首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exposure of platelets to shear stress leads to aggregation in the absence of exogenous agonists. We have now found that different adhesive proteins and platelet membrane glycoproteins are involved in aggregation depending on the shear stress conditions and the concentration of divalent cations in the medium. When blood is collected with trisodium citrate as anticoagulant, which causes a decrease in the levels of external ionized calcium ([Ca2+]o), platelet aggregation can be induced under low shear force (12 dyn/cm2) and is mediated by fibrinogen binding to the glycoprotein IIb-IIIa complex. Aggregates formed under these conditions are not stable, and when shear force is increased to 68 dyn/cm2, disaggregation results. By contrast, platelets from blood collected with hirudin as anticoagulant, wherein [Ca2+]o is within normal plasma levels, do not undergo low shear-induced aggregation; however, after exposure to a shear force above 80 dyn/cm2, aggregation is observed but only when von Willebrand factor is present and can interact with both its platelet binding sites, glycoprotein Ib-IX and glycoprotein IIb-IIIa. Fibrinogen is not involved in high shear-induced aggregation which, in fact, occurs normally in patients with severe afibrinogenemia. Thus, von Willebrand factor in the absence of exogenous agonists can mediate platelet aggregation in experimental conditions that may mimic the hemorheological situation of partially occluded arteries. This pathway of platelet aggregation involving only one adhesive ligand and two membrane adhesion receptors may play a relevant role in thrombogenesis.  相似文献   

3.
The interactions of normal erythrocytes and erythrocytes from patients having hemoglobin S hemoglobinopathies with normal human endothelial cells (EC) were investigated under flow conditions. When EC supernatant, containing 2.8-11.0 U/dl of von Willebrand factor (vWF) antigen and vWF multimeric forms larger than those present in normal plasma, was the red blood cell (RBC)-suspending medium instead of serum-free medium (SFM), the adhesion of sickle RBC, but not normal RBC, to endothelial cells was greatly increased (range of enhancement of sickle RBC adhesion, 2- to 27-fold). Adhesion of sickle RBC to endothelial cells was reduced to near serum-free levels when EC supernatant was immunologically depleted of vWF forms. Sickle RBC suspended in SFM containing 200 U/dl of purified vWF multimers of the type found in normal human plasma or 300 micrograms/ml human fibronectin were only slightly more adhesive to endothelial cells than sickle RBC suspended in SFM alone. These data indicate that unusually large vWF multimers produced by endothelial cells are potent mediators of the adhesion of sickle erythrocytes to endothelial cells. Vaso-occlusive crises in sickle cell anemia may be caused, at least in part, by adhesive interactions between the abnormal surfaces of sickle RBC and the endothelium after the release of unusually large vWF multimeric forms from stimulated or damaged endothelial cells.  相似文献   

4.
In this report we demonstrate that proteolytic cleavage of the constituent subunit is one of the causes determining the heterogeneous size distribution of plasma von Willebrand factor (vWf) multimers. As shown by two-dimensional nonreduced/reduced agarose/polyacrylamide gel electrophoresis, the structure of circulating vWf molecules may deviate from that represented by assemblage of a variable number of identical subunits. Indeed, even though the largest multimers in normal plasma appear to be composed predominantly of intact 225-kD subunits, those of intermediate and smaller size contain also 189-, 176-, and 140-kD proteolytic fragments. Different subunit composition patterns are repeated regularly in multimers of increasing molecular mass, yielding series of bands with similar structure. One of these series consists of molecules without evidence of proteolytic fragmentation, and its smallest member appears to be a dimer of 225-kD subunits. Type IIA von Willebrand disease, characterized by absence of the largest multimers, displays a pattern wherein the fragments of 176 and 140 kD are relatively increased, that of 189 kD is markedly decreased or absent, but the composition of individual multimers is otherwise similar to that of species seen also in normal plasma. In contrast to those in the circulation, all normal platelet vWf multimers contain only intact subunit. These results suggest that proteolytic cleavage of plasma vWf subunits occurs after release from cellular sites, whereas platelet vWf stored in alpha-granules is protected from proteolysis. These findings provide information that may be relevant for understanding the normal processing of vWf multimers and for elucidating the pathogenesis of some of the congenital and acquired structural abnormalities of this molecule.  相似文献   

5.
Addition of fibrinogen to human umbilical vein endothelial cells in culture resulted in release of von Willebrand factor (vWf) from Weibel-Palade bodies that was temporally related to formation of fibrin in the medium. Whereas no release occurred before gelation, the formation of fibrin was associated with disappearance of Weibel-Palade bodies and development of extracellular patches of immunofluorescence typical of vWf release. Release also occurred within 10 min of exposure to preformed fibrin but did not occur after exposure to washed red cells, clot liquor, or structurally different fibrin prepared with reptilase. Metabolically labeled vWf was immunopurified from the medium after release by fibrin and shown to consist of highly processed protein lacking pro-vWf subunits. The contribution of residual thrombin to release stimulated by fibrin was minimized by preparing fibrin clots with nonstimulatory concentrations of thrombin and by inhibiting residual thrombin with hirudin or heating. We conclude that fibrin formed at sites of vessel injury may function as a physiologic secretagogue for endothelial cells causing rapid release of stored vWf.  相似文献   

6.
We have investigated and characterized the abnormalities in four unrelated patients with von Willebrand's disease (vWd) who have (a) enhanced ristocetin-induced platelet aggregation (RIPA) at low ristocetin concentrations, (b) absence of the largest plasma von Willebrand factor (vWf) multimers, and (c) thrombocytopenia. The platelet-rich plasma of these patients aggregates spontaneously without the addition of any agonists. When isolated normal platelets are resuspended in patient plasma spontaneous aggregation occurs; however, the patients' plasmas did not induce platelet aggregation of normal washed formalinized platelets. When the patients' platelets are suspended in normal plasma, spontaneous aggregation is not observed. The spontaneous platelet aggregation (SPA) is associated with dense granule secretion as measured by ATP release and alpha granule release as measured by beta-thromboglobulin and platelet factor 4 release. The SPA is totally inhibited by 5 mM EDTA, prostaglandin I2, and dibutryl cyclic AMP, while it is only partially inhibited by 1 mM EDTA, acetylsalicylic acid, or apyrase. A monoclonal antibody directed against glycoprotein Ib (GPIb) and/or a monoclonal antibody against the glycoprotein IIb/IIIa (GPIIb/IIIa) complex totally inhibits the SPA. The vWf was isolated from the plasma of one of these patients. The purified vWf induced platelet aggregation of normal platelets resuspended in either normal or severe vWd plasma, but the vWf did not induce platelet aggregation of normal platelets resuspended in afibrinognemic plasma. Sialic acid and galactose quantification of the patient's vWf revealed approximately a 50% reduction compared with normal vWf. These studies indicate that a form of vWd exists, which is characterized by SPA that is induced by the abnormal plasma vWf. The SPA is dependent on the presence of plasma fibrinogen, and the availability of the GPIb and the GPIIb/IIIa complex. In this variant form of vWd the abnormal vWf causes enhanced RIPA, SPA, and thrombocytopenia.  相似文献   

7.
Platelets exposed to shear stress aggregate in the absence of exogenously added agonists, utilizing distinct platelet membrane receptors and ligands depending upon the level of shear stress applied. Using a modified cone and plate type viscometer, we previously demonstrated that, under low shear stress (18 dyn/cm2), aggregation is mediated by platelet membrane glycoprotein (GP) IIb-IIIa and fibrinogen, whereas aggregation induced by high shear stress (108 dyn/cm2) requires the binding of von Willebrand factor (vWF) to both GPIb-IX and GPIIb-IIIa (Ikeda, Y., M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, I. Itagaki, et al. 1991. J. Clin. Invest. 87:1234-1240). Here we report that vWF-dependent aggregation occurs under low shear stress in citrated platelet-rich plasma (PRP) from two types of congenital bleeding disorders, platelet-type von Willebrand disease (vWD) and type IIB vWD, in both of which ristocetin-induced aggregation is known to be heightened. Aggregation induced by low shear stress was enhanced in both types of disorders compared to normal controls, and the enhancement was completely abolished by anti-vWF monoclonal antibody NMC-4, which blocks the GPIb-binding site on vWF. Under high shear stress, the extent of maximal aggregation was not different between controls and the patient groups although maximal aggregation was reached much more quickly in the latter. When citrated PRP was exposed to a gradient of shear stress (6 to 108 dyn/cm2 over a 5-min period), vWF-dependent aggregation, as judged from the inhibitory effect of NMC-4, first occurred at 14 dyn/cm2 in platelet-type vWD and at 10-12 dyn/cm2 in type IIB vWD, as compared with more than 81 +/- 20.1 dyn/cm2 in control platelets. These results suggest that an abnormality in either vWF or GPIb-IX triggers the aggregation-inducing interaction of the two molecules under low shear stress, which might explain the intravascular platelet clumping, that presumably underlies the thrombocytopenia observed in these bleeding disorders.  相似文献   

8.
Earlier experiments showed that platelet agglutination induced by von Willebrand factor (vWf) plus ristocetin was greatly diminished if adenosine diphosphate (ADP) was added first in the presence of ethylenediaminetetraacetic acid (to prevent aggregation). Platelets treated with ADP and then fixed also agglutinated less than control fixed platelets. The studies reported here demonstrate that ADP did not decrease ristocetin-induced binding of vWf whether binding was measured on suspended platelets with iodine 125-labeled vWf or on suspended or agglutinated platelets with the use of any of three 125I-labeled monoclonal antibodies that bind to vWf but that do not interfere with ristocetin-induced agglutination. Equal amounts of vWf were eluted from ristocetin/vWf-treated platelets when they were resuspended without ristocetin, whether or not the platelets had been exposed to ADP, and the vWf recovered in either case was composed only of large multimers. No evidence for an agglutination site other than glycoprotein Ib could be demonstrated by measuring agglutination of a mixture of platelets fixed after inhibition with antibody against glycoprotein Ib and platelets fixed after inhibition with ADP. We conclude that inhibition of agglutination by ADP must involve the way in which vWf is bound, because it does not result from a decreased amount or from a difference in multimer size of bound vWf.  相似文献   

9.
10.
11.
Vasopressin and its analogue 1-deamino-8-D-arginine vasopressin (DDAVP) are known to raise plasma von Willebrand factor (vWF) levels. DDAVP is used as a hemostatic agent for the treatment of von Willebrand's disease. However, its cellular mechanisms of action have not been elucidated. DDAVP, a specific agonist for the vasopressin V2 receptor (V2R), exerts its antidiuretic effect via a rise in cAMP in kidney collecting ducts. We tested the hypothesis that DDAVP induces vWF secretion by binding to V2R and activating cAMP-mediated signaling in endothelial cells. vWF secretion from human umbilical vein endothelial cells (HUVECs) can be mediated by cAMP, but DDAVP is ineffective, presumably due to the absence of V2R. We report that DDAVP stimulates vWF secretion in a cAMP-dependent manner in HUVECs after transfection of the V2R. In addition, vasopressin and DDAVP induce vWF secretion in human lung microvascular endothelial cells (HMVEC-L). These cells (but not HUVECs) express endogenous V2R, as shown by RT-PCR. Vasopressin-induced vWF secretion is mimicked by DDAVP and inhibited by the selective V2R antagonist SR121463B. It is mediated by cAMP, since it is inhibited by the protein kinase A inhibitor Rp-8CPT-cAMPS. These results indicate that vasopressin induces cAMP-mediated vWF secretion by a direct effect on endothelial cells. They also demonstrate functional expression of V2R in endothelial cells, and provide a cellular mechanism for the hemostatic effects of DDAVP.  相似文献   

12.
13.
Type 2A von Willebrand disease (VWD) is characterized by decreased platelet-dependent function of von Willebrand factor (VWF) associated with an absence of high-molecular-weight multimers. In this study, sequence analysis of the VWF gene from a Type 2A VWD patient showed a novel, heterozygous T-->A transversion at nucleotide 4510, resulting in the non-conservative substitution of L1503Q in the mature VWF subunit. This substitution, which was not found in 55 unrelated normal individuals, was reproduced by in vitro site directed mutagenesis of a full-length VWF cDNA and was subsequently expressed in COS-7 cells. The corresponding recombinant mutant VWF protein was partially retained in COS-7 cells yet the full spectrum of multimers was observed, suggesting that the absence of the highest molecular weight multimers results from increased proteolysis. The recombinant mutant VWF protein was digested with the ADAMTS13 protease from VWF-depleted plasma and the aberrant VWF multimer pattern was observed. These results suggest that the L1503Q substitution induces a conformational change in the VWF protein, which increases the protein's susceptibility to proteolysis. A three-dimensional model of the A2 domain demonstrates that the L1503Q mutation and the physiological proteolytic cleavage site for ADAMTS13 (Y(1605)-M(1606)) are localized close together in two adjacent parallel beta-sheets. The mutation L1503Q does not significantly disrupt the conformation of the protein; thus the subtle loss of multimers in this patient may be due to altered interactions with the ADAMTS13 protease.  相似文献   

14.
Platelet-type von Willebrand disease (vWD) and pseudo-vWD are two recently described intrinsic platelet defects characterized by enhanced ristocetin-induced agglutination in platelet-rich plasma. A similar finding is also typical of type IIB vWD, where it has been related to a von Willebrand factor (vWF) rather than a platelet abnormality. Platelet aggregation induced by unmodified human vWF in the absence of other stimuli has been reported in pseudo-vWD. In this study we demonstrate that vWF induces aggregation in platelet-type but not type IIB vWD. Aggregation is observed when normal plasma cryoprecipitate or purified vWF are added to platelet-rich plasma. Cryoprecipitate also aggregates washed platelets, although at higher concentrations than required for platelet-rich plasma. Purified vWF, however, induces significant aggregation of washed platelets only when plasma is added. EDTA inhibits vWF-induced aggregation. Its effect can be overcome by calcium but much less effectively by magnesium ions. Unstimulated platelets in platelet-rich plasma from patients with platelet-type but not type IIB vWD bind 125I-vWF in a specific and saturable manner. All different sized multimers of vWF become associated with platelets. Both aggregation and binding exhibit a similar vWF concentration dependence, suggesting that a correlation exists between these two events. Removal of ADP by appropriate consuming systems is without effect upon such binding or upon vWF-induced aggregation. Thrombin-induced 125I-vWF binding to washed platelets is normal in platelet-type as well as type IIB vWD. These results demonstrate that a specific binding site for unmodified human vWF is exposed on unstimulated platelets in platelet-type vWD. The relatively high vWF concentrations required for aggregation and binding may explain the lack of significant in vivo aggregation and thrombocytopenia in these patients. Moreover, these studies provide additional evidence that platelet-type and type IIB vWD are different diseases with distinct pathogeneses.  相似文献   

15.
We examined the basis of the differences observed between different collagen preparations in their ability to aggregate platelets and support their adhesion under flow. As in previous studies, we found fibrillar collagen to be 10-fold more potent than acid-soluble collagen in inducing platelet aggregation and found that acid-soluble collagen did not support the adhesion of washed platelets under flow. Further, platelets in whole blood adhered to surfaces coated with either fibrillar or acid-soluble collagen, but thrombi formed faster and grew larger on fibrillar collagen. As a possible basis for this difference, we found that fibrillar collagen, but not acid-soluble collagen, contains a substantial quantity of von Willebrand factor (VWF), as demonstrated by enzyme-linked immunosorbent assay and by the ability of fibrillar collagen to support the adhesion of VWF antibody-coated beads and to agglutinate GPIb-IX-V complex-expressing Chinese hamster ovary cells. Supporting a role for VWF in collagen-induced platelet aggregation, aggregation induced by acid-soluble collagen was greatly enhanced by added VWF. Further, platelet aggregation by fibrillar collagen was partially blocked by a GPIbalpha antibody that inhibits the GPIb-VWF interaction. Taken together, these results suggest that much of the difference in prothrombotic potency of different collagens is directly related to their differences in VWF content. This probably accounts for the different conclusions made regarding the relative importance of different direct and indirect collagen receptors in collagen-dependent platelet functions and further emphasizes the close synergistic roles of the GPIb-IX-V complex and the collagen receptors GPVI and alpha2beta1 in supporting platelet adhesion.  相似文献   

16.
目的研究血清超敏C反应蛋白(high-sensitivity C-reactive protein,hs-CRP)和血管性假性血友病因子(vonWillebrand factor,vWF)与高血压患者合并颈动脉粥样硬化发生的关系。方法对入选的148例高血压患者进行颈动脉超声检查测量颈总动脉内膜中层厚度(IMT)、观察有无斑块形成,并分为颈动脉正常组(42例)、颈动脉增厚组(83例)和颈动脉斑块组(23例),分别检测血清超敏C反应蛋白、假性血友病因子和血脂指标,进行组间比较。并把hsCRP、vWF分别与年龄、收缩压、脉压和高血压危险度分层进行相关性分析。结果 hsCRP在颈动脉正常组与颈动脉斑块组间有显著差异(P0.01);vWF在颈动脉正常组与颈动脉斑块组间有显著差异(P0.05)。hsCRP与年龄有显著性相关,vWF与年龄、脉压和高血压危险度有相关性。hsCRP与vWF具有相关性。结论 hsCRP和vWF都与动脉粥样硬化的发生相关。  相似文献   

17.
von Willebrand factor (vWF), a multimeric protein that mediates platelet adhesion, circulates in association with the procoagulant Factor VIII (FVIII). In previous reports, plasmin was shown in vitro to inactivate FVIII and cleave the vWF subunit extensively, but to cause only a modest decrease in vWF platelet-agglutinating activity. In the present study, the digestion of vWF multimers by plasmin was analyzed by sodium dodecyl sulfate-agarose gel electrophoresis and radioimmunoblotting. In vitro, plasmin degraded the large vWF multimers to smaller forms that could be distinguished from the small multimers present before digestion only by a slightly increased electrophoretic mobility. These plasmin-cleaved "multimers" were composed of disulfide-linked fragments with no intact vWF subunits. Thus, many plasmin cleavages occur within disulfide loops. The slight increase in mobility of plasmin-digested vWF is in part explained by the early cleavage from the multimers of a 34,000-mol wt peptide, which was purified and partially sequenced. The amino-terminal sequence (33 residues) agrees with the previously reported sequence (15 residues) for the amino terminus of the intact vWF subunit. Analysis of plasmin-digested vWF allowed deduction of a model for the native vWF structure, including the approximate location of the interprotomer disulfide bond(s). To determine whether plasmin would digest vWF in vivo, plasmas from 12 patients and 2 normal volunteers who received intravenous streptokinase (SK) were analyzed. Rather than vWF digestion, a two- to threefold rise in vWF antigen and platelet-agglutinating activity occurred within 2 h after a single SK dose, and the increase was greatest among the largest multimers. In contrast, FVIII clotting activity dropped to 10-20% of pre-SK levels. Thus, although plasmin destroys FVIII, a pharmacologically induced fibrinolytic state is associated with significant release of vWF from endothelial cells, platelets, or some other storage pool.  相似文献   

18.

Background  

Endothelial damage/dysfunction has been related to hypertension in pregnancy, with implications in pregnancy outcomes. We hypothesised abnormal levels of circulating endothelial cells (CECs), circulating progenitor cells (CPCs) and plasma von Willebrand factor (vWf, a marker of endothelial damage/dysfunction) in pregnant women with hypertension, when compared to pregnant normotensives and non pregnant healthy controls.  相似文献   

19.
The exposure of endothelial cells (EC) to fibrin has been shown to stimulate the rapid release of von Willebrand factor (vWf) from storage sites in Weibel-Palade bodies. We have now investigated the fibrin structural features required for stimulation of release. The role of fibrinopeptide cleavage was examined by preparing fibrin with thrombin to remove both fibrinopeptide A (FPA) and fibrinopeptide B (FPB) and with reptilase or Agkistrodon contortrix procoagulant to selectively remove FPA or FPB, respectively. vWf release was found to require FPB cleavage, whereas removal of FPA and Factor XIIIa cross-linking of fibrin were without effect. The dependence of release on FPB cleavage suggested that a site involving the NH2 terminus of the beta chain could mediate vWf secretion. To test this hypothesis, B beta chain derivatives were prepared and examined for their capacity to induce release. Purified B beta chain had no effect on release at a concentration of 20 nM but stimulated release from 26 +/- 6% of cells at 200 nM, the maximum solubility. However, after thrombin cleavage of FPB, release occurred from 36 +/- 9% of cells at 20 nM and from 60 +/- 7% at 200 nM, both significantly greater than before cleavage. FPB and B beta 1-42 showed no activity, whereas beta 15-42, representing the NH2 terminus of the thrombin cleaved beta chain, stimulated significant release at concentrations of 0.1 and 1 mM. We conclude that FPB cleavage from fibrin is required for stimulation of vWf release from EC and that this is mediated by a site that includes the NH2 terminus of the beta chain.  相似文献   

20.
vWF is a multimeric glycoprotein that serves as the major carrier in plasma of Factor VIII (FVIII). We have used an anti-human vWF MAb W5-6A to investigate the FVIII binding site on vWF. W5-6A inhibited FVIII binding to vWF-coated polystyrene tubes in a concentration-dependent manner with 90% inhibition of FVIII binding at a concentration of 10 micrograms/ml. The W5-6A epitope was identified by screening a vWF fragment library using the bacteriophage expression vector lambda gt11. DNA sequence analysis of 29 immunoreactive phage clones localized the W5-6A epitope to a nonadecapeptide spanning amino acid residues threonine 78 to threonine 96 at the amino-terminus of the mature vWF polypeptide. Purified beta-galactosidase/vWF fusion protein from one of these clones, vWF9, was incubated with radiolabeled W5-6A and caused near complete inhibition of W5-6A binding to vWF. Inhibitory activity was lost after vWF9 trypsinization or reduction and alkylation. These data indicate that (a) the antigenic determinant recognized by W5-6A localizes to a nonadecapeptide at the NH2 terminus of the mature vWF polypeptide, (b) disulfide bonds within vWF9 may be necessary to maintain the structure required for immunoreactivity with W5-6A, and (c) W5-6A recognizes an immunogenic region on vWF that may be at (or near) the major FVIII binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号