首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Steroid sulfatases regulate the formation of estrogenic steroids which can support the growth of endocrine-dependent breast tumors. Therefore, the development of potent steroid sulfatase inhibitors could have considerable therapeutic potential. Several such inhibitors have now been developed including estrone 3-O-sulfamate (EMATE, 1), which shows potent active site-directed inhibition. However, EMATE was subsequently shown to be also a potent estrogen. In an attempt to reduce the estrogenicity while retaining the potent sulfatase inhibitory properties associated with this type of molecule, (E)-17-oximino-3-O-sulfamoyl-1,3,5(10)-estratriene (5) (estrone oxime 3-O-sulfamate, OMATE) was synthesized. The X-ray crystal structure of (E)-17-oximino-3-hydroxy-1,3,5(10)-estratriene (4) (estrone oxime) demonstrated the presence of only one geometrical isomer [anti-isomer, (E)]. OMATE potently inhibited estrone sulfatase (E1-STS) activity and was similar to EMATE (>99% inhibition at 0.1 microM in MCF-7 breast cancer cells). It was also evaluated in vivo for its estrogenicity and ability to inhibit sulfatase activity. While it was equipotent with EMATE in vivo as a sulfatase inhibitor, it surprisingly had a stimulatory effect on uterine growth in ovariectomized rats about 1.5-fold greater than that of EMATE. Thus, OMATE possesses potential as a superestrogen and modification at C-17 is identified as a useful route for enhancement of estrogenicity in sulfamate-based estrogens.  相似文献   

2.
The steroid sulfatase or steryl sulfatase is a microsomal enzyme widely distributed in human tissues that catalyzes the hydrolysis of sulfated 3-hydroxy steroids to the corresponding free active 3-hydroxy steroids. Since androgens and estrogens may be synthesized inside the cancerous cells starting from dehydroepiandrosterone sulfate (DHEAS) and estrone sulfate (E(1)S) available in blood circulation, the use of therapeutic agents that inhibit steroid sulfatase activity may be a rewarding approach to the treatment of androgeno-sensitive and estrogeno-sensitive diseases. In the present study, we report the chemical synthesis and biological evaluation of a new family of steroid sulfatase inhibitors. The inhibitors were designed by adding an alkyl, a phenyl, a benzyl, or a benzyl substituted at position 17alpha of estradiol (E(2)), a C18-steroid, and enzymatic assays were performed using the steroid sulfatase of homogenized JEG-3 cells or transfected in HEK-293 cells. We observed that a hydrophobic substituent induces powerful inhibition of steroid sulfatase while a hydrophilic one was weak. Although a hydrophobic group at the 17alpha-position increased the inhibitory activity, the steric factors contribute to the opposite effect. As exemplified by 17alpha-decyl-E(2) and 17alpha-dodecyl-E(2), a long flexible side chain prevents adequate fitting into the enzyme catalytic site, thus decreasing capacity to inhibit the steroid sulfatase activity. In the alkyl series, the best compromise between hydrophobicity and steric hindrance was obtained with the octyl group (IC(50) = 440 nM), but judicious branching of side chain could improve this further. Benzyl substituted derivatives of estradiol were better inhibitors than alkyl analogues. Among the series of 17alpha-(benzyl substituted)-E(2) derivatives studied, the 3'-bromobenzyl, 4'-tert-butylbenzyl, 4'-butylbenzyl, and 4'-benzyloxybenzyl groups provided the most potent inhibition of steroid sulfatase transformation of E(1)S into E(1) (IC(50) = 24, 28, 25, and 22 nM, respectively). As an example, the tert-butylbenzyl group increases the ability of the E(2) nucleus to inhibit the steroid sulfatase by 3000-fold, and it also inhibits similarly the steroid sulfatase transformations of both natural substrates, E(1)S and DHEAS. Interestingly, the newly reported family of steroid sulfatase inhibitors acts by a reversible mechanism of action that is different from the irreversible mechanism of the known inhibitor estrone sulfamate (EMATE).  相似文献   

3.
Efficient and flexible syntheses of 2-substituted estrone, estradiol and their 3-O-sulfamate (EMATE) derivatives have been developed using directed ortho-lithiation methodology. 2-Substituted EMATEs display a similar antiproliferative activity profile to the corresponding estradiols against a range of human cancer cell lines. 2-Methoxy (3, 4), 2-methylsulfanyl (20, 21) and 2-ethyl EMATEs (32, 33) proved the most active compounds with 2-ethylestradiol-3-O-sulfamate (33), displaying a mean activity over the NCI 55 cell line panel 80-fold greater than the established anticancer agent 2-methoxyestradiol (2). 2-Ethylestradiol-3-O-sulfamate (33) was also an effective inhibitor of angiogenesis using three in vitro markers, and various 2-substituted EMATEs also proved to be inhibitors of steroid sulfatase (STS), a therapeutic target for the treatment of hormone-dependent breast cancer. The potential of this novel class of multimechanism anticancer agents was confirmed in vivo with good activity observed in the NCI hollow fiber assay and in a MDA-MB-435 xenograft mouse model.  相似文献   

4.
A series of sulfamates or bis-sulfamates incorporating aliphatic, aromatic, polycyclic (steroidal), and sugar moieties in their molecules has been synthesized and assayed as inhibitors of the zinc enzyme carbonic anhydrase (CA), and more precisely of the cytosolic isozymes CA I andII, and the transmembrane, tumor-associated isozymes CA IX. Some of these compounds were previously reported to act as inhibitors of steroid sulfatases, among which estrone sulfatase (ES) and dehydroepiandrosterone sulfatase (DHEAS) are the key therapeutic targets for estrogen-dependent tumors. Very potent (nanomolar) inhibitors were detected against the three investigated CA isozymes. Best CA I inhibitors were phenylsulfamate and some of its 4-halogeno derivatives, as well as the aliphatic compound n-octyl sulfamate. Against CA II, low nanomolar inhibitors (1.1-5 nM) were phenylsulfamate and some of its 4-halogeno/nitro derivatives, n-octyl sulfamate, and estradiol 3,17beta-disulfamate among others. All the investigated sulfamates showed efficient CA IX inhibitory properties, with inhibition constants in the range of 18-63 nM. The best CA IX inhibitor detected so far was 4-chlorophenylsulfamate. These data are critical for the design of novel antitumor properties, mainly for hypoxic tumors that overexpress CA IX, which are nonresponsive to radiation or chemotherapy. The antitumor properties of the ES/DHEAS inhibitors in clinical trials may on the other hand also be due to their potent inhibitory properties of CA isozymes involved in tumorigenicity, such as CA II and CA IX.  相似文献   

5.
A high proportion (approximately 40%) of breast cancers are hormone dependent. The female hormones estradiol and androstenediol are believed to play a key role in the initiation and promotion of this disease. In the fight against hormone dependent breast cancers, extensive research has been undertaken to produce compounds which are potent inhibitors against the cytochrome P-450 enzyme aromatase (AR), which converts the C19 androgens to the C18 estrogens. However, the administration of AR inhibitors alone has failed to produce the expected decrease in plasma levels of estrone. The major impetus to the development of steroid sulfatase inhibitors has therefore been the realisation that in order to improve therapeutic response for women with hormone-dependent breast cancer, not only must the AR enzyme be inhibited, but also the synthesis of estrogens via alternative routes. The steroid sulfatase enzyme regulates the formation of estrone (which can subsequently be converted to the potent estrogen estradiol) from estrone sulfate, a steroid conjugate present in high concentrations in tissue and blood in women with breast cancer. The sulfatase enzyme system also controls the formation of dehydroepiandrosterone (DHEA) from the DHEA-sulfate. This is important since DHEA can be converted to 5-androstene-3 beta,17 beta-diol, which possesses estrogenic properties capable of stimulating the growth of breast cancer cells in vitro and in vivo. Considerable progress has been made in recent years in the development of a number of potent steroid/estrone sulfatase inhibitors, as such both steroidal and non-steroidal compounds have been considered and a number of highly potent inhibitors have been produced and evaluated against what is now considered a crucial enzyme in the fight against hormone dependent breast cancer. The review therefore considers the work that has been undertaken to date, as well as possible future development with respect to dual inhibitors of both estrone sulfatase and AR.  相似文献   

6.
17 alpha-Hydroxylase/C17-20-lyase (P450 17, CYP 17) and 5 alpha-reductase are the key enzymes in androgen biosynthesis and targets for the treatment of prostate cancer and benign prostatic hyperplasia. In the search of inhibitors for both enzymes, 23 pregnenolone- or progesterone-based steroids were synthesized bearing an oxime group connected directly or via a spacer to the steroidal D-ring. Tested for inhibition of human and rat P450 17, some pregnenolone (9, 11, 14) and a series of progesterone compounds (17-20) turned out to be highly active inhibitors of the human enzyme. The most active compound was Z-21-hydroxyiminopregna-5, 17(20)-dien-3 beta-ol (9) showing K(i) values of 44 and 3.4 nM for the human and rat enzymes, respectively, and a type II UV-difference spectrum indicating a coordinate bond between the oxime group and the heme iron. In contrast to the pregnenolones which showed no inhibition of 5 alpha-reductase isozymes 1 and 2, the progesterones 16, 17, 20, 21, and 23 showed marked inhibition, especially toward the type 2 enzyme. Compounds 17 and 20 were identified as potent dual inhibitors of both P450 17 and 5 alpha-reductase. Tested for selectivity, the most potent P450 17 inhibitors 9, 10, and 14 showed no or only marginal inhibition of P450 arom, P450 scc, and P450 TxA(2). Selected compounds were tested for inhibition of the target enzymes using whole-cell assays. Compounds 9-11 strongly inhibited P450 17 being coexpressed with NADPH-P450 reductase in E. coli cells, and 16, 20, and 23 markedly inhibited 5 alpha-reductase expressed in HEK 293 cells. Tested for in vivo activity, 9 (0.019 mmol/kg) decreased the plasma testosterone concentration in rats after 2 and 6 h by 57% and 44%.  相似文献   

7.
The anticancer activities and SARs of estradiol-17-O-sulfamates and estradiol 3,17-O,O-bis-sulfamates (E2bisMATEs) as steroid sulfatase (STS) inhibitors and antiproliferative agents are discussed. Estradiol 3,17-O,O-bis-sulfamates 20 and 21, in contrast to the 17-O-monosulfamate 11, proved to be excellent STS inhibitors. 2-Substituted E2bisMATEs 21 and 23 additionally exhibited potent antiproliferative activity with mean graph midpoint values of 18-87 nM in the NCI 60-cell-line panel. 21 Exhibited antiangiogenic in vitro and in vivo activity in an early-stage Lewis lung model, and 23 dosed p.o. caused marked growth inhibition in a nude mouse xenograft tumor model. Modeling studies suggest that the E2bisMATEs and 2-MeOE2 share a common mode of binding to tubulin, though COMPARE analysis of activity profiles was negative. 21 was cocrystallized with carbonic anhydrase II, and X-ray crystallography revealed unexpected coordination of the 17-O-sulfamate of 21 to the active site zinc and a probable additional lower affinity binding site. 2-Substituted E2bisMATEs are attractive candidates for further development as multitargeted anticancer agents.  相似文献   

8.
We previously determined that expression of human multidrug resistance protein (MRP) 8, a recently described member of the MRP family of ATP-binding cassette transporters, enhances cellular extrusion of cyclic nucleotides and confers resistance to nucleotide analogs (J Biol Chem 278:29509-29514, 2003). However, the in vitro transport characteristics of the pump have not been determined. In this study, the substrate selectivity and biochemical activity of MRP8 is investigated using membrane vesicles prepared from LLC-PK1 cells transfected with MRP8 expression vector. Expression of MRP8 is shown to stimulate the ATP-dependent uptake of a range of physiological and synthetic lipophilic anions, including the glutathione S-conjugates leukotriene C4 and dinitrophenyl S-glutathione, steroid sulfates such as dehydroepiandrosterone 3-sulfate (DHEAS) and estrone 3-sulfate, glucuronides such as estradiol 17-beta-D-glucuronide (E(2)17betaG), the monoanionic bile acids glycocholate and taurocholate, and methotrexate. In addition, MRP8 is competent in the in vitro transport of cAMP and cGMP, in accord with the results of our previously reported cellular studies. DHEAS, E(2)17betaG, and methotrexate were transported with K(m) and V(max) values of 13.0 +/- 0.8 microM and 34.9 +/- 9.5 pmol/mg/min, 62.9 +/- 12 microM and 62.0 +/- 5.2 pmol/mg/min, and 957 +/- 28 microM and 317 +/- 17 pmol/mg/min, respectively. Based upon the stimulatory action of DHEAS on uptake of E(2)17betaG, the attenuation of this effect at high DHEAS concentrations and the lack of reciprocal promotion of DHEAS uptake by E(2)17betaG, a model involving nonreciprocal constructive interactions between some transport substrates is invoked. These results suggest that MRP8 participates in physiological processes involving bile acids, conjugated steroids, and cyclic nucleotides and indicate that the pump has complex interactions with its substrates.  相似文献   

9.
Doping with natural steroids can be detected by evaluating the urinary concentrations and ratios of several endogenous steroids. Since these biomarkers of steroid doping are known to present large inter-individual variations, monitoring of individual steroid profiles over time allows switching from population-based towards subject-based reference ranges for improved detection. In an Athlete Biological Passport (ABP), biomarkers data are collated throughout the athlete's sporting career and individual thresholds defined adaptively. For now, this approach has been validated on a limited number of markers of steroid doping, such as the testosterone (T) over epitestosterone (E) ratio to detect T misuse in athletes. Additional markers are required for other endogenous steroids like dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). By combining comprehensive steroid profiles composed of 24 steroid concentrations with Bayesian inference techniques for longitudinal profiling, a selection was made for the detection of DHT and DHEA misuse. The biomarkers found were rated according to relative response, parameter stability, discriminative power, and maximal detection time. This analysis revealed DHT/E, DHT/5β-androstane-3α,17β-diol and 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol as best biomarkers for DHT administration and DHEA/E, 16α-hydroxydehydroepiandrosterone/E, 7β-hydroxydehydroepiandrosterone/E and 5β-androstane-3α,17β-diol/5α-androstane-3α,17β-diol for DHEA. The selected biomarkers were found suitable for individual referencing. A drastic overall increase in sensitivity was obtained. The use of multiple markers as formalized in an Athlete Steroidal Passport (ASP) can provide firm evidence of doping with endogenous steroids.  相似文献   

10.
Steroid sulfatase (STS), a microsomal enzyme catalysing the hydrolysis of the sulfate esters of 3-hydroxy steroids, has received considerable attention as an attractive drug target. It is crucial for the local production of active oestrogens and androgens from their systemic circulating sulfated precursor, namely oestrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS), which are involved in the pathogenesis of a number of diseases. STS inhibitors have been proposed for the treatment of breast, endometrial and prostate cancer, and for androgen-dependent skin diseases such as alopecia, hirsutism and acne. In addition to various classes of potent irreversible arylsulfamate-based inhibitors, recently novel chemotypes of reversible inhibitors originating from high-throughput screening (HTS) were discovered. All STS inhibitors to date are in the preclinical stage, with the exception of 667COUMATE, which is presently in a Phase I clinical trial. In this review the latest patent disclosures and literature in the field of STS inhibitors are summarised.  相似文献   

11.
By introducting the steroid sulfatase inhibitory pharmacophore into aromatase inhibitor 1 (YM511), two series of single agent dual aromatase-sulfatase inhibitors (DASIs) were generated. The best DASIs in vitro (JEG-3 cells) are 5, (IC50(aromatase) = 0.82 nM; IC50(sulfatase) = 39 nM), and 14, (IC50(aromatase) = 0.77 nM; IC50(sulfatase) = 590 nM). X-ray crystallography of 5, and docking studies of selected compounds into an aromatase homology model and the steroid sulfatase crystal structure are presented. Both 5 and 14 inhibit aromatase and sulfatase in PMSG pretreated adult female Wistar rats potently 3 h after a single oral 10 mg/kg dose. Almost complete dual inhibition is observed for 5 but the levels were reduced to 85% (aromatase) and 72% (sulfatase) after 24 h. DASI 5 did not inhibit aldosterone synthesis. The development of a potent and selective DASI should allow the therapeutic potential of dual aromatase-sulfatase inhibition in hormone-dependent breast cancer to be assessed.  相似文献   

12.
As part of our investigation into the structure-activity relationship of a novel class of aromatase inhibitors, C(19) steroids having no oxygen function at C-3, we tested aromatase inhibition activity of polar diol compounds 4,19-dihydroxyandrost-5-en-17-ones (25 and 27) and 6,19-dihydroxyandrost-4-en-17-ones (36 and 37). 4alpha,19-Diol 25 was synthesized from tert-butyldimethylsilyoxyandrost-4-ene steroid (9) through its OsO(4) oxidation, giving the 4alpha,5alpha-dihydroxy derivative 12, as a key reaction. Acetylation of 5beta,6alpha-dihydroxy-19-acetate 30 and its 5alpha,6beta-analogue 31 followed by dehydration with SOCl(2) and alkaline hydroxysis gave 6alpha,19-diol 36 and its 6beta-isomer 37, respectively. The stereochemistry of a hydroxy group at C-4 of compound 25 and that at C-6 of compounds 36 and 37 were determined on the basis of (1)H NMR spectroscopy in each case. 4beta,19-Diol 27, previously synthesized, was identified as an extremely powerful competitive inhibitor of aromatase (K(i) = 3.4 nM). In contrast, its 4alpha,19-dihydroxy isomer 25 and other series of diol compounds, 6,19-dihydroxy-4-en-17-one steroids, were moderate to poor competitive inhibitors (K(i) = 110-800 nM). Through this series of analyses, it was concluded that hydrophilic interaction of a 4beta,19-diol function with the active site of aromatase plays a critical role in the tight binding of 3-deoxy-5-ene steroids.  相似文献   

13.
The biological mechanisms underlying castration resistance of prostate cancer are not fully understood. In the present study, we examined the role of organic anion transporting polypeptides (OATPs) as importers of dehydroepiandrosterone sulfate (DHEAS) into cells to support growth under androgen-depleted conditions. Cell growth and mRNA expression of OATP genes were studied in human prostate cancer LNCaP and 22Rv1 cells under androgen-depleted conditions. The stimulatory effect of DHEAS on cell growth was investigated in LNCaP cells in which OATP1A2 had been silenced. Growth of both cell lines was stimulated by DHEAS and the effect was attenuated by STX64, an inhibitor of steroid sulfatase which can covert DHEAS to DHEA. OATP1A2 mRNA expression was increased most prominently among various genes tested in LNCaP cells grown in androgen-depleted medium. Similar results were obtained with 22Rv1 cells. Furthermore, the characteristics of [(3)H]DHEAS uptake by LNCaP cells were consistent with those of OATP-mediated transport. Knockdown of OATP1A2 in LNCaP cells resulted in loss of the DHEAS sensitivity of cell growth. Our results suggest that enhanced OATP1A2 expression is associated with adaptive cell growth of prostate cancer cells under androgen-depleted conditions. Thus, OATP1A2 may be a pharmacological target for prostate cancer treatment.  相似文献   

14.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) are metabolic intermediates in the production of potent androgens, estrogens and other less well-characterized steroids. DHEA(S) and closely related steroid hormones have a variety of immunological effects both in vitro and in vivo in experimental animals and humans. Many of these effects have been demonstrated in animal models where there is little circulating DHEA(S), and the demonstrated effects are generally seen at concentrations of DHEA(S) which are supra-physiological in man. The physiological role of DHEA(S) in the immunological system is unknown. Furthermore, the molecular mechanism of action of DHEA(S) is unclear. In this review, I focus on studies of the immunological effects of DHEA(S) and closely related steroid metabolites and analogs, mainly derived from literature published in the last five years. My purpose is to describe the demonstrated effects and to highlight some of the remaining major research issues in this field. These issues include defining the molecular mechanism of DHEA(S) action; determining whether the effect of DHEA(S) is related to the steroid itself or to a metabolic product of DHEA; determining the relationship of physiological function to the pharmacological effects; and determining the molecular basis for species-specific differences in effects.  相似文献   

15.
The family of the organic anion transporting polypeptides forms an increasing group of uptake transport proteins with a wide substrate spectrum. Although the expression of some members of this group, such as organic anion transporting polypeptide (OATP)-A or C, is limited to special tissues (such as liver or brain), the organic anion transporting polypeptide 2B1 (OATPB/SLCO2B1) is expressed in many organs, including liver, placenta, mammary gland, brain, and intestine. However, little is known about its function in those tissues because only a limited number of compounds, such as dehydroepiandrosterone-sulfate (DHEAS) and estrone-3-sulfate (E3S), have been characterized as OATP2B1 substrates. To further elucidate the role of OATP2B1 on steroid transport, we examined the influence of steroid hormones on OATP2B1-mediated E3S and DHEAS uptake using OATP2B1-overexpressing Madin-Darby canine kidney II cells. We identified unconjugated androgens (e.g., testosterone) as potent inhibitors for OATP2B1. In contrast, gestagenes such as progesterone enhanced E3S uptake in a concentration-dependent manner to up to 300% of the control, accompanied by a significant decrease in the OATP2B1 K(m) value for E3S (control, K(m) = 14 microM; in the presence of 31.6 muM progesterone, K(m) = 3.6 microM). Moreover, we demonstrated that testosterone and progesterone are not substrates of OATP2B1, indicating an allosteric mechanism for the observed effects. Furthermore, we showed that progesterone enhances the OATP2B1-dependent pregnenolone sulfate transport. Taken together, the results indicate functional modification of OATP2B1-mediated E3S and DHEAS as well as pregnenolone sulfate transport through steroid hormones such as progesterone. These effects can have physiological consequences for the organ-specific uptake of steroids.  相似文献   

16.
17.
We examined the serum concentrations of delta(5)-3beta-hydroxysteroids, pregnenolone (Preg), 17-hydroxypregnenolone (17-OH-Preg), dehydroepiandrosterone (DHEA), androstenediol (ADIOL) and their sulfates in 30 well controlled (Group I: HbA1c<7.0%) and 15 poorly controlled (Group II: HbA1c>7.1%) type 2 diabetic patients, and 30 normal controls. These patients were treated with diet therapy or anti-diabetic agent. The distribution of gender and age of the subjects were matched between the groups. The serum levels of sulfo-conjugated and unconjugated steroids described above were measured by GC-MS and enzyme immunoassay (EIA), respectively. The serum levels of the entire sulfo-conjugated steroid measured in this study were significantly lower in Groups I and II than in controls. On the other hand, Preg levels in both Groups I and II were significantly higher than those in controls, whereas the serum levels of the downstream unconjugated steroids were not different from controls. To investigate the effect of sulfonylurea (SU) on the serum levels of steroids, the serum concentrations of steroids between the patients who were treated with diet therapy and SU agent were compared in Group I. No significant differences were observed between both groups. These results suggest that (1) since increased Preg levels did not cause any changes in the downstream delta(5)-3beta-hydroxysteroid levels, the metabolic pathway of delta(4)-3-ketosteroids may be accelerated in type 2 diabetes; (2) serum steroid levels were not affected by SU treatment; (3) sulfo-conjugated steroid catabolism was altered in type 2 diabetes; (4) the decreased sulfo-conjugated steroids especially ADIOLS may contribute to the alteration of sex steroid levels and onset or exacerbate infectious diseases in diabetes.  相似文献   

18.
Steroid sulfatase (STS) has emerged as a highly attractive target for the therapy of a number of disorders. Starting with the known inhibitor estrone sulfamate (1) as lead compound and with the finding that steroid sulfamates containing a nonaromatic A-ring are inactive, chromen-4-one sulfamates were designed, prepared, and tested for their ability to block human STS. This new class of nonsteroidal inhibitors shows high potency when the sulfamate group and the side chain are situated in diagonally opposite positions (i.e., 2,6- and 3,7-substitution pattern). The highest activity is achieved with fully branched, bulky aliphatic side chains and with thiochromen-4-one as the core element. 2-(1-Adamantyl)-4H-thiochromen-4-on-6-O-sulfamate (6c) is the most potent STS inhibitor discovered so far, and it is about 170-fold superior to 1. As with 1, all chromenone sulfamates are irreversible inhibitors of STS with a biphasic time course of inactivation.  相似文献   

19.
SR16157 (21-(2-N,N-diethylaminoethyl)oxy-7alpha-methyl-19-norpregna-1,3,5(10)-triene-3-O-sulfamate) is a novel, dual-acting estrone sulfatase inhibitor currently in preclinical development for use in breast cancer therapy. The compound has a dual mechanism of action: the sulfamate-containing parent compound SR16157 inhibits estrogen biosynthesis by irreversibly inhibiting the enzyme estrone sulfatase. The phenolic metabolite, SR16137, generated by the sulfatase enzyme is a potent antiestrogen in breast tissues and has beneficial effects in bone and the cardiovascular system. As part of the ongoing preclinical studies, an HPLC assay method has been developed and validated for SR16157. The assay method is specific, accurate (recovery=99.4-101.1), linear (r(2)> or =0.9999), precise (intraday R.S.D.< or =1.1%, intermediate R.S.D.< or =0.8%), and sensitive (limit of detection=1.0 microg/ml). It separates SR16157 from its impurities and forced decomposition products, which have been characterized by LC coupled with mass and UV spectral data. Major decomposition pathways are hydrolysis, hydroxylation, and oxidation.  相似文献   

20.
The synthesis, SAR, and preclinical evaluation of 17-cyanated 2-substituted estra-1,3,5(10)-trienes as anticancer agents are discussed. 2-Methoxy-17beta-cyanomethylestra-1,3,5(10)-trien-3-ol ( 14), but not the related 2-ethyl derivative 7, and the related 3- O-sulfamates 8 and 15 display potent antiproliferative effects (MCF-7 GI 50 300, 60 and 70 nM, respectively) against human cancer cells in vitro. Investigation of the SAR reveals that a sterically unhindered hydrogen bond acceptor attached to C-17 is most likely key to the enhanced activity. Compound 8 displayed significant in vitro antiangiogenic activity, and its ability to act as a microtubule disruptor was confirmed. Inhibitory activity of the sulfamate derivatives against steroid sulfatase and carbonic anhydrase II (hCAII) was also observed, and the interaction between 15 and hCAII was investigated by protein crystallography. The potential of these multimechanism anticancer agents was confirmed in vivo, with promising activity observed for both 14 and 15 in an athymic nude mouse MDA-MB-231 human breast cancer xenograft model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号