首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deafness occurs in about 1 per thousand live births, and at least 50% of congenital deafness is hereditary. The aim of this study was to examine the number of loci for recessively in herited severe nerve deafness of early onset within the Israeli population and to compare the results to those obtained in other populations. The Jewish population in Israel originates from many countries and may be divided into Sephardi, Eastern and Ashkenazi Jews, and the matings will be intraethnic or interethnic. Data were obtained on 133 deaf couples who lived in the Tel Aviv area, through the files of the Helen Keller Center. Causes of deafness in the spouses were studied and data on their children were obtained. Among 111 couples who had recessive or possibly recessive deafness and had at least 1 child, there were 12 with only deaf children and 5 with both deaf and hearing children. The number of loci for recessive deafness in the whole group was estimated at 8–9. Intraethnic and interethnic matings gave an estimate of 6.7 and 22.0 loci, respectively, which indicates that within populations fewer loci exist with recessive mutations for deafness than between populations. it could be shown that the sharing of loci between spouses decreased with increasing geographical distance of their origin. The results provide data for genetic counseling in Israel for deaf couples who have no children or have one hearing or one deaf child.  相似文献   

2.
In order to evaluate the genetic epidemiology of deafness in Turkey, we first analyzed the pedigree data obtained from 2,169 families whose children were students of the schools for hearing loss/deafness in 31 cities of Turkey. Single major locus segregation analysis was performed after families were grouped according to hearing status of the parents. The results showed that sporadic phenocopies, autosomal dominant, and autosomal recessive transmission account for 18.2%, 4.9%, and 76.9% of the cases respectively, after exclusion of probands with unequivocal evidence for environmental etiologies. The high frequency of autosomal recessive transmission of this study differs from those of previous ones in Western populations. We subsequently analyzed the data from a subset of 574 unrelated families that were evaluated clinically, including mutation analysis of the GJB2 gene in 406 probands. Biallelic mutations were detected in 22.4% of all probands. They were present in 68.8% of probands whose parents were both deaf, yet in only 9.3% when both parents were hearing and consanguineous without a family history of deafness. Our study shows that GJB2 is the major gene for deafness in Turkey and was amplified in deaf by deaf matings, since assortative mating preferentially affects common genes. Deafness in the remaining families appears to result from mutations at many loci that are less frequent causes of deafness, because consanguinity has a proportionally greater effect on rare genes. Conclusions of this study may be relevant to other populations where consanguineous or assortative mating is present with various frequencies.  相似文献   

3.
Hearing loss is a common sensory deficit in humans. The hearing loss may be conductive, sensorineural, or mixed, syndromic or nonsyndromic, prelingual or postlingual. Due to the complexity of the hearing mechanism, it is not surprising that several hundred genes might be involved in causing hereditary hearing loss. There are at least 82 chromosomal loci that have been identified so far which are associated with the most common type of deafness--non-syndromic deafness. However, there are still many more which remained to be discovered. Here, we report the mapping of a locus for autosomal recessive, non-syndromic deafness in a family in Malaysia. The investigated family (AC) consists of three generations--parents who are deceased, nine affected and seven unaffected children and grandchildren. The deafness was deduced to be inherited in an autosomal recessive manner with 70% penetrance. Recombination frequencies were assumed to be equal for both males and females. Using two-point lod score analysis (MLINK), a maximum lod score of 2.48 at 0% recombinant (Z = 2.48, theta = 0%) was obtained for the interval D14S63-D14S74. The haplotype analysis defined a 14.38 centiMorgan critical region around marker D14S258 on chromosome 14q23.2-q24.3. There are 16 candidate genes identified with positive expression in human cochlear and each has great potential of being the deaf gene responsible in causing non-syndromic hereditary hearing loss in this particular family. Hopefully, by understanding the role of genetics in deafness, early interventional strategies can be undertaken to improve the life of the deaf community.  相似文献   

4.
Two loci for nonsyndromic recessive deafness located on chromosome 21q22.3 have previously been reported, DFNB8 and DFNB10. Recently a gene which encodes a transmembrane serine protease, TMPRSS3 or ECHOS1, was found to be responsible for both the DFNB8 and DFNB10 phenotypes. To determine the contribution of TMPRSS3 mutations in the general congenital/childhood nonsyndromic deaf population we performed mutation analysis of the TMPRSS3 gene in 448 unrelated deaf patients from Spain, Italy, Greece, and Australia who did not have the common 35delG GJB2 mutation. From the 896 chromosomes studied we identified two novel pathogenic mutations accounting for four mutant alleles and at least 16 nonpathogenic sequence variants. The pathogenic mutations were a 1-bp deletion resulting in a frameshift and an amino acid substitution in the LDLRA domain of TMPRSS3. From this and another study we estimate the frequency of TMPRSS3 mutations in our sample as 0.45%, and approximately 0.38% in the general Caucasian childhood deaf population. However, TMPRSS3 is still an important contributor to genetic deafness in populations with large consanguineous families.  相似文献   

5.
目的了解婚前聋人基因检测及婚配生育情况,为预防耳聋提供依据。方法对自愿接受基因检测的情侣耳聋基因突变进行检测。结果聋人婚配模式是15对聋人与聋人婚配的9对占60%;聋人与健听人婚配占26.67%;聋人与重听人结婚的占13.33%。其中9对聋与聋在婚前进行遗传咨询占60.O%,接受致聋基因检测的仅有3对占20.0%。生育正常12例后代,1例听力正常的女孩为GJB2235delc杂合突变携带者,1例男婴,重度耳聋为SLC26A4IVS7—2A〉G杂合突变。结论婚前进行常见耳聋基因检测,是对耳聋预防与出生缺陷干预的有效措施。  相似文献   

6.
The genetic fitness of an individual is influenced by their phenotype, genotype and family and social structure of the population in which they live. It is likely that the fitness of deaf individuals was quite low in the Western European population during the Middle Ages. The establishment of residential schools for deaf individuals nearly 400 years ago resulted in relaxed genetic selection against deaf individuals which contributed to the improved fitness of deaf individuals in recent times. As part of a study of deaf probands from Gallaudet University, we collected pedigree data, including the mating type and the number and hearing status of the children of 686 deaf adults and 602 of their hearing siblings. Most of these individuals had an onset of severe to profound hearing loss by early childhood. Marital rates of deaf adults were similar to their hearing siblings (0.83 vs. 0.85). Among married individuals, the fertility of deaf individuals is lower than their hearing siblings (2.06 vs. 2.26, p = 0.005). The fitness of deaf individuals was reduced (p = 0.002). Analysis of fertility rates after stratification by mating type reveals that matings between two deaf individuals produced more children (2.11) than matings of a deaf and hearing individual (1.85), suggesting that fertility among deaf individuals is influenced by multiple factors.  相似文献   

7.
Non-syndromic, autosomal-recessive deafness   总被引:5,自引:0,他引:5  
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.  相似文献   

8.
Non-syndromic deafness is a paradigm of genetic heterogeneity. More than 70 loci have been mapped, and 25 of the nuclear genes responsible for non-syndromic deafness have been identified. Autosomal-dominant genes are responsible for about 20% of the cases of hereditary non-syndromic deafness, with 16 different genes identified to date. In the present article we review these 16 genes, their function and their contribution to deafness in different populations. The complexity is underlined by the fact that several of the genes are involved in both dominant and recessive non-syndromic deafness or in both non-syndromic and syndromic deafness. Mutations in eight of the genes have so far been detected in only single dominant deafness families, and their contribution to deafness on a population base might therefore be limited, or is currently unknown. Identification of all genes involved in hereditary hearing loss will help in the understanding of the basic mechanisms underlying normal hearing, will facilitate early diagnosis and intervention and might offer opportunities for rational therapy.  相似文献   

9.
Recent advances have made molecular genetic testing for several forms of deafness more widely available. Previous studies have examined the attitudes of the deaf towards genetic testing, including prenatal diagnosis. This study examines the attitudes of deaf college students towards universal newborn hearing screening, including molecular testing for specific forms of deafness, as well as the utilization of genetic test results for mate selection. We found that there may be differences in the attitudes of deaf individuals who associate closely with the deaf community (DC), and those who have equal involvement with both the deaf and hearing communities (EIC). The majority perceived newborn hearing screening for deafness to be helpful. However, more members of the EIC than the DC groups support newborn testing for genes for deafness. While there was reported interest in using genetic testing for partner selection, most participants reported they would not be interested in selecting a partner to have children with a specific hearing status. The results of this study point out important differences that genetic professionals should be aware of when counseling deaf individuals.  相似文献   

10.
《Genetics in medicine》2019,21(11):2614-2630
Early intervention for newborns who are deaf or hard-of-hearing leads to improved language, communication, and social–emotional outcomes. Universal physiologic newborn hearing screening has been widely implemented across the United States with the goal of identifying newborns who are deaf or hard-of-hearing, thereby reducing time to diagnosis and intervention. The current physiologic newborn hearing screen is generally successful in accomplishing its goals but improvements could be made. In the past ten years, genetic testing has emerged as the most important etiological diagnostic test for evaluation of children with deafness and congenital cytomegalovirus has been recognized as a major cause of childhood deafness that may be treatable. A comprehensive newborn hearing screen that includes physiologic, genetic, and cytomegalovirus testing would have multiple benefits, including (1) identifying newborns with deafness missed by the current physiologic screen, (2) providing etiologic information, and (3) possibly decreasing the number of children lost to follow up. We present a framework for integrating limited genetic testing and cytomegalovirus screening into the current physiologic newborn hearing screening. We identify needed areas of research and include an overview of genome sequencing, which we believe will become available over the next decade as a complement to universal physiologic newborn hearing screening.  相似文献   

11.
Genetic and auditory studies of 731 children with severe-to-profound hearing loss in US schools for the deaf and 46 additional children receiving clinical services for hearing loss ranging from moderate to profound demonstrated that mutations in the connexin 26 (GJB2) and connexin 30 (GJB6) genes explain at least 12% of those with nonsyndromic sensorineural deafness. Otoacoustic emissions (OAEs) testing to detect functional outer hair cells indicated that 76 of the children had emissions and therefore may have (as yet unconfirmed) auditory neuropathy/dys-synchrony (AN/AD). Five of these children with OAEs were GJB2 homozygotes or compound heterozygotes with the genotypes 35delG/35delG, W77X/W77X, 35delG/360delGAG, 35delG/V95M, and V84M/M34T. In particular, unilateral AN/AD was confirmed in a child with moderate hearing loss and the 35delG/V95M genotype. Detecting OAEs in individuals with GJB2 mutations suggests that lack of functional gap junctions as a result of GJB2 mutations does not necessarily destroy all outer hair cell function.  相似文献   

12.
We present here a large Israeli-Arab kindred with hereditary deafness. In this family 55 deaf subjects (29M, 26F), who are otherwise healthy, have been identified and traced back five generations to one common female ancestor. The deafness is progressive in nature, usually presenting in infancy and childhood. Audiometry on six deaf and seven unaffected subjects was consistent with severe to profound sensorineural hearing loss. Based on formal family segregation analysis, the inheritance of deafness in this family closely fits the expectation of a two locus model owing to the simultaneous mutation of a mitochondrial gene and an autosomal recessive gene. Thus, this disorder appears to have the unusual features of being an inherited tissue specific mitochondrial disease and apparently requiring the homozygous presence of a nuclear gene for clinical expression. Most importantly, this disorder presents a unique opportunity to investigate the molecular basis of hereditary non-syndromic deafness and normal hearing.  相似文献   

13.
Approximately one in 2000 children is born with a genetic hearing impairment, mostly inherited as a non-syndromic, autosomal recessive trait, for which more than 30 different genes have been identified. Previous studies have shown that one of these genes, connexin 26 (GJB2), accounts for 30-60% of such deafness, but the relative contribution of the many other genes is not known, especially in the outbred UK population. This lack of knowledge hampers the development of diagnostic genetic services for deafness. In an effort to determine the molecular aetiology of deafness in the population, 142 sib pairs with early-onset, non-syndromic hearing impairment were recruited. Those in whom deafness could not be attributed to GJB2 mutations were investigated further for other mapped genes. The genetic basis of 55 cases (38.7%) was established, 33.1% being due to mutations in the GJB2 gene and 3.5% due to mutations in SLC26A4. None of the remaining 26 loci investigated made a significant contribution to deafness in a Caucasian population. We suggest that screening the GJB2 and SLC26A4 genes should form the basis of any genetic testing programme for childhood deafness and highlight a number of important issues for consideration and future work.  相似文献   

14.
Implementing DNA diagnostics in clinical practice for extremely heterogeneous diseases such as hearing loss is challenging, especially when attempting to reach high sensitivity and specificity in a cost‐effective fashion. Next generation sequencing has enabled the development of such a test, but the most commonly used genomic target enrichment methods such as hybridization‐based capture suffer from restrictions. In this study, we have adopted a new flexible approach using microdroplet PCR‐based technology for target enrichment, in combination with massive parallel sequencing to develop a DNA diagnostic test for autosomal recessive hereditary hearing loss. This approach enabled us to identify the genetic basis of hearing loss in 9 of 24 patients, a success rate of 37.5%. Our method also proved to have high sensitivity and specificity. Currently, routine molecular genetic diagnostic testing for deafness is in most cases only performed for the GJB2 gene and a positive result is typically only obtained in 10–20% of deaf children. Individuals with mutations in GJB2 had already been excluded in our selected set of 24 patients. Therefore, we anticipate that our deafness test may lead to a genetic diagnosis in roughly 50% of unscreened autosomal recessive deafness cases. We propose that this diagnostic testing approach represents a significant improvement in clinical practice as a standard diagnostic tool for children with hearing loss. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
In the present paper, we review what is currently known about the effects of deafness on the developing human auditory system and ask: Without use, does the immature auditory system lose the ability to normally function and mature? Any change to the structure or function of the auditory pathways resulting from a lack of activity will have important implications for future use through an auditory prosthesis such as a cochlear implant. Data to date show that deafness in children arrests and disrupts normal auditory development. Multiple changes to the auditory pathways occur during the period of deafness with the extent and type of change being dependent upon the age and stage of auditory development at onset of deafness, the cause or type of deafness, and the length of time the immature auditory pathways are left without significant input. Structural changes to the auditory nerve, brainstem, and cortex have been described in animal models of deafness as well in humans who are deaf. Functional changes in deaf auditory pathways have been evaluated by using a cochlear implant to stimulate the auditory nerve with electrical pulses. Studies of electrically evoked activity in the immature deaf auditory system have demonstrated that auditory brainstem development is arrested and that thalamo-cortical areas are vulnerable to being taken over by other competitive inputs (cross-modal plasticity). Indeed, enhanced peripheral sight and detection of visual movement in congenitally deaf cats and adults have been linked to activity in specific areas of what would normally be auditory cortex. Cochlear implants can stimulate developmental plasticity in the auditory brainstem even after many years of deafness in childhood but changes in the auditory cortex are limited, at least in part, by the degree of reorganization which occurred during the period of deafness. Consequently, we must identify hearing loss rapidly (i.e., at birth for congenital deficits) and provide cochlear implants to appropriate candidates as soon as possible. Doing so has facilitated auditory development in the thalamo-cortex and allowed children who are deaf to perceive and use spoken language.  相似文献   

16.
《Genetics in medicine》2010,12(8):512-516
PurposeUsher syndrome is a major cause of genetic deafness and blindness. The hearing loss is usually congenital and the retinitis pigmentosa is progressive and first noticed in early childhood to the middle teenage years. Its frequency may be underestimated. Newly developed molecular technologies can detect the underlying gene mutation of this disorder early in life providing estimation of its prevalence in at risk pediatric populations and laying a foundation for its incorporation as an adjunct to newborn hearing screening programs.MethodsA total of 133 children from two deaf and hard of hearing pediatric populations were genotyped first for GJB2/6 and, if negative, then for Usher syndrome. Children were scored as positive if the test revealed ≥1 pathogenic mutations in any Usher gene.ResultsFifteen children carried pathogenic mutations in one of the Usher genes; the number of deaf and hard of hearing children carrying Usher syndrome mutations was 15/133 (11.3%). The population prevalence was estimated to be 1/6000.ConclusionUsher syndrome is more prevalent than has been reported before the genome project era. Early diagnosis of Usher syndrome has important positive implications for childhood safety, educational planning, genetic counseling, and treatment. The results demonstrate that DNA testing for Usher syndrome is feasible and may be a useful addition to newborn hearing screening programs.  相似文献   

17.
Screening of 12 Turkish families with apparently autosomal recessive nonsyndromic sensorineural deafness without GJB2 and mtDNA m.1555A > G mutations for 11 previously mapped recessive deafness loci showed a family in which hearing loss cosegregated with the DFNB9 (OTOF) locus. Three affected children were later found to carry a novel homozygous c.3032T > C (p.Leu1011Pro) mutation in the OTOF gene. Both parents were heterozygous for the mutation. p.Leu1011Pro alters a conserved leucine residue in the C2D domain of otoferlin. Pure tone audiometry of the family showed severe to profound sensorineural hearing loss (with U-shape audiograms) in children, and normal hearing in the parents. Otoacoustic emissions and auditory brainstem response (ABR) suggested the presence of auditory neuropathy in affected individuals.  相似文献   

18.
Mutations of the transmembrane channel-like gene 1 (TMC1) have been shown to cause autosomal dominant and recessive forms of congenital nonsyndromic deafness linked to the loci DFNA36 and DFNB7/B11, respectively. In a Sudanese pedigree affected by an apparently recessive form of nonsyndromic deafness, we performed a linkage analysis using markers covering the deafness loci DFNB1 - DFNB30. A two-point LOD score of 3.08 was obtained at marker position D9S1876, located within the first intron of the TMC1 gene at DFNB7/B11. By DNA sequencing of TMC1 exons 3-22, we identified the structural variant c.1165C>T in exon 13, leading to the stop codon p.Arg389X, and the splice-site variant c.19+5G>A, independently segregating with the deafness phenotype. The c.1165C>T [p.Arg389X] mutation was also observed in four out of 243 unrelated deaf Sudanese individuals, but none of the mutations was found among 292 normal hearing controls. The finding of TMC1 mutations contributing to deafness in Sudan confirms and extends previous reports on the role of TMC1 in recessive nonsyndromic deafness and shows that deafness-causing TMC1 mutations may occur in various ethnic groups.  相似文献   

19.
Recessive mutations of SLC26A4 (PDS) are a common cause of Pendred syndrome and non-syndromic deafness in western populations. Although south and east Asia contain nearly one half of the global population, the origins and frequencies of SLC26A4 mutations in these regions are unknown. We PCR amplified and sequenced seven exons of SLC26A4 to detect selected mutations in 274 deaf probands from Korea, China, and Mongolia. A total of nine different mutations of SLC26A4 were detected among 15 (5.5%) of the 274 probands. Five mutations were novel and the other four had seldom, if ever, been identified outside east Asia. To identify mutations in south Asians, 212 Pakistani and 106 Indian families with three or more affected offspring of consanguineous matings were analysed for cosegregation of recessive deafness with short tandem repeat markers linked to SLC26A4. All 21 SLC26A4 exons were PCR amplified and sequenced in families segregating SLC26A4 linked deafness. Eleven mutant alleles of SLC26A4 were identified among 17 (5.4%) of the 318 families, and all 11 alleles were novel. SLC26A4 linked haplotypes on chromosomes with recurrent mutations were consistent with founder effects. Our observation of a diverse allelic series unique to each ethnic group indicates that mutational events at SLC26A4 are common and account for approximately 5% of recessive deafness in south Asians and other populations.  相似文献   

20.
Sex linked deafness: Wilde revisited.   总被引:3,自引:1,他引:2       下载免费PDF全文
Sex linked recessive deafness is a rare cause of male genetic deafness, estimated to account for 6.2% of male genetic deafness in 1966. A male excess was found in the deaf population of Ireland in 1851. Reevaluation of this survey of 1851 confirms sex linked deafness as a factor in the disproportionate number of deaf males and suggests that 5% of congenital male deafness was the result of sex linked recessive deafness. This study confirms that a small but constant proportion of male deafness is the result of sex linked recessive deafness. The figure derived is used to calculate an empirical risk for carrier status in female sibs of isolated cases of male deafness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号