major differences occurred for MHC class II, CD86, CD40 and ICAM-1. Therefore, the higher accessory ability of DC compared to M in naive T cell priming may be related to qualitative and quantitative differences in expression of these immunologically important surface molecules.  相似文献   

18.
The skin harbors two dendritic cell (DC) subsets, Langerhans cells (LC) and interstitial/dermal DC (IDDC), which traffic to lymph nodes after inflammation and ultraviolet stress. To demonstrate that monocytes may act as DC precursors for skin DC in postinflammatory recolonization, we generated LC and IDDC from monocytes by using cytokines related to the T helper cell type 2 environment [granulocyte macrophage-colony stimulating factor/transforming growth factor-beta/interleukin-13/tumor necrosis factor alpha (GM-CSF/TGF-beta/IL-13/TNF-alpha)]. In this study, skin DC [LC as Langerin/CD207(+) cells and IDDC as DC-specific intercellular adhesion molecule-grabbing nonintegrin (SIGN)/CD209(+) cells] displayed desynchronized programs along their differentiation, activation/maturation processes in response to stimuli characteristics of a proinflammatory context. First, we demonstrate that monocytes are able to diverge simultaneously along two distinct pathways toward Langerin(+)-LC-type DC and DC-SIGN(+)-IDDC. Second, as TGF-beta is known to antagonize the TNF-alpha-induced maturation process of DC, we showed that IDDC did not mature and acquired a low CC chemokine receptor 7 (CCR7) receptor expression even when stimulated with prolonged incubation with TNF-alpha. It is striking that the LC subset is able to express a high level of CCR7 expression and the maturation marker DC-lysosome-associated membrane protein (DC-LAMP). Third, mixed LC and IDDC subsets secrete IL-10 and IL-12 when stimulated by CD40 ligand and lipopolysaccharide (LPS) but not after prolonged incubation with TNF-alpha. In contrast, LPS was a better activator of IL-10 secretion than the CD40 ligand for GM-CSF/IL-4-generated DC and for GM-CSF/TGF-beta/IL-13-generated LC and IDDC populations. To summarize, the phenotypic/migratory maturation status of LC may be more easily enhanced by stimuli mimicking a proinflammatory situation, and IDDC are more resistant. Moreover, our culture system provided a means of studying cross-talk between two skin DC outside of their respective skin compartment.  相似文献   

19.
In vivo, dendritic cells (DC) form a network comprising different populations. In particular, Langerhans cells (LC) appear as a unique population of cells dependent on transforming growth factor beta(TGF-beta) for its development. In this study, we show that endogenous TGF-beta is required for the development of both LC and non-LC DC from CD34+ hematopoietic progenitor cells (HPC) through induction of DC progenitor proliferation and of CD1a+ and CD14+ DC precursor differentiation. We further demonstrate that addition of exogenous TGF-beta polarized the differentiation of CD34+ HPC toward LC through induction of differentiation of CD14+ DC precursors into E-cadherin+, Lag+CD68-, and Factor XIIIa-LC, displaying typical Birbeck granules. LC generated from CD34+ HPC in the presence of exogenous TGF-beta displayed overlapping functions with CD1a+ precursor-derived DC. In particular, unlike CD14(+)-derived DC obtained in the absence of TGF-beta, they neither secreted interleukin-10 (IL-10) on CD40 triggering nor stimulated the differentiation of CD40-activated naive B cells. Finally, IL-4, when combined with granulocyte-macrophage colony-stimulating factor (GM-CSF), induced TGF-beta-independent development of non-LC DC from CD34+ HPC. Similarly, the development of DC from monocytes with GM-CSF and IL-4 was TGF-beta independent. Collectively these results show that TGF-beta polarized CD34+ HPC differentiation toward LC, whereas IL-4 induced non-LC DC development independently of TGF-beta.  相似文献   

20.
Type I interferons (IFNs) are potent regulators of both innate and adaptive immunity. All type I IFNs bind to the same heterodimeric cell surface receptor composed of IFN-alpha receptor (IFNAR-1) and IFN-alpha/beta receptor (IFNAR-2) polypeptides. This study revealed that type I IFN receptor levels vary considerably on hematopoietic cells, with monocytes and B cells expressing the highest levels. Overnight treatment of peripheral blood mononuclear cells (PBMCs) with IFN-alpha2b or IFN-beta led to increased expression on monocytes and B cells of surface markers commonly associated with activated antigen-presenting cells (APCs), such as CD38, CD86, MHC class I, and MHC class II. Five-day exposure of adherent monocytes to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus IFN-alpha or IFN-beta caused the development of potent allostimulatory cells with morphology similar to that of myeloid dendritic cells (DCs) obtained from culture with GM-CSF and interleukin-4 (IL-4) but with distinct cell surface marker profiles and activity. In contrast to IL-4-derived DCs, IFN-alpha-derived DCs were CD14+, CD1a-, CD123+, CD32+, and CD38+ and expressed high levels of CD86 and MHC class II. Development of these cells was completely blocked by an antibody to IFNAR-1. Furthermore, activity of the type I IFN-derived DC in a mixed lymphocyte reaction (MLR) was consistently more potent than that of IL-4-derived DCs, especially at high responder/stimulator ratios. This MLR activity was abrogated by the addition of anti-IFNAR-1 antibody at the start of the DC culture. In contrast, there was no effect of anti-IFNAR-1 on IL-4-derived DCs, indicating that this is a distinct pathway of DC differentiation. These results suggest a potential role for anti-IFNAR-1 immunotherapy in autoimmune diseases, such as systemic lupus erythematosus (SLE), in which the action of excessive type I IFN on B cells and myeloid DCs may play a role in disease pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号