首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
It is anticipated that stem cell (SC) therapy will enable the regeneration of diseased tissues and organs. Understanding SC niches is an essential step toward realizing this goal. By virtue of its optical transparency and physical separation of SC and transient amplifying cell compartments, the human cornea provides a unique opportunity to visualize and observe a population of adult stem cells, limbal epithelial stem cells (LESCs), in their niche environment. To date, the characteristics of the LESC niche have remained unclear. State-of-the-art imaging techniques were used to construct a three-dimensional (3D) view of the entire human corneal limbus and identify the structural characteristics of the LESC niche. Two distinct candidate LESC niche structures were identified. Cells within these structures express high levels of the putative limbal stem cell markers p63alpha and ABCG2; however, current methods cannot identify for certain which exact cells within this cell population are truly LESCs. These structures could be located and observed in vivo in normal human subjects, but not in patients with clinically diagnosed corneal LESC deficiency. The distribution of these structures around the corneal circumference is not uniform. Biopsies targeted to limbal regions rich in LESC niche structures yielded significantly higher numbers of LESCs in culture. Our findings demonstrate how adult stem cell niches can be identified and observed in vivo in humans and provide new biological insight into the importance of LESC niche structures in maintaining normal LESC function. Finally, the concept of targeted biopsy of adult SC niches improves stem cell yield and may prove to be essential for the successful development of novel adult stem cell therapies. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

2.
3.
BACKGROUND: Stevens-Johnson syndrome, ocular pemphigoid, and thermal or chemical burns can cause scarring and opacification of the cornea and loss of vision. Transplantation of epithelial cells from the limbus of the contralateral cornea can restore useful vision. However, this procedure requires a large limbal graft from the healthy eye and is not possible in patients who have bilateral lesions. METHODS: We took specimens of limbal epithelial cells from the healthy contralateral eyes of six patients with severe unilateral corneal disease. The epithelial cells were cultured and expanded on amniotic membrane. The amniotic membrane, together with the sheet of limbal epithelial cells, was transplanted to the denuded corneal surface of the damaged eye after superficial keratectomy to remove fibrovascular ingrowth. The mean (+/-SD) follow-up period was 15+/-2 months. RESULTS: Complete reepithelialization of the corneal surface occurred within two to four days of transplantation in all six eyes receiving transplants. By one month, the ocular surface was covered with corneal epithelium, and the clarity of the cornea was improved. In five of the six eyes receiving transplants (83 percent), the mean visual acuity improved from 20/112 to 20/45. In one patient with a chemical burn who had total opacification of the cornea, the acuity improved from the ability to count fingers at 40 cm to 20/200. No patient had recurrent neovascularization or inflammation in the transplanted area during the follow-up period. CONCLUSIONS: Transplantation of autologous limbal epithelial cells cultured on amniotic membrane is a simple and effective method of reconstructing the corneal surface and restoring useful vision in patients with unilateral deficiency of limbal epithelial cells.  相似文献   

4.
背景:眼表存在两种形式的上皮干细胞即角膜上皮干细胞和结膜上皮干细胞,角膜上皮干细胞在角膜上皮细胞更新和角膜透明的维持方面起着重要作用。 目的:采用活体激光扫描角膜共焦显微镜和免疫荧光染色技术相结合的方法,从活体和体外层面上对角膜上皮干细胞进行定位研究。 方法:收集2009年9月至2012年9月来河南省眼科研究所就诊的单侧角膜缘干细胞缺乏患者,使用活体激光扫描角膜共焦显微镜检查患者双眼,健侧眼为对照。扫描方位依次为中央角膜及上、下、左、右方的角膜缘,记录扫描图像并分析。眼球材料来自于河南省眼库,切取角膜中央和角膜缘组织,组织包埋剂包被、冰冻切片,切片厚度5-7 μm;免疫荧光染色技术检测p63、ABCG2、K3和Connexin 43在角膜中央及角膜缘上皮层的表达。 结果与结论:共有24例患者确诊为单侧角膜缘干细胞缺乏,活体激光扫描角膜共焦显微镜下患侧眼角膜病变区可见结膜细胞及杯状细胞;角膜缘区域Vogt栅栏状结构消失,色素细胞消失,取而代之的是大量纤维瘢痕化组织。免疫荧光染色示表达ABCG2和p63的细胞主要在角膜缘上皮基底层,尤其在近结膜侧的角膜缘及角膜缘中间部表达相对较高,而中央角膜上皮层细胞不表达;K3及Connexin43在角膜缘上皮基底细胞层不表达,中央角膜上皮全层表达。通过活体激光扫描角膜共焦显微镜观察及干细胞标记物检测显示角膜上皮干细胞主要存在于角膜缘外2/3区域的Vogt栅栏基底部及钉突结构中。中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程全文链接:  相似文献   

5.
背景:角膜受到损伤后,角膜基质细胞激活转变为成纤维细胞,引起角膜基质瘢痕化,导致视力下降甚至丧失。 目的:观察角膜不同部位上皮细胞与角膜基质细胞的相互作用,探索角膜缘上皮细胞群能否抑制激活态角膜基质细胞的生长。 方法:采用酶消化及机械外力相结合的方法获取人角膜中央、角膜旁中央及角膜缘处角膜上皮细胞与浅层角膜基质细胞,进行体外培养。相差显微镜下观察细胞形态及生长变化。待培养角膜上皮细胞与基质细胞发生接触抑制时,记作“0 周”,采用免疫荧光染色技术检测培养细胞中PCNA及p63蛋白的表达。 结果与结论:培养的角膜上皮细胞与成纤维细胞发生接触抑制时,两种细胞间有明显分界线。角膜缘组上皮细胞中PCNA及p63蛋白均有较高的表达;角膜旁中央组PCNA有较高的表达,p63蛋白阴性表达;角膜中央组PCNA表达较低,p63蛋白阴性表达;从鉴定结果中可以得出只有角膜缘组中存在一定比例的角膜缘上皮干细胞。角膜缘组上皮细胞逐渐包围并化解成纤维细胞,在相互作用4周后,成纤维细胞聚集成死细胞团,缺乏角膜缘干细胞的中央组及旁中央组中成纤维细胞生长面积增加,上皮细胞生长受到抑制甚至死亡。说明体外培养的角膜缘上皮细胞群可以抑制激活态角膜基质细胞的生长。  相似文献   

6.
Huang M  Li N  Wu Z  Wan P  Liang X  Zhang W  Wang X  Li C  Xiao J  Zhou Q  Liu Z  Wang Z 《Biomaterials》2011,32(31):7812-7821
To investigate the feasibility of using acellular porcine limbal stroma for limbal stem cell microenvironment reconstruction. Limbal reconstruction was performed in rabbit partial limbal defect models. Rabbits were randomly divided into four groups: acellular porcine limbal stroma, de-epithelized rabbit limbal autograft stroma, de-epithelized porcine limbal stroma and acellular porcine corneal stroma transplantation groups. In both the acellular porcine limbal stroma and de-epithelized rabbit limbal autograft stroma groups, cornea transparency and epithelium integrity were sustained and graft rejection was not observed. The basal epithelial cells of the grafts showed the K3+/P63+/Ki67+ phenotype at postoperative month 1, but it returned to K3-/P63+/Ki67+(phenotype characteristic of limbal epithelium) by postoperative months 3 and 6. In the de-epithelized porcine limbal stroma group, acute and serious immune rejection occurred by postoperative days 8-10. The basal epithelial cells of the grafts showed the K3+/P63+/Ki67+ phenotype at postoperative month 1. In the acellular porcine corneal stroma group, there were some new vessel invasion into the peripheral cornea and mild corneal opacity. The basal epithelial cells of the grafts showed the K3+/P63+/Ki67+ phenotype at postoperative months 1, 3, and 6. In conclusion, acellular porcine limbal stroma possessed very low immunogenicity, retained a good original limbal ECM microenvironment, and thus the reconstructed rabbit limbal microenvironment maintained limbal epithelial stem cell stemness and proliferation.  相似文献   

7.
In this study a technique for determining donor cell fate following corneal grafting was evaluated. Patients treated for limbal deficiency with allogeneic cultured corneal epithelial cells were studied to determine the fate of the grafted cells. The technique was evaluated initially through the use of donor eyes and then applied to the clinical analysis of 7 patients who had received a cultured corneal epithelial allograft. Cells removed from the cornea and any retrieved tissue were analyzed via polymerase chain reaction (PCR) genotyping to determine the origin of the cells populating the patients' healed cornea. A mixture of genotypes was detected in a cornea retrieved from a patient following a fully penetrating keratoplasty who had received a mixture of allogeneic tissue. Donor cells were no longer detected on the corneal surface of all 7 cases beyond 28 weeks postgraft. At these later time points, only patient genotype could be detected. These results demonstrate that PCR genotyping can be used to determine the origin of cells populating the surface of the cornea following the grafting of cultured allogeneic cells and demonstrates that transplanted cultured limbal epithelial cells do not persist on the surface of the host cornea for more than 28 weeks.  相似文献   

8.
Limbal epithelial stem cells (LESCs) are a population of stem cells responsible for maintenance and repair of the corneal surface. Injury and disease can result in a deficiency of these stem cells, the vision affecting condition called limbal stem cell deficiency (LSCD) in which the cornea becomes opaque, vascularized, and inflamed. Cultured LESC therapy was first described in 1997;29:19231932-19231932.and LESCs cultured from either patients or donors have been used to successfully treat LSCD. In this review, some of the challenges and controversies associated with cultured LESC therapy will be discussed including alternative stem cell sources.  相似文献   

9.
10.
11.
12.
Corneal epithelial stem cells are located in the basal layer of the limbus between the cornea and the conjunctiva. Regulation of these limbal epithelial progenitor cells by the stromal niche dictates corneal surface health. To further characterize this process, limbal explants were cultured at the air-fluid interface, termed air-lifting, to stimulate the niche. As compared to submerged cultures, air-lifting significantly promoted epithelial stratification, migration, proliferation, and intrastromal invasion by limbal epithelial cells. Epithelial intrastromal invasion was noted when the limbal, but not corneal, epithelium was recombined with the limbal stroma containing live, but not dead, cells. Invading limbal basal cells displayed up-regulated nuclear expression of p63 and Ki67, down-regulated E-cadherin and cornea-specific keratin 3, and switched expression of beta-catenin from intercellular junctions to the nucleus and cytoplasm, indicating the activation of the Wnt/beta-catenin pathway. Invaded cells isolated by collagenase from the stroma of air-lifted, but not submerged, explants showed vivid clonal growth on 3T3 fibroblast feeder layers and complete epithelial-mesenchymal transition by expressing nuclear p63 and cytoplasmic S100A4. These findings collectively suggest that epithelial-mesenchymal transition via the Wnt/beta-catenin pathway influences the fate of limbal epithelial cells, likely to be progenitor cells, between regeneration and fibrosis when the stromal niche is activated.  相似文献   

13.
We report our experience with corneal epithelium, grown in vivo, transplantation in three patients with persistent epithelial defect (PED). The three patients had ocular surface disease unresponsive to standard treatments and were therefore chosen for transplantation. They underwent transplantation of epithelial sheets, grown in vivo, to the most affected eye. In vivo cultivation was carried out in the cornea of a living related donor. After epithelialization was completed, the epithelium grown on an amniotic membrane was harvested gently; it was then transplanted into the patient's eye after debridement of fibrovascular tissue. The cultivated epithelium was completely epithelialized by 2 weeks; it was well-differentiated with well-formed hemidesmosome. On immunohistochemical staining, p63, connexin 43, and Integrin beta4 were expressed in the cells on the epithelial sheet. The PED was covered completely and maintained for 4 weeks in all cases. However, corneal erosion recurred after 5 weeks in two cases. This novel technique demonstrates the corneal epithelial cells can be expanded in vivo successfully on denuded amniotic membrane of a healthy cornea and harvested safely. A corneal epithelial sheet, grown in vivo, can be transplanted to treat eye with a severe ocular surface disease, such as total limbal deficiency.  相似文献   

14.
Corneal epithelial abrasion in C57BL/6 mice induces an inflammatory response with peak accumulation of neutrophils in the corneal stroma within 12 hours. Platelets localize in the limbal vessels throughout the same time course as neutrophils and contribute to wound healing because antibody-dependent depletion of platelets retards epithelial division and wound closure. In the present study, T cells in the limbal epithelium were found to predominantly express the gammadelta T-cell receptor (TCR). Corneal abrasion in wild-type, CD11a(-/-), and P-sel(-/-) mice increased the numbers of gammadelta T cells in the limbal and peripheral corneal epithelium and in the corneal stroma adjacent to the limbal blood vessels. Intercellular adhesion molecule (ICAM)-1(-/-) mice exhibited a reduction in gammadelta T-cell accumulation. TCRdelta(-/-) mice exhibited reduced inflammation and delayed epithelial wound healing as evidenced by delayed wound closure, reduced epithelial cell division, reduced neutrophil infiltration, and reduced epithelial cell density at 96 hours after wounding. TCRdelta(-/-) mice also exhibited >60% reduction in platelet localization in the limbus despite similar platelet counts and platelet function assessed with an in vivo thrombosis model. These results are consistent with the conclusion that gammadelta T cells are necessary for efficient inflammation, platelet localization in the limbus, and epithelial wound healing after corneal abrasion.  相似文献   

15.
16.
Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required.  相似文献   

17.
M Kasper 《Acta histochemica》1992,93(1):319-332
The anatomical distribution of different individual cytokeratin polypeptides and of vimentin was investigated by means of immunofluorescence with 41 monoclonal antibodies in guinea pig and mouse eyes. Simple epithelial type cytokeratins 7, 8, 18, and 19 selectively decorated conjunctival goblet cell clusters in mouse specimens and a continuous superficial cell layer of the corresponding part of guinea pig conjunctiva. A changed pattern of squamous epithelial type cytokeratins was found in the limbal region of the guinea pig eye as compared to the corneal epithelium. Cytokertains 3 and 17, which stained the entire corneal epithelium, were not detected, whereas cytokeratin 4, 5 and 13 were expressed. A focal vimentin and cytokeratin coexpression in the limbus of guinea pig is interpreted as indicating corneal stem cells. Similar patterns of expressions were found in the mouse ocular surface. In both species, a cytokeratin 4 staining of basal conjunctival epithelial cells could be detected. The neuroectodermally derived epithelia of the eye such as the retinal pigment epithelium and the ciliary body epithelia expressed solely the cytokeratin pair 8/18.  相似文献   

18.
The purpose of this investigation was to analyze the proliferative behavior of rabbit corneal epithelium and establish if any particular region was preferentially involved in epithelial maintenance. [3H]-thymidine was injected intravitreally into both normal eyes and eyes with partially scraped corneal epithelium. Semithin sections of the anterior segment were evaluated by quantitative autoradiography. Segments with active replication (on) and those with no cell division (off) were intermingled in all regions of the tissue, suggesting that the renewal of the epithelial surface of the cornea followed an on/off alternating pattern. In the limbus, heavy labeling of the outermost layers was observed, coupled with a few or no labeled nuclei in the basal stratum. This suggests that this region is a site of rapid cell differentiation and does not contain many slow-cycling cells. The conspicuous and protracted labeling of the basal layer of the corneal epithelium suggests that its cells undergo repeated cycles of replication before being sent to the suprabasal strata. This replication model is prone to generate label-retaining cells. Thus, if these are adult stem cells, one must conclude that they reside in the corneal basal layer and not the limbal basal layer. One may also infer that the basal cells of the cornea and not of the limbus are the ones with the main burden of renewing the corneal epithelium. No particular role in this process could be assigned to the cells of the basal layer of the limbal epithelium.  相似文献   

19.
20.
How is the corneal epithelium restored when all of it plus the limbus have been eliminated? This investigation explored the possibility that this may be achieved through the conjunctival epithelium. The corneal epithelium of the right eye of 12 rabbits (Oryctolagus cuniculus) was totally scraped followed by surgical excision of the limbus plus 1.0-1.5 mm of the adjacent conjunctiva. Antibiotics and corticosteroids were applied for 1 week after surgery. Histological and immunohistochemical techniques were used to monitor the events taking place on the eye surface 2 weeks and 1, 3 and 6 months thereafter. Initially, the corneal surface was covered by conjunctival-like epithelium. After 1 month and more prominently at 3 and 6 months an epithelium displaying the morphological features of the cornea and reacting with the AE5 antibody was covering the central region. It is likely that the corneal epithelium originated from undifferentiated cells of the conjunctiva interacting with the corneal stroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号