首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu ZL  Chu W  Dosher BA 《Vision research》2006,46(15):2315-2327
Dosher and Lu (1998) [Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences of the United States of America, 95 (23), 13988-13993.] proposed three mechanisms of perceptual learning: stimulus enhancement, external noise exclusion, and multiplicative noise reduction. In this study, we used pre-training as a manipulation to evaluate the separability of these mechanisms as a key test of the theoretical framework. Observers were trained in identifying the motion direction of a moving sine-wave grating in fovea with varying amount of superimposed external noise across trials, after receiving no pre-training, pre-training in high external noise, or pre-training in zero external noise in the same task. We found: (1) Without pre-training, perceptual learning significantly reduced contrast thresholds by about the same amount across all the external noise levels. (2) Both types of pre-training significantly reduced contrast thresholds in the corresponding conditions. (3) Pre-training in high external noise greatly reduced subsequent learning in high external noise, accounting for 64.6% of the total (pre-training + subsequent) improvements in that condition. On the other hand, the amount of subsequent learning in low external noise conditions was essentially the same as the total (pre-training + subsequent) amount of improvements in high external noise, suggesting that pre-training in high external noise had mostly only improved performance in noisy displays. (4) Pre-training in zero external noise practically eliminated or left very little additional learning in all the external noise conditions. We concluded that the two mechanisms of perceptual learning, stimulus enhancement, and external noise exclusion, can be trained independently in motion direction discrimination in fovea; training in low noise suffices to improve observer performance over all the external noise conditions.  相似文献   

2.
Saffell T  Matthews N 《Vision research》2003,43(12):1365-1374
Twenty-two nai;ve undergraduates participated in a psychophysical experiment designed to elucidate the neural events that allow us to see subtle motion differences. Half of the subjects practiced extensively on a direction-discrimination task while the other half practiced extensively on a speed-discrimination task. The stimulus conditions in the two groups were identical. The results indicated that the learning curves for direction discrimination were significantly steeper than those for speed discrimination. Additionally, the significant practice-based improvements on each motion task did not transfer to the other motion task. The different learning rates and the lack of transfer suggest that the neural events mediating speed discrimination are at least partially independent from those mediating direction discrimination, and vice versa, even under identical stimulus conditions.  相似文献   

3.
Fine I  Jacobs RA 《Vision research》2000,40(23):3209-3230
Our goal was to differentiate low and mid level perceptual learning. We used a complex grating discrimination task that required observers to combine information across wide ranges of spatial frequency and orientation. Stimuli were 'wicker'-like textures containing two orthogonal signal components of 3 and 9 c/deg. Observers discriminated a 15% spatial frequency shift in these components. Stimuli also contained four noise components, separated from the signal components by at least 45 degrees of orientation or approximately 2 octaves in spatial frequency. In Experiment 1 naive observers were trained for eight sessions with a four-alternative same-different forced choice judgment with feedback. Observers showed significant learning, thresholds dropped to approximately 1/3 of their original value. In Experiment 2 we found that observers showed far less learning when the noise components were not present. Experiment 3 found, unlike many other studies, almost complete transfer of learning across orientation. The results of Experiments 2 and 3 suggest that, unlike many other perceptual learning studies, most learning in Experiment 1 occurs at mid to high levels of processing rather than within low level analyzers tuned for spatial frequency and orientation. Experiment 4 found that performance was more severely impaired by spatial frequency shifts in noise components of the same spatial frequency or orientation as the signal components (though there was significant variability between observers). This suggests that after training observers based their responses on mechanisms tuned for selective regions of Fourier space. Experiment 5 examined transfer of learning from a same-sign task (the two signal components both increased/decreased in spatial frequency) to an opposite-sign task (signal components shifted in opposite directions in frequency space). Transfer of learning from same-sign to opposite-sign tasks and vice versa was complete suggesting that observers combined information from the two signal components independently.  相似文献   

4.
Perceptual learning can occur when stimuli are only imagined, i.e., without proper stimulus presentation. For example, perceptual learning improved bisection discrimination when only the two outer lines of the bisection stimulus were presented and the central line had to be imagined. Performance improved also with other static stimuli. In non-learning imagery experiments, imagining static stimuli is different from imagining motion stimuli. We hypothesized that those differences also affect imagery perceptual learning. Here, we show that imagery training also improves motion direction discrimination. Learning occurs when no stimulus at all is presented during training, whereas no learning occurs when only noise is presented. The interference between noise and mental imagery possibly hinders learning. For static bisection stimuli, the pattern is just the opposite. Learning occurs when presented with the two outer lines of the bisection stimulus, i.e., with only a part of the visual stimulus, while no learning occurs when no stimulus at all is presented.  相似文献   

5.
What is learned during perceptual learning? We address this question by analyzing how perceptual inefficiencies improve over the course of perceptual learning (Dosher & Lu, 1998). Systematic measurements of human performance as a function of both the amount of external noise added to the signal stimulus and the length of training received by the observers enable us to track changes of the characteristics of the perceptual system (e.g., internal noise[s] and efficiency of the perceptual template) as perceptual learning progresses, and, therefore, identifies the mechanism(s) underlying the observed performance improvements. Two different observer models, the linear amplifier model (LAM) and the perceptual template model (PTM), however, have led to two very different theories of learning mechanisms. Here we demonstrate the failure of an LAM-based prediction - that the magnitude of learning-induced threshold reduction in high external noise must be less or equal to that in low external noise. In Experiment 1, perceptual learning of Gabor orientation identification in fovea showed substantial performance improvements only in high external noise but not in zero or low noise. The LAM-based model was "forced" to account for the data with a combination of improved calculation efficiency and (paradoxical) compensatory increases of the equivalent internal noise. Based on the PTM framework, we conclude that perceptual learning in this task involved learning how to better exclude external noise, reflecting retuning of the perceptual template. The data provide the first empirical demonstration of an isolable mechanism of perceptual learning. This learning completely transferred to a different visual scale in a second experiment.  相似文献   

6.
Performance in perceptual tasks improves with repetition (perceptual learning), eventually reaching a saturation level. Typically, when perceptual learning effects are studied, stimulus parameters are kept constant throughout the training and during the pre- and post-training tests. Here we investigate whether learning by repetition transfers to testing conditions in which the practiced stimuli are randomly interleaved during the post-training session. We studied practice effects with a contrast discrimination task, employing a number of training methods: (i) practice with a single, fixed pedestal (base-contrast), (ii) practice with several pedestals, and (iii) practice with several pedestals that included a spatial context. Pre- and post-training tests were carried out with the base contrast randomized across trials, under conditions of contrast uncertainty. The results showed that learning had taken place with the fixed pedestal method (i) and with the context method (iii), but only the latter survived the uncertainty test. In addition, we were able to identify a very fast learning phase in contrast discrimination that improved performance under uncertainty. We contend that learned tasks that do not pass the uncertainty test involve modification of decision strategies that require exact knowledge of the stimulus.  相似文献   

7.
Perceptual learning of orientation discrimination is reported to be precisely specific to the trained retinal location. This specificity is often taken as evidence for localizing the site of orientation learning to retinotopic cortical areas V1/V2. However, the extant physiological evidence for training improved orientation turning in V1/V2 neurons is controversial and weak. Here we demonstrate substantial transfer of orientation learning across retinal locations, either from the fovea to the periphery or amongst peripheral locations. Most importantly, we found that a brief pretest at a peripheral location before foveal training enabled complete transfer of learning, so that additional practice at that peripheral location resulted in no further improvement. These results indicate that location specificity in orientation learning depends on the particular training procedures, and is not necessarily a genuine property of orientation learning. We suggest that non-retinotopic high brain areas may be responsible for orientation learning, consistent with the extant neurophysiological data.  相似文献   

8.
Yu C  Klein SA  Levi DM 《Journal of vision》2004,4(3):169-182
Unlike most visual tasks, contrast discrimination has been reported to be unchanged by practice (Dorais & Sagi, 1997; Adini, Sagi, & Tsodyks, 2002), unless practice is undertaken in the presence of flankers (context-enabled learning, Adini et al., 2002). Here we show that under experimental conditions nearly identical to those in the no-flanker practice experiment of Adini et al. (2002), practice significantly improved contrast discrimination. Moreover, in a separate experiment, we found that practice without flankers can improve contrast discrimination to a level only reached with flankers in Adini et al. (2002), but further practice with flankers produces no further improvement of contrast discrimination. These results call into question whether the "context-enabled learning" proposed by Adini et al. (2002) is different from regular contrast learning without flankers. In separate experiments, we found that contrast learning is tuned to spatial frequency, orientation, retinal location, and, unexpectedly, contrast. We also replicated Sagi, Adini, Tsodyks, and Wilkonsky's (2003) more recent finding that no regular contrast learning occurs if reference contrasts are randomly interleaved (contrast roving), and further demonstrated that flankers have no effect on contrast learning under contrast roving, another piece of evidence equating "context-enabled learning" to regular contrast learning. The contrast specificity of learning and the lack of learning under contrast roving provide new evidence in favor of a multiple contrast-selective channels model of contrast discrimination, and against saturating transducer models and multiplicative noise models.  相似文献   

9.
Lu ZL  Chu W  Dosher BA  Lee S 《Vision research》2005,45(19):2500-2510
We combined the external noise paradigm, the Perceptual Template Model approach, and transfer tests to investigate the mechanisms and eye-specificity of perceptual learning of Gabor orientation in visual periphery. Coupled with a fixation task, discriminating a 5 from an S in a rapid small character string at fixation, contrast thresholds were estimated for each of eight external noise levels at two performance criteria using 3/1 and 2/1 staircases. Perceptual learning in one eye was measured over 10 practice sessions, followed by five sessions of practice in the new eye to assess transfer. We found that monocular learning improved performance (reduced contrast thresholds) with virtually equal magnitude across a wide range of external noise levels with no significant change in central task performance. Based on measurements of learning effects at two performance criterion levels, we identified a mixture of stimulus enhancement and external noise exclusion as the mechanism of perceptual learning underlying the observed improvements. Perceptual learning in the trained eye generalized completely to the untrained eye. We related the transfer patterns to known physiology and psychophysics on orientation direction coding.  相似文献   

10.
Although adults can detect direction differences as small as 1 arc degree, the ability of infants to discriminate direction of motion is less clear. This study measures the precision with which 6-, 12-, and 18-week-old infants discriminate direction of motion. Infants viewed random dot kinematograms in which a direction difference between the target and background dots defined a circular target. The target was then placed into continuous motion. An FPL paradigm was used to assess infants' preference for the target as a function of the direction difference between the target and background dots. Direction discrimination thresholds with a moving target were indeterminate at 6 weeks of age, 22 degrees at 12 weeks of age and 17 degrees at 18 weeks of age. This precision was maintained across different testing conditions. However, performance dropped markedly when dot motion was presented within a flickering stationary target. It was concluded that infants can make relatively fine discriminations of motion direction if given an engaging stimulus.  相似文献   

11.
Westheimer G  Gee A 《Vision research》2002,42(20):2339-2343
The change in apparent orientation of lines and gratings induced by surrounding or preceding patterns of a different orientation (the tilt illusion and tilt after-effect) has been abundantly documented, but there is no unanimity about the effect of such inducing patterns on orientation discrimination thresholds. In particular, because inducing contours that are almost orthogonal cause the direction of the tilt illusion to reverse, evidence for an improvement of orientation discrimination with orthogonal adaptation has been welcomed on theoretical ground as supporting concepts of inversion of polarity of neural connection between cortical cells with oriented receptive fields for large orientation differences. In careful psychophysical experiments on human observers with several kinds of test and orthogonal adaptation patterns the average ratio of adapted/unadapted discrimination thresholds in paired sets of data was 1.027+/-0.13, which does not differ significantly from unity and hence constitutes evidence that orthogonal adaptation does not improve orientation discrimination.  相似文献   

12.
Just noticeable differences (JNDs) in orientation for real lines and illusory contours were compared. JNDs in orientation of an illusory contour and of a real line differ by less than a factor two. JNDs in orientation of an illusory contour showed meridional variations similar to those obtained for a real line. By scaling measurements illusory contours are equally visible at all orientations, so meridional variations in illusory orientation discrimination reflect an anisotropy in orientation processing mechanisms. JNDs in orientation measured at an oblique reference orientation improve with practice for an illusory contour as well as for a real line. However while the effect of practice transfers from an illusory to a real contour, the reverse is not true. These results suggest that there are two paths for processing orientation: one activated only by real lines, the other concerned with both real and illusory contours.  相似文献   

13.
Perceptual learning is characterized by an improvement in a perceptual task following practice. Several studies have demonstrated that top-down processes, such as attention and task-related expectations, can be necessary components of perceptual learning [Ahissar & Hochstein, 1993, 2000, 2002; Fahle & Morgan, 1996; Seitz, Lefebvre, Watanabe, & Jolicoeur, 2005; Seitz, Nanez, Holloway, Koyama, & Watanabe, 2005; Seitz & Watanabe, 2003; Shiu & Pashler, 1992]. Here, we report an experiment that isolated top-down processes in perceptual learning, using a variant of the Gosselin and Schyns (1992) no-signal procedure. Results indicate that top-down processes can be sufficient to produce substantial, possibly long-lasting and rotation-invariant perceptual learning.  相似文献   

14.
Effects of contrast and size on orientation discrimination   总被引:5,自引:0,他引:5  
Motivated by the recent physiological finding that a neuron's receptive field can increase in size by a factor of 2-4-fold at low contrast [Nat. Neurosci. 2 (1999) 733, Proc. Natl. Acad. Sci. USA 96 (1999) 12073], we sought to examine whether a psychophysical task might reflect the contrast dependent changes in the size/structure of a receptive field. We postulate that since spatial summation is not contrast invariant, a task that relies on the spatial structure of a receptive field, such as orientation discrimination, should also be affected by changes in contrast. Previously, orientation discrimination thresholds have been reported to be roughly independent of the contrast of a stimulus for most of the visible range of contrasts [i.e. J. Neurophysiol. 57 (1987) 773, J. Opt. Soc. Am. 6 (1989) 713, Vis. Res. 30 (1990) 449, Vis. Res. 39 (1999) 1631]. Here, we found large improvements in orientation discrimination with contrast that were dependent on stimulus area. Furthermore, the apparent constancy of orientation discrimination for large area stimuli is possibly a result of a floor effect on the threshold. Therefore we conclude that there is not strong evidence for contrast invariant orientation discrimination. We interpret these results in the context of recent neurophysiological results about the expansion of cortical cells' receptive fields at low contrast.  相似文献   

15.
Human smooth pursuit direction discrimination   总被引:1,自引:0,他引:1  
The smooth pursuit system is usually studied using single moving objects as stimuli. However, the visual motion system can respond to stimuli that must be integrated spatially and temporally (Williams DG, Sekuler R. Vision Res 1984;24:55-62; Watamaniuk SNJ, Sekuler R, Williams DW. Vision Res 1989;29:47-59). For example, when each dot of a random-dot cinematogram (RDC) is assigned a new direction of motion each frame from a narrow distribution of directions, the whole field of dots appears to move in the average direction (Williams and Sekuler, 1984). We measured smooth pursuit eye movements generated in response to small (10 deg diameter) RDCs composed of 250 dynamic random dots. Smooth eye movements were assessed by analyzing only the first 130 ms of eye movements after pursuit initiation (open-loop period). Comparing smooth eye movements to RDCs and single spot targets, we find that both targets generate similar responses confirming that the signal supplied to the smooth pursuit system can result from a spatial integration of motion information. In addition, the change in directional precision of smooth eye movements to RDCs with different amounts of directional noise was similar to that found for psychophysical direction discrimination. These results imply that the motion processing system responsible for psychophysical performance may also provide input to the oculomotor system.  相似文献   

16.
Sowden PT  Rose D  Davies IR 《Vision research》2002,42(10):1249-1258
Performance of a wide range of simple visual tasks improves with practice. Here we ask whether such learning occurs for the fundamental visual task of luminance contrast detection. In two experiments we find that contrast sensitivity increases following extensive practice at detecting briefly presented sinusoidal luminance gratings and that learning is maintained after six months. Learning is spatial frequency tuned, specific to retinal location and can be specific to one eye, but is not selective for orientation. The selectivity of learning implies that it is based on plasticity in early visual, as opposed to central cognitive, processing mechanisms.  相似文献   

17.
Saylor SA  Olzak LA 《Vision research》2006,46(18):2988-2997
We examined the influence of context on fine orientation discrimination performance using sinusoidal grating patterns. Discrimination performance was impaired in the presence of modulated surrounds of the same spatial frequency, orientation, and contrast as the center. When center and surround were out-of-phase, separated by a gap of mean luminance, or very different in spatial frequency, performance remained at control levels. When center and surround were in-phase but mismatched in mean luminance, suppression was reduced or eliminated and performance was equivalent to luminance-mismatched control conditions. We speculate that lateral interactions in fine orientation discrimination tasks do not occur between objects that are perceptually distinct.  相似文献   

18.
The current experiments measured orientation discrimination thresholds in younger (mean age approximately 23 years) and older (mean age approximately 66 years) subjects. In Experiment 1, the contrast needed to discriminate Gabor patterns (0.75, 1.5, and 3c/deg) that differed in orientation by 12deg was measured for different levels of external noise. At all three spatial frequencies, discrimination thresholds were significantly higher in older than younger subjects when external noise was low, but not when external noise was high. In Experiment 2, discrimination thresholds were measured as a function of stimulus contrast by varying orientation while contrast was fixed. The resulting threshold-vs-contrast curves had very similar shapes in the two age groups, although the curve obtained from older subjects was shifted to slightly higher contrasts. At contrasts greater than 0.05, thresholds in both older and younger subjects were approximately constant at 0.5deg. The results from Experiments 1 and 2 suggest that age differences in orientation discrimination are due solely to differences in equivalent input noise. Using the same methods as Experiment 1, Experiment 3 measured thresholds in 6 younger observers as a function of external noise and retinal illuminance. Although reducing retinal illumination increased equivalent input noise, the effect was much smaller than the age difference found in Experiment 1. Therefore, it is unlikely that differences in orientation discrimination were due solely to differences in retinal illumination. Our findings are consistent with recent physiological experiments that have found elevated spontaneous activity and reduced orientation tuning on visual cortical neurons in senescent cats (Hua, T., Li, X., He, L., Zhou, Y., Wang, Y., Leventhal, A. G. (206). Functional degradation of visual cortical cells in old cats. Neurobiology Aging, 27(1), 155-162) and monkeys (Yu, S., Wang, Y., Li, X., Zhou, Y. & Leventhal, A. G. (2006). Functional degradation of visual cortex in senescent rhesus monkeys. Neuroscience, 140(3), 1023-1029; Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y. & Ma. Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science,300 (5620), 812-815).  相似文献   

19.
N Matthews  N Qian 《Vision research》1999,39(13):2205-2211
The motion of an object can be described by a single velocity vector, or equivalently, by direction and speed separately. Similarly, our ability to see subtle differences in the motion of two objects could be constrained by either a velocity-based sensory response, or separate sensory responses to direction and speed. To distinguish between these possibilities we investigated whether direction discrimination and speed discrimination were differentially affected by changes in the axis-of-motion. Psychophysical data from 12 naive observers indicated that direction discrimination depended on axis-of-motion, but speed discrimination did not. The difference suggests that a velocity-based sensory response is not the limiting factor on the two tasks. Instead, the results imply that the sensory response which constrains speed discrimination is at least partially independent from the sensory response which constrains direction discrimination.  相似文献   

20.
Sagi D 《Vision research》2011,51(13):1552-1566
Reports published in Vision Research during the late years of the 20th century described surprising effects of long-term sensitivity improvement with some basic visual tasks as a result of training. These improvements, found in adult human observers, were highly specific to simple visual features, such as location in the visual field, spatial-frequency, local and global orientation, and in some cases even the eye of origin. The results were interpreted as arising from the plasticity of sensory brain regions that display those features of specificity within their constituting neuronal subpopulations. A new view of the visual cortex has emerged, according to which a degree of plasticity is retained at adult age, allowing flexibility in acquiring new visual skills when the need arises. Although this “sensory plasticity” interpretation is often questioned, it is commonly believed that learning has access to detailed low-level visual representations residing within the visual cortex. More recent studies during the last decade revealed the conditions needed for learning and the conditions under which learning can be generalized across stimuli and tasks. The results are consistent with an account of perceptual learning according to which visual processing is remodeled by the brain, utilizing sensory information acquired during task performance. The stability of the visual system is viewed as an adaptation to a stable environment and instances of perceptual learning as a reaction of the brain to abrupt changes in the environment. Training on a restricted stimulus set may lead to perceptual overfitting and over-specificity. The systemic methodology developed for perceptual learning, and the accumulated knowledge, allows us to explore issues related to learning and memory in general, such as learning rules, reinforcement, memory consolidation, and neural rehabilitation. A persistent open question is the neuro-anatomical substrate underlying these learning effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号