首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
HIV glycoprotein gp120 inhibits TCR-CD3-mediated activation of fyn and lck   总被引:1,自引:0,他引:1  
HIV major glycoprotein gp120 interacts with CD4 molecules and perturbs signaling through the TCR-CD3 complex. We examined the effects of gp120 on TCR-CD3-induced phosphorylation and activation of the src-type protein tyrosine kinases (PTK), fyn and lck. gp120 caused minimal changes in lck phosphorylation or lck enzymatic activity, but preincubation of Jurkat cells with gp120 for 20 min strongly inhibited TCR-CD3-mediated phosphorylation and activation of lck and fyn, as well as phosphorylation of CD3 zeta. Inhibition of TCR-CD3 signaling in T cells preincubated with gp120 was paralleled by inhibition of T cell proliferation to the antigen tetanus toxoid. Neither surface CD4 expression nor CD4-lck association was affected by gp120. Furthermore, gp120 inhibited lck phosphorylation induced by cross-linking of TCR-CD3 and CD4 suggesting that the inhibition of lck phosphorylation could not be simply accounted for by sequestration of CD4 molecules. gp120 selectively enhanced the phosphorylation of the lck peptide containing the autoinhibitory tyrosine residue Tyr505 relative to the lck peptide containing the positive regulatory residue Tyr394, suggesting that a qualitative alteration in lck may underlie the inhibition of TCR-CD3 signaling by gp120.   相似文献   

2.
We have recently described the A6H antigen as a novel 120-140 kDa molecule which is co-expressed on human peripheral blood T cells and renal cell carcinoma cells. Engagement of the A6H antigen results in co-stimulation of CD4+ T cells but it remained unknown how cross-talk between the A6H antigen and the TCR-CD3 complex takes place and which signaling pathway might be involved. Here we show that ligation of the A6H antigen with mAb induces tyrosine phosphorylation of the Lck protein tyrosine kinase (PTK). Co-ligation of the A6H antigen with CD3 resulted in augmented Lck phosphorylation and mitogenesis. In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast, another Src family PTK, Fyn, was not affected by A6H ligation. In conclusion, we now demonstrate, for the first time, that A6H ligation triggers Lck phosphorylation, and that cross-talk between A6H and the TCR-CD3 complex involves Lck, ZAP-70 and the slow migrating isoform of TCR zeta. These results further suggests that A6H ligation is sufficient for triggering some of the early events in T cell activation, whereas full activation of the T cell, characterized by proliferation and cytokine production, requires co-ligation of the TCR-CD3 complex.  相似文献   

3.
Stimulation of the T cell antigen receptor, TCR-CD3, induces tyrosine phosphorylation of specific cellular proteins through activation of a tyrosine kinase. The possible regulatory role of the CD45 protein tyrosine phosphatase in this process was explored by studying the functional properties of cellular variants of the Jurkat T cell line which have been selected to have normal levels of the TCR-CD3 complex, but low or negative expression of CD45. These variants had less than 20% of the normal membrane tyrosine phosphatase activity. Triggering the TCR-CD3 receptor on the CD45 variants with anti-CD3 mAb induced the activation of a tyrosine kinase. Tyrosine phosphorylation of cellular substrates as well as of the CD3 zeta chain was qualitatively comparable to normal cells although the extent of stimulation was lower. No differences were observed between the variants and the normal cells in the duration of the tyrosine phosphorylation signal. The increase in intracellular calcium concentration following receptor stimulation was also less efficient, suggesting that CD45 is necessary for optimal generation of the second messengers of the activation. The CD45 deficient cells secreted highly reduced levels of lymphokines (IL-2, IL-3 or GM-CSF) after activation by anti-CD3 mAb combined with the phorbol ester TPA. This impaired lymphokines production is related to the absence of CD45 since a CD45+ revertant subclone, isolated from one CD45- clone, produced normal levels of cytokines upon activation via CD3, while CD45- subclones were unable to secrete cytokines following activation via CD3. However, upon activation with Ca2+ ionophore and PMA, all CD45- (sub)clones secreted cytokines at levels comparable to those produced by CD45+ cells. These results show that CD45 is required for cytokine production after activation via the TCR-CD3 complex.  相似文献   

4.
CD26, a T-cell activation antigen that has dipeptidyl peptidase IV activity in its extracellular domain and has also been shown to play an important role in T-cell activation. The earliest biochemical events seen in stimulated T lymphocytes activated through the engagement of the T-cell receptor (TCR) is the tyrosine phosphorylation of a panel of cellular proteins. In this study we demonstrate that antibody-induced cross-linking of CD26-in CD26-transfected Jurkat cells induced tyrosine phosphorylation of several intracellular proteins with a similar pattern to that seen after TCR/CD3 stimulation. Herbimycin A, an inhibitor of the src family protein tyrosine kinases dramatically inhibited this CD26-mediated effect on tyrosine phosphorylation. Major tyrosine phosphorylated proteins were identified by immunoblotting, and included p56lck, p59fyn, zeta associated protein-tyrosine kinase of 70,000 MW (ZAP-70), mitogen-activated protein (MAP) kinase, c-Cb1, and phospholipase C gamma. CD26-induced tyrosine phosphorylation of MAP kinase correlated with increased MAP kinase activity. In addition, CD26 was costimulatory to CD3 signal transduction since co-cross-linking of CD26 and CD3 antigens induced prolonged and increased tyrosine phosphorylation in comparison with CD3 activation alone. We therefore conclude that CD26 is a true costimulatory entity that can up-regulate the signal transducing properties of the TCR.  相似文献   

5.
Campath-1H, a humanized mAb undergoing clinical trials for treatment of leukemia, transplantation and autoimmune diseases, produces substantial lymphocyte depletion in vivo.The antibody binds to CD52, a highly glycosylated molecule attached to the membrane by a glycosylphosphatidylinositol anchor. Cross-linked Campath-1H is known to activate T cells in vitro. We have investigated the molecular basis for these effects by comparing the protein tyrosine phosphorylation signals induced by Campath-1H and the CD3 mAb OKT3 in primary T cells, and in CD45(+)TCR(+), CD45(-)TCR(+) and CD45(+)TCR(-) Jurkat subclones transfected with CD52. Our results show that Campath-1H triggers similar tyrosine phosphorylation events as OKT3 in both primary T cells and in the CD45(+)TCR(+) Jurkat sub-clone, albeit at quantitatively lower levels. However, no phospholipase C gamma 1 activation nor calcium signals were detected in response to CD52 ligation. The CD52-mediated induction of protein tyrosine phosphorylation was absolutely dependent upon the expression of both the TCR and the CD45 phosphotyrosine phosphatase at the cell surface. Cross-linking of Campath-1H was essential for signal transduction in all cells investigated. Fluorescence resonance energy transfer was used to demonstrate CD52 homo-association at the cell surface in Jurkat T cells in a TCR- and CD45-independent manner, and CD52-TCR association in CD45(+)TCR(+) cells. We propose a model to explain the activating effects of Campath-1H in which CD52 mAb cross-linking causes the trapping of TCR polypeptides within molecular complexes at the cell surface, thereby inducing signals via the TCR by a process which depends on the CD45-mediated regulation of the p56(lck) and p59(fyn) tyrosine kinases.  相似文献   

6.
The Src family protein tyrosine kinase Fyn (p59fyn) plays an important role in thymocyte development and T cell receptor (TCR) signal transduction. Fyn has been shown to associate with the TCR-CD3 complex, the protein tyrosine phosphatase CD45 and several co-receptors such as CD28 which are crucial for initiating T cell activation and proliferation. The molecular basis of how Fyn is associated with these transmembrane proteins is largely unknown. To investigate the Fyn association with the TCR-CD3 complex, CD45 and CD28 at the molecular level, various Fyn/β-galactosidase fusion proteins were constructed and expressed in Jurkat cells. Co-localization experiments applying antibody-induced co-capping and double immunofluorescence staining techniques were used to study the association of these fusion proteins with the TCR-CD3 complex, CD45 and CD28. Our results revealed that co-localization of Fyn with the TCR-CD3 complex requires the unique N terminus whereas co-localization with CD45 depends on the unique N terminus, the Src homology (SH)3- and a functional SH2 domain. CD28 co-localizes with Fyn molecules that contain the N terminus and a functional SH2 domain. These results suggest that Fyn association with the TCR-CD3 complex, CD45 and CD28 is mediated by different molecular mechanisms.  相似文献   

7.
The role of membrane cofactor protein (MCP, CD46) on human T cell activation has been analyzed. Coligation of CD3 and CD46 in the presence of PMA or CD28 costimuli enhanced IL-2, IFN-gamma, or IL-10 secretion by CD4+ T lymphocytes. The effect of CD46 on IL-10 secretion did not require additional costimuli like anti-CD28 antibodies or phorbol esters. CD46 also enhanced IL-2 or IFN-gamma secretion by CD4+ blasts. In contrast, IL-5 secretion was inhibited upon CD46-CD3 coligation, in all the cells analyzed. These effects were independent of IL-12 and suggest that CD46 costimulation promotes a Th1-biased response in human CD4+ T lymphocytes. CD46 enhanced TCR/CD3-induced tyrosine phosphorylation of CD3zeta and ZAP-70, as well as the activation of the ERK, JNK, and p38, but did not modify intracellular calcium. The effect of specific inhibitors shows that enhanced ERK activation contributes to augmented IFN-gamma and lower IL-5 secretion and, consequently, to the Th1 bias. Cross-linking CD46 alone induced weak tyrosine phosphorylation of CD3zeta and ZAP-70. However, CD46 cross-linking by itself did not induce cell proliferation or lymphokine secretion, and pretreatment of CD4+ T lymphocytes with anti-CD46 antibodies did not significantly alter TCR/CD3 activation.  相似文献   

8.
CD4-Lck recruitment to TCR/CD3, as well as Lck activation is essential for T cell activation. Indeed, the blockage of CD4-Lck recruitment to TCR during antigen recognition exerts a drastic inhibitory effect on T cell activation by interfering with both early and late phases of T cell signaling. In the present work, we report a novel inhibitory mechanism by which CD4 can shut down proximal T cell-activating signals. Indeed, we show that upon ligation of CD4 by antibodies the inhibitory kinase, p50(csk), is strongly induced and prolonged during the time. In contrast, p50(csk) was not activated when TCR and CD4 were properly engaged by their ligands. We also demonstrate that anti-CD4 treatment stimulated Csk kinase associated to the membrane adapter, PAG/Cbp, without affecting the total amount of Csk bound to PAG/Cbp. As a consequence, early tyrosine phosphorylation events as well as downstream signaling pathways leading to IL-2 gene expression induced by TCR were inhibited in anti-CD4 pretreated cells. We suggest a new model to explain the activation of negative signals by CD4 molecule.  相似文献   

9.
Engagement of the T cell antigen-receptor complex (TcR/CD3) induces the rapid tyrosine phosphorylation of a spectrum of substrates whose modification is crucial to the activation process. Although CD4-associated p56lck and TcR/CD3-associated p59fyn(T) could account for this cascade, TcR/CD3 driven stimulation of p59fyn(T) activity has not been demonstrated. In this study, we confirm in Brij 96 based buffers that p59fyn(T) can be co-purified in association with the TcR/CD3 complex, and further demonstrate that antibody-induced cross-linking of TcR/CD3 on the cell surface results in a dramatic increase in the detection of receptor associated kinase activity. This results in an increased phosphorylation and detection of TcR/CD3-p59fyn(T) associated ζ (16–21 kD), p72 (72 kD) and p120/130 (120–130 kD) chains. A distinction between increased recruitment and/or activity of p59fyn(T) was not possible due to the fact that receptor associated p59fyn(T) could not be detected by immunoblotting. However, an alternative approach using membrane vesicles demonstrated an anti-CD3 mediated induced increase (2–5-fold) in the phosphorylation of the fyn kinase. Augmented catalytic activity was accompanied by p59fyn(T) labelling at the autophosphorylation site Tyr420, consistent with stimulated fyn catalytic activity, as well as the phosphorylation of polypeptides at 18–20 (TcRζ), 31, 90 and 130 kD. Stimulation of fyn activity implicates this kinase as a mediator of the tyrosine phosphorylation events originating from the TcR/CD3 complex.  相似文献   

10.
Stimulation of thymocytes or mature T cells via the T cell receptor (TcR)/CD3 complex activates a cascade of processes inducing cells to enter the cell cycle. A key step is the activation of phosphatidylinositol-specific phospholipase C (PI-PLC) within seconds following TcR/CD3 stimulation, an event which is strongly enhanced by co-ligation of the CD4 (or CD8) accessory molecule with TcR/CD3. In contrast, co-ligation of CD45 inhibits the same TcR/CD3 responses. The machinery which couples the TcR/CD3 complex, CD4, and CD45 to PI-PLC appears to involve regulation of tyrosine phosphorylation, as the TcR/CD3 and CD4 receptors are associated with the tyrosine kinases p59fyn and p56lck, respectively, and CD45 has intrinsic tyrosine phosphatase activity. Here, we have examined the ability of CD45 to regulate signal transduction via TcR/CD3 in human thymocytes. Co-cross-linking CD45 to the TcR/CD3 complex strongly suppressed the tyrosine phosphorylation of several intracellular substrates normally seen following TcR/CD3 stimulation. This effect of CD45 was associated with inhibition of a rise in intracellular calcium following TcR/CD3 ligation. Since TcR/CD3 stimulation of mature T cells induces tyrosine phosphorylation of PLC gamma 1, we investigated this phenomenon in thymocytes, and asked whether ligation of CD45 might regulate this process. By immunoprecipitation we found that TcR/CD3 stimulation induced tyrosine phosphorylation of PLC gamma 1, an effect which was enhanced by co-cross-linking CD4 to TcR/CD3. In contrast, co-ligation of CD45 strongly blocked PLC gamma 1 phosphorylation induced by either stimulus. Consistent with previous findings in mature T cells, CD45 cross-linking was able to partially inhibit TcR/CD3-induced thymocyte proliferation when interleukin 2 was used as a second signal, but almost completely (80%-90%) blocked proliferation when anti-CD28 mAb was used as the second signal, suggesting that CD45 cross-linking may be able to block interleukin 2 production via the CD28 pathway. These effects of CD45 on TcR/CD3 signaling and proliferation in thymocytes point towards a potential role for this pathway in thymic selection.  相似文献   

11.
Recent studies point to glycolipid-enriched membrane (GEM) microdomains as the critical sites for TCR-mediated signal transduction. However, whether the TCR complex is localized in the GEM domain is not well-defined. In the present study, we analyzed localization of the TCR-CD3 complex in the GEM domain by isolating the GEM fraction with sucrose density gradient centrifugation. Although 10% of TCRzeta chains was localized in the GEM fraction, most of the TCR complexes were excluded from the GEM before and after T cell activation, and the amount of TCRzeta in the GEM was not increased after activation. However, the tyrosine-phosphorylated form of TCRzeta was strongly concentrated in the GEM fraction upon TCR engagement. A kinetic study revealed that tyrosine phosphorylation of TCRzeta occurred initially in the Triton X-100-soluble membrane fraction followed by the accumulation of phosphorylated TCRzeta in the GEM. Thus, these results indicate that phosphorylated TCRzeta migrates into the GEM domains on T cell activation. We speculate that the GEM microdomains may function as a reservoir of activation signals from triggered TCR.  相似文献   

12.
Human immunodeficiency virus binds to CD4 T lymphocytes by interaction between its envelope glycoprotein gpl20 and the CD4 molecule. The latter is non-covalently associated with a src-related tyrosine kinase, p56lck. CD4 cross-linking increases the activity of p56lck, leading to phosphorylation of several cellular substrates. We report here that gpl60/120 increases both the autophos-phorylation of p56lck and its enzymatic activity (reflected by phosphorylation of an exogeneous substrate) in normal T cells and the HUT78 CD4+ T cell line. This effect was detectable 5 min after activation and persisted for 40 min in normal T cells. It did not require gpl20 cross-linking and was associated with phosphorylation of tyrosine residue on several proteins, as shown by phosphotyrosine Western blot analysis. The pattern of proteins phosphorylated on tyrosine residues in response to gpl20 activation was distinct from that induced by anti-CD4 antibodies. p56lck activation required its association with CD4, since p56lck activity was not modified in HUT78 T cell lines expressing a truncated or mutated form of CD4 unable to associate with p56lck. Peptides mimicking residues 418 to 434 and 449 to 464 of HIV-1 Bru gpl20, regions known to participate in gpl20 binding to CD4, also increased p56lck activity and triggered phosphorylation of similar substrates. Taken together, these results show that gpl60/120 and derived peptides can transiently increase p56lck activity without the need for CD4 cross-linking. This activation led to a specific pattern of tyrosine phosphorylation on cellular proteins that may be of significance in the biological effects of the gpl20/CD4 interaction, e.g. syncytium formation and inhibition of T cell activation.  相似文献   

13.
The lymphocyte-specific tyrosine protein kinase p56lck   总被引:11,自引:0,他引:11  
The CD4 and CD8 T cell surface antigens are physically associated with the tyrosine protein kinase p56lck. Accumulating data indicate that p56lck transduces intracellular tyrosine protein phosphorylation signals upon engagement of CD4 and CD8 by major histocompatibility complex (MHC) determinants expressed on antigen-presenting cells (APCs). Recent studies show that these p56lck-related phosphorylation events enhance T cell receptor (TCR)-mediated functions and are critical for the proposed co-receptor roles of CD4 and CD8. p56lck is also capable of enhancing antigen receptor responsiveness in the absence of CD4 or CD8 expression, suggesting that it can directly contribute to the TCR-induced tyrosine phosphorylation signal.  相似文献   

14.
The kinase activity of lymphocyte-specific tyrosine kinase p56lck (Lck) upon physiological major histocompatibility complex (MHC) recognition by normal mature T cells was examined. Recognition of the target MHC molecules by T cells induced phosphorylation of the zeta-chain without obvious enhancement of the background Lck activity. There was no sign of enhancement of Lck through putative T-cell receptor (TCR)-independent class II MHC/CD4 interactions either. As has been reported, cross-linking of CD4 molecules by antibodies induced a marked enhancement of Lck activity. However, it did not have an immediate relevance to TCR-mediated signal transduction, as judged from the lack of detectable de novo phosphorylation of zeta-chain and the absence of functional responses of T cells. These results strongly favour the model in which TCR-mediated signal transduction does not involve aggregation-dependent enhancement of Lck, suggesting that the signal can be triggered simply by the recruitment of already active Lck with basal kinase activity through the formation of a TCR/MHC/CD4 ternary complex.  相似文献   

15.
The multimeric FcγRIIIA (CD16) complex is expressed on the surface of natural killer (NK) cells and is composed of a 50–70-kDa transmembrane glycoprotein Fcγ receptor (CD16), the T cell receptor (TCR)-ζ chain, and the FcεRIγ chain. Cross-linking FcγRIIIA initiates the rapid tyrosine phosphorylation of multiple substrates including the ζ, subunit and causes subsequent cell activation and antibody-dependent cellular cytotoxicity (ADCC). The subunits of the FcγRIIIA complex lack intrinsic protein tyrosine kinase (PTK) activity, suggesting that receptor-induced tyrosine phosphorylation events are mediated by a nonreceptor PTK. We report here that the human FcγRIIIA is complexed with p56lck, a src-family PTK previously found associated with the CD4 and CD8 receptors on T cells. Upon engagement of the CD16 receptor, p56lck is rapidly (within 30 s) and transiently phosphorylated on tyrosine residues. Several FcγRIIIA-associated proteins are identified in immune complex kinase assays including the TCR-ζ, subunit, a p70–90 ζ-associated protein (ZAP), p50a (acidic) and p50b (basic), and p56lck. We demonstrate that the src-family protein tyrosine kinase inhibitor, herbimycin A, blocks increased intracellular calcium levels and ADCC caused by CD16 cross-linking on NK3.3 cells. Likewise cross-linking CD16 with the protein tyrosine phosphatase CD45, abrogates CD16-induced calcium mobilization. These data suggest that p56lck is physically associated with FcγRIIIA(CD16) and functions to mediate signaling events related to the control of NK cellular cytotoxicity.  相似文献   

16.
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.  相似文献   

17.
Natural killer cells express an Fc receptor for IgG (CD16) in association with disulfide-linked dimers composed of two homologous subunits: the zeta chain of the T cell antigen receptor complex and the gamma chain of the mast cell/basophil Fc receptor for IgE. The ability of zeta and gamma to transduce CD16-mediated activation signals was compared by reconstituting distinct CD16 receptor isoforms composed of various combinations of zeta- and gamma-containing dimers. Stably transformed non-hematopoietic and hematopoietic cell lines were established that expressed chimeric molecules comprising the extracellular domain of CD16 joined to the transmembrane and intracellular domains of zeta or gamma. Reconstituted CD16 receptor complexes triggered Ca2+ influx, tyrosine phosphorylation, and IL-2 production in stable transformants of the Jurkat T cell line. However, cross-linking of the CD16/gamma chimera induced a specific pattern of tyrosine phosphorylation and was more efficient at signal transduction than a CD16, zeta-zeta complex, suggesting that zeta and gamma cytoplasmic domains may be coupled to distinct tyrosine kinase pathways that differentially regulate CD16-mediated activation signals. By contrast, both CD16/zeta and CD16/gamma chimeric molecules were not functional in stable transformants of the fibroblast Chinese Hamster Ovary cell line, indicating a requirement for downstream signaling components present in hematopoietic cells. Finally, the zeta transmembrane domain appears to preferentially associate with CD16 rather than the CD3:TCR complex, suggesting that a hierarchy of molecular interactions governs NK and T cell differentiation.  相似文献   

18.
Functional consequences of CD4-TCR/CD3 interactions.   总被引:3,自引:0,他引:3  
The relative positions of CD4 and of the T cell receptor complex for antigen (TCR/CD3) determine whether signalling through the antigen receptor results in T cell growth. The following discussion focusses on those central observations which demonstrate that CD4 and the associated protein tyrosine kinase p56lck provide critical signals modulating the biological responses induced through the TCR/CD3 complex. Based on the available evidence, we suggest that antigen-mediated co-aggregation of CD4/Lck and TCR/CD3 is an obligate activation signal and that, in its absence, signalling through TCR alpha beta induces T cell death. The role of CD4 in self-non-self discrimination would therefore be critical and would provide a mechanism for the maintenance of peripheral T cell tolerance to non-major histocompatibility complex-related self-antigens.  相似文献   

19.
Signaling via the T cell receptor (TCR)/CD3 complex of pre-activated T cells induces apoptosis. Such an activation-induced cell death (AICD) is thought to play an important role in the regulation of cellular immune responses. In this study we analyzed pathways of AICD by using human T cells transformed by Herpesvirus saimiri. These growth-transformed T cells show the phenotype of activated mature T cells and continue to express a functionally intact TCR. We show that human H. saimiri-transformed T cell clones readily undergo cell death upon signaling via the TCR/CD3 complex or via phorbol 12-myristate 13-acetate (PMA) + ionomycin. The AICD in H. saimiri-transformed T cells was detectable a few hours after activation and it was not affected by the presence of interleukin (IL)-2 or by anti-CD4 cross-linking. However, AICD required tyrosine phosphorylation, since it could be blocked by herbimycin A. Cyclosporin A (CsA) did not block the development of AICD, but other consequences of activation in H. saimiri-transformed T cells like the production of interferon-γ. Surprisingly, the development of AICD was not reduced by neutralizing antibodies to tumor necrosis factor (TNF)-α or blocking antibodies directed to CD95 (Fas, APO-1), although H. saimiri-transformed T cells were sensitive to CD95 ligation. To confirm that this form of AICD is really independent of CD95, we have established an H. saimiri-transformed T cell line from a patient with a homozygous deletion in the CD95 gene. This CD95-deficient T cell line was as sensitive to AICD as other CD95-expressing H. saimiri-transformed T cells. In conclusion, we describe here a type of AICD in H. saimiri-transformed T cells that is independent of CD95 and TNF-α, not sensitive to CsA, but requires tyrosine phosphorylation. This system should be useful for the investigation of CD95-independent forms of AICD.  相似文献   

20.
We have previously shown that engagement of the T-cell receptor (TCR)/CD3 complex with anti-CD3 antibody induces tyrosine phosphorylation of p105CasL (CasL), a member of the p130Cas docking protein family. In the present work, we attempted to determine which protein tyrosine kinases (PTKs) regulate TCR-mediated phosphorylation of CasL. We show here that an association between CasL and two types of Src family PTKs, Fyn and Lck, is induced by anti-CD3 cross-linking of human H9 T cells. In contrast, ZAP-70, another PTK that also plays a critical role in the TCR signalling, failed to bind CasL, even after anti-CD3 stimulation. In vitro kinase assays revealed that Fyn and Lck, but not ZAP-70, were capable of phosphorylating CasL. Moreover, we found that CasL was constitutively hyperphosphorylated in vivo in splenocytes of MRL-MP-lpr/lpr mice, in which overproduction and excessive activation of Fyn and Lck have previously been shown to occur. Constitutive in vivo binding of CasL to both kinases was also demonstrated in lpr splenocytes. These results strongly suggest that CasL is a substrate for Fyn and Lck PTKs in TCR signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号