首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, has been reported to ameliorate hyperglycemia in obese diabetic animal models. To elucidate the mechanism of BDNF on glucose metabolism, we determined the glucose turnover under basal and euglycemic hyperinsulinemic (insulin infusion rate, 54 pmol. kg(-1). min(-1)) clamp conditions in obese insulin-resistant rats, male Zucker fatty rats, which had been acutely administered a subcutaneous injection of BDNF (20 mg/kg) (n = 9, BDNF) or vehicle (n = 8, vehicle). Under the basal condition, acute administration of BDNF did not affect the blood glucose level, plasma insulin level, rate of glucose disappearance (Rd), and endogenous glucose production (EGP). Under the clamp condition, the glucose infusion rate (GIR) was significantly higher in BDNF than in vehicle (mean +/- SD, 61.4 +/- 19.1 v 41.4 +/- 4.9 micromol. kg(-1). min(-1), P <.05). There was no significant difference in Rd and EGP between the 2 groups under the clamp condition, but the insulin-mediated suppression ratio of endogenous glucose production in BDNF was significantly greater than in vehicle (48.9 +/- 22.2 v 22.4% +/- 20.6%, P <.05). In BDNF, mRNA expressions of hepatic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were comparable to those of vehicle, while hepatic glucokinase (GK) mRNA expression was significantly higher (1.57 +/- 0.33 v 1.03 +/- 0.17, P <.05). We conclude that BDNF mainly improves hepatic insulin resistance in obese insulin-resistant rats, probably by affecting the hepatic GK flux. Copyright 2003, Elsevier Science (USA). All rights reserved.  相似文献   

2.
The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups, each composed of ten rats: naive (N), vehicle treated (V), and melatonin treated (M) (10mg/kg/day) for 6wk. Vehicle and melatonin were added to the drinking water. ZDF rats developed DM (fasting hyperglycemia, 460±39.8mg/dL; HbA(1) c 8.3±0.5%) with both insulin resistance (HOMA-IR 9.28±0.9 versus 1.2±0.1 in ZL) and decreased β-cell function (HOMA1-%B) by 75%, compared with ZL rats. Melatonin reduced fasting hyperglycemia by 18.6% (P<0.05) and HbA(1) c by 11% (P<0.05) in ZDF rats. Also, melatonin lowered insulinemia by 15.9% (P<0.05) and HOMA-IR by 31% (P<0.01) and increased HOMA1-%B by 14.4% (P<0.05). In addition, melatonin decreased hyperleptinemia by 34% (P<0.001) and raised hypoadiponectinemia by 40% (P<0.001) in ZDF rats. Moreover, melatonin reduced serum free fatty acid levels by 13.5% (P<0.05). These data demonstrate that oral melatonin administration ameliorates glucose homeostasis in young ZDF rats by improving both insulin action and β-cell function. These observations have implications on melatonin's possible use as a new pharmacologic therapy for improving glucose homeostasis and of obesity-related T2DM, in young subjects.  相似文献   

3.
In the present study, we investigated the effects of long-term treatment with the endothelin (ET) antagonist atrasentan, an ET(A)-selective antagonist, on whole body glucose metabolism and insulin signaling in a commonly used model of insulin resistance, the Zucker fatty rat. Zucker lean and fatty rats were maintained for 6 weeks on either control or atrasentan-treated water. Euglycemic-hyperinsulinemic clamps (4 mU/kg per minute) were performed at the end of the 6-week treatment on a subset of rats (n=10/treatment). In another subset (n=5/treatment), an insulin tolerance test was performed; liver and muscle tissues were harvested 10 minutes following the challenge for further analysis. Results of the clamps demonstrated that long-term atrasentan treatment significantly increased whole body glucose metabolism in fatty rats compared with vehicle control subjects. Insulin-induced insulin receptor substrate 1 tyrosine and protein kinase B serine phosphorylation were significantly reduced in the liver and muscle of fatty animals compared with their lean littermates. This reduction was overcome with atrasentan treatment in the liver but not in the muscle. There was no difference between lean and fatty animals, however, in insulin receptor substrate 1 and protein kinase B protein expression in the liver and muscle and no effect by atrasentan. In contrast, expression of the regulatory subunit of PI-3 kinase (p85alpha) was significantly increased in the liver but not in the muscle of fatty animals compared with their lean littermates and this was normalized to levels of lean animals with atrasentan treatment. These findings indicate that long-standing ET antagonism improves whole body glucose metabolism in Zucker fatty rats through improvements in insulin signaling in the liver. These results indicate that therapeutic ET antagonism may assist in correcting the insulin-resistant state.  相似文献   

4.
AIM: To clarify the mechanism by which insulin resistance develops in obesity, Zucker fatty rats (ZFR) and lean litter mates (ZLR) were temporally subjected to oral glucose tolerance tests (OGTT) at 6 and 15 weeks of age. METHOD: As candidates for causative factors of insulin resistance, plasma leptin, free fatty acids (FFA) and tumor necrosis factor (TNF)-alpha levels were evaluated. RESULTS: There was no difference in the body weight between the two groups at 6 weeks of age, but ZFR were significantly heavier than ZLR at 15 weeks of age. At 6 weeks of age, blood glucose levels and area under the curve of glucose (AUCg) during OGTT were not significantly different between the two groups, while plasma insulin levels and area under the curve of insulin (AUCi) in the ZFR group were significantly higher than those in the ZLR group. At 15 weeks of age, the blood glucose levels and AUCg as well as plasma insulin levels and AUCi in the ZFR group during OGTT were significantly higher than those in the ZLR group. The ratio of fasting insulin to glucose in the ZFR group was significantly higher than that in the ZLR group at 6 and 15 weeks of age. Peripheral and portal plasma leptin and FFA levels were significantly higher in ZFR than ZLR both at 6 weeks and 15 weeks of age. Meanwhile, at 6 weeks, plasma TNF-alpha levels and expression of TNF-alpha protein in subcutaneous and visceral fat tissues were similar in both groups; however at 15 weeks, these were significantly higher in the ZFR group than the ZLR group. CONCLUSION: These results suggest that FFA rather than TNF-alpha may play an important role in early events involved in the development of insulin resistance and TNF-alpha accelerates insulin resistance together with FFA in the later stage.  相似文献   

5.
Aim:  The aim of this study was to test the effect of isosteviol on blood glucose and insulin levels during the intravenous glucose tolerance test (IVGTT) in Wistar and Zucker diabetic fatty (ZDF) rats.
Methods:  ZDF rats were divided into a control and three isosteviol treatment (1, 5 and 10 mg/kg) groups. Wistar rats were divided into a control group and an isosteviol treatment group (10 mg/kg). The rats were fasted for 12 h prior to infusion of isosteviol and glucose (1.0 g/kg). Blood samples were taken at 0, 5, 15, 30, 60, 90 and 120 min after the injection of glucose. Glucose concentrations were determined by the glucose oxidase method, and plasma insulin was analysed by radioimmunoassay. The area under the curve (AUC) of the net change in plasma glucose concentration was used to compare the isosteviol treatment and control groups.
Results:  In ZDF rats, isosteviol at 5 and 10 mg/kg caused a significant (p < 0.05) reduction in the AUC of glucose during the IVGTT. However, isosteviol did not increase plasma insulin concentrations in ZDF rats. In Wistar rats, isosteviol did not significantly affect plasma glucose or insulin levels during the IVGTT.
Conclusion:  Isosteviol exerts an antihyperglycaemic effect during IVGTT in ZDF rats but not in Wistar rats. Isosteviol has no significant effect on plasma insulin concentrations. The glucose-lowering effect of isosteviol may be due to changes in the sensitivity of peripheral tissues to insulin.  相似文献   

6.
The biochemical mechanisms responsible for basal hyperinsulinemia in insulin-resistant states have not been fully defined. We therefore studied pancreatic beta-cell function in vitro to characterize the relative importance of fuel metabolism or secretion via a constitutive pathway in the maintenance of high basal insulin secretion in Zucker diabetic fatty (ZDF) and Zucker fatty (ZF) rats. Insulin secretion from ZF (10+/-1.8 v 5+/-0.6 pmol/ng DNA/h) and ZDF (30+/-4 v 7+/-0.8 pmol/ng DNA/h) islets at 2.8 mmol/L glucose was two to four times greater than secretion from islets of lean littermate control rats. In response to a decreasing glucose concentration (from 12 to 0 mmol/L), a paradoxical increase in insulin secretion was observed in perfused ZDF rat pancreas. Insulin secretion at 2.8 mmol/L glucose was suppressed approximately 70% to 80% in islets from ZDF and ZF rats following exposure to diazoxide, a K+-adenosine triphosphate (K(ATP)) channel opener that inhibits membrane depolarization, or rotenone and oligomycin, agents that inhibit ATP production, or by incubation at 23 degrees C. Inhibition of glycolysis with mannoheptulose, 2-deoxyglucose, and iodoacetate or fatty acid oxidation with a carnitine palmitoyltransferase I inhibitor also significantly inhibited basal insulin secretion in islets of ZDF and ZF rats but not their lean littermates. Furthermore, the glycolytic flux at 2.8 mmol/L glucose was significantly higher in ZDF islets versus ZDF lean littermate (ZLC) islets (2.2+/-0.1 v 3.7+/-0.3 pmol/ng DNA/2 h, P < .01) and was suppressed by mannoheptulose. In ZDF and ZF islets, high basal insulin secretion was maintained despite a 50% reduction in the rate of proinsulin/insulin biosynthesis at 2.8 mmol/L glucose. The rate of proinsulin to insulin conversion and the ratio of proinsulin to insulin secretion by islets of ZDF rats were similar to the values in the lean littermates. Thus, basal hypersecretion in these two insulin-resistant models appears to be related to enhanced fuel metabolism rather than the contribution of a constitutive pathway of secretion.  相似文献   

7.
8.
Cardiac carbohydrate metabolism in Zucker diabetic fatty rats   总被引:2,自引:0,他引:2  
OBJECTIVE: The aim of this study was to test the hypothesis that, shortly after the development of Type-2 diabetes, alterations in cardiac carbohydrate metabolism precede the onset of abnormalities in systolic function. METHODS: Hearts from 11-week-old Zucker diabetic fatty (ZDF) rats and age matched controls were perfused in the isovolumic Langendorff mode with 13C-labeled glucose, lactate and pyruvate and unlabeled fatty acids. 13C-Nuclear magnetic resonance glutamate isotopomer analysis was carried out to determine the contributions of substrates to energy production. RESULTS: The ZDF group was hyperglycemic and the relative flux through pyruvate dehydrogenase (PDH) was significantly depressed compared to lean controls. In the lean group, lactate, pyruvate and glucose contributed 64+/-3, 24+/-3 and 11+/-1%, respectively, to total pyruvate oxidation. In the ZDF group, the contribution of glucose both to total pyruvate oxidation and to tissue lactate and alanine formation was significantly depressed. Cardiac function assessed by the rate-pressure product was similar in both groups. The fraction of active PDH was decreased in the ZDF group compared to controls (p<0.025). CONCLUSIONS: These results highlight significant changes in cardiac carbohydrate metabolism shortly after the development of hyperglycemia in a model of Type 2 diabetes in the absence of overt changes in systolic function.  相似文献   

9.
Pyruvate dehydrogenase plays a critical role in the regulation of hepatic glucose and fatty acid oxidation; however, surprisingly little is known about its regulation in vivo. In this study we examined the individual effects of insulin and substrate availability on the regulation of pyruvate dehydrogenase flux (V(PDH) ) to tricarboxylic acid flux (V(TCA) ) in livers of awake rats with lipid-induced hepatic insulin resistance. V(PDH) /V(TCA) flux was estimated from the [4-(13) C]glutamate/[3-(13) C]alanine enrichments in liver extracts and assessed under conditions of fasting and during a hyperinsulinemic-euglycemic clamp, whereas the effects of increased plasma glucose concentration on V(PDH) /V(TCA) flux was assessed during a hyperglycemic clamp in conjunction with infusions of somatostatin and insulin to maintain basal concentrations of insulin. The effects of increases in both glucose and insulin on V(PDH) /V(TCA) were examined during a hyperinsulinemic-hyperglycemic clamp. The effects of chronic lipid-induced hepatic insulin resistance on this flux were also examined by performing these measurements in rats fed a high-fat diet for 3 weeks. Using this approach we found that fasting V(PDH) /V(TCA) was reduced by 95% in rats with hepatic insulin resistance (from 17.2 ± 1.5% to 1.3 ± 0.7%, P < 0.00001). Surprisingly, neither hyperinsulinemia per se or hyperglycemia per se were sufficient to increase V(PDH) /V(TCA) flux. Only under conditions of combined hyperglycemia and hyperinsulinemia did V(PDH) /V(TCA) flux increase (44.6 ± 3.2%, P < 0.0001 versus basal) in low-fat fed animals but not in rats with chronic lipid-induced hepatic insulin resistance. CONCLUSION: These studies demonstrate that the combination of both hyperinsulinemia and hyperglycemia are required to increase V(PDH) /V(TCA) flux in vivo and that this flux is severely diminished in rats with chronic lipid-induced hepatic insulin resistance.  相似文献   

10.
Aims/hypothesis The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes.Materials and methods NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats.Results Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5–8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride–fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent.Conclusions/interpretation The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride–fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
12.
《Diabetes & metabolism》2009,35(5):364-370
AimThis study aimed to investigate the role played by sympathovagal balance in arterial stiffness, a common feature of insulin resistance and type 2 diabetes.MethodsWe investigated the relationship between autonomic nervous system activity and arterial stiffness in Zucker diabetic fatty rats (ZDF: Gmi-fa/fa) and their age-matched controls (lean: ?/fa). Using simultaneous catheterization of the proximal and distal aorta, we measured intra-arterial blood pressure (BP), heart rate (HR), their variability (spectral analysis) and aortic pulse wave velocity (PWV) in a series of at least six conscious rats aged 6, 12, 18 and 24 weeks.ResultsBP and PWV increased with age (P < 0.001) in both strains with no differences between strains, despite the insulin resistance already present at 6 weeks in ZDF rats. HR was significantly lower (P < 0.001) in ZDF than in lean rats. In ZDF compared with lean rats, the low-frequency (LF) component of the systolic BP variations and the LF/high-frequency (HF) component of the pulse interval (PI) variation ratio were reduced (P < 0.01 and P < 0.05, respectively), while the HF component of the PI (HF-PI) variation was raised (P < 0.05). PWV was negatively correlated with HF-PI (r = −0.37, P < 0.01), but not with biochemical parameters. HF-PI was an independent variable explaining the variation in PWV.ConclusionDuring the development of disease of ZDF rats, sympathovagal balance might account for the lack of increase in PWV.  相似文献   

13.
The role of insulin-degrading enzyme (IDE), a metalloprotease with high affinity for insulin, in insulin clearance remains poorly understood. OBJECTIVE: This study aimed to clarify whether IDE is a major mediator of insulin clearance, and to define its role in the etiology of hepatic insulin resistance.MethodsWe generated mice with liver-specific deletion of Ide (L-IDE-KO) and assessed insulin clearance and action.ResultsL-IDE-KO mice exhibited higher (~20%) fasting and non-fasting plasma glucose levels, glucose intolerance and insulin resistance. This phenotype was associated with ~30% lower plasma membrane insulin receptor levels in liver, as well as ~55% reduction in insulin-stimulated phosphorylation of the insulin receptor, and its downstream signaling molecules, AKT1 and AKT2 (reduced by ~40%). In addition, FoxO1 was aberrantly distributed in cellular nuclei, in parallel with up-regulation of the gluconeogenic genes Pck1 and G6pc. Surprisingly, L-IDE-KO mice showed similar plasma insulin levels and hepatic insulin clearance as control mice, despite reduced phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1, which upon its insulin-stimulated phosphorylation, promotes receptor-mediated insulin uptake to be degraded.ConclusionIDE is not a rate-limiting regulator of plasma insulin levels in vivo.  相似文献   

14.
Vasopeptidase inhibition prevents nephropathy in Zucker diabetic fatty rats   总被引:9,自引:0,他引:9  
BACKGROUND: Blocking the renin-angiotensin system is an established therapeutic principle in diabetic nephropathy. We investigated whether inhibition of both neutral endopeptidase and ACE (vasopeptidase inhibition) can prevent functional and morphological features of nephropathy in the Zucker diabetic fatty (ZDF) rat, an animal model of type II diabetes. METHODS: Homozygous (fa/fa) ZDF rats (each n=15) aged 10 weeks were treated with placebo, ramipril (1 mg/kg/day in drinking water), or the vasopeptidase inhibitor AVE7688 (45 mg/kg/day in chow). Metabolic parameters and renal function (metabolic cages) were assessed at baseline (age 10 weeks), and at age 17, 27, and 37 weeks. Twenty heterozygous animals (fa/-) served as lean, nondiabetic controls. At age 37 weeks, the animals were sacrificed and the kidneys analyzed histopathologically. RESULTS: Overt diabetes mellitus (blood glucose >20 mmol/l) was established at age 17 weeks in all homozygous ZDF rats. In the placebo group, urinary protein excretion increased progressively from 8+/-1 (baseline) to 342+/-56 mg/kg/day (week 37) whereas diabetes and proteinuria were absent in the lean control group. Ramipril tended to reduce albuminuria and morphological damage (p=ns) but AVE7688 virtually prevented albuminuria (33+/-12 mg/kg/day, p<0.05 vs. ZDF placebo) and drastically reduced the incidence and severity of glomerulosclerosis and tubulointerstitial damage. CONCLUSIONS: In ZDF rats, development of diabetes mellitus is accompanied by functional and morphological kidney damage that resembles human diabetic nephropathy. Diabetic nephropathy can be prevented by chronic vasopeptidase inhibition.  相似文献   

15.
BACKGROUND: The 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors ('statins') have been implicated in preventing new onset type 2 diabetes, whereas the mechanism of this effect is not known. We investigated the effects of an HMG-CoA reductase inhibitor, atorvastatin, on insulin sensitization in Zucker lean and fatty rats. METHODS AND RESULTS: In vivo studies of insulin sensitization were performed in chow fed Zucker lean and fatty rats treated with atorvastatin 50mg/kg/day (ATORVA_50) and results were compared to Zucker lean and fatty rats treated with drug vehicle only (CONT). Additional Zucker lean rats were treated with an intermediate dose of atorvastatin 25mg/kg/day (ATORVA_25). Treatment with atorvastatin resulted in a dose-dependent improvement in whole body insulin sensitivity in both lean and fatty rats, with an approximately two-fold increase in glucose infusion rate and glucose disposal (Rd) in ATORVA_50 versus CONT (p<0.01). Atorvastatin 50mg/kg/day resulted in an increase in 2-deoxyglucose (2-DOG) uptake by skeletal muscles (approximately two-fold increase in 2-DOG uptake in quadriceps (p=0.06) and gastrocnemius (p<0.01)) in lean Zucker rats. Insulin-stimulated phosphorylation of Akt/PKB was significantly increased in skeletal muscle of ATORVA_50 versus CONT in both lean and fatty rats. CONCLUSION: Atorvastatin induces insulin sensitization in Zucker lean and fatty rats. This may be a clinically important pleiotropic effect if confirmed in insulin resistant humans.  相似文献   

16.
The fact that hyperinsulinemia occurs in simple obesity and mild glucose intolerance has been well established. Altered hepatic insulin extraction may influence the levels of circulating hormone. The simultaneous measurement of insulin and C-peptide concentrations in peripheral blood enables an in vivo estimation of hepatic insulin removal. To evaluate hepatic insulin extraction, insulin and C-peptide responses to oral glucose were studied in 176 obese and nonobese subjects with normal, impaired, or diabetic glucose tolerance. Insulin levels as well as insulin incremental areas in glucose intolerant subjects were significantly higher than in weight-matched controls. The levels of C-peptide as well as C-peptide incremental areas were only slightly enhanced in subjects with impaired glucose tolerance, whereas they were reduced in subjects with diabetic tolerance. The molar ratios of C-peptide to insulin, both in the fasting state and after ingestion of glucose, as well as the relationship between the incremental areas of the two peptides were used as measures of hepatic insulin extraction. They were significantly reduced in glucose intolerant subjects and, to a lesser extent, in nondiabetic obese subjects. These results indicate that peripheral hyperinsulinemia in subjects with simple obesity or impaired glucose tolerance is a result of both pancreatic hypersecretion and diminished hepatic insulin extraction. In subjects with a more severe degree of glucose intolerance, decreased hepatic insulin removal is the primary cause of hyperinsulinemia.  相似文献   

17.
The aim of this study was to evaluate whether the correlation between insulin resistance and peripheral hyperinsulinaemia existing in mild glucose intolerance corresponds to a relationship between insulin resistance and insulin overproduction by the pancreas. In addition, the possibility that insulin resistance is related to insulin metabolism was examined. Twenty five subjects with fasting normoglycaemia and an abnormal glucose response to the oral glucose tolerance test (OGTT) were studied. Insulin secretion by the pancreas was estimated by means of fasting C-peptide levels in peripheral blood. Insulin resistance was estimated by the rate of glucose disappearance from plasma after i.v. insulin injection. Insulin metabolism was estimated indirectly by the C-peptide: insulin molar ratio. A negative correlation was found between the glucose disappearance rate from plasma after i.v. insulin injection and fasting insulin levels (r = -0.677, p less than 0.001), but not fasting C-peptide concentrations (r = -0.164, p = NS). Glucose disappearance rate from plasma correlated positively with the C-peptide: insulin molar ratio (r = 0.626, p less than 0.001). These results suggest that in mild glucose intolerance insulin resistance and insulin secretion by the pancreas are not related phenomena, and that the defect responsible for insulin resistance might also be implicated in the impaired insulin metabolism.  相似文献   

18.
In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.  相似文献   

19.
中国人糖耐量异常与胰岛素抵抗和胰岛素分泌   总被引:73,自引:4,他引:73  
研究胰岛素抵抗和胰岛分泌缺陷与中国人糖耐量变化的关系。方法对466例(正常体重189例,超重/肥胖277例)正常糖耐量(NGT)、糖耐量减退/空腹血糖减损(IGT/IFG)、2型糖尿病(DM)患者,用稳态模式评估法评价胰岛素抵抗及胰岛β细胞基础功能(HOMA-βcell)并用糖负荷30分钟净增胰鸟争增葡萄糖(△i30/△G30)比值评价早期胰 岛素分泌反应。结果校正年龄,性别、体重指数(BMI)、  相似文献   

20.
Blood chemistry profiles (glucose, insulin, and triglycerides) and indirect calorimetry were performed on male Zucker diabetic fatty (ZDF) rats in a longitudinal fashion (starting at 7 weeks of age) to assess the nature and timing of specific events in the transition to overt diabetes. Peripheral (skeletal muscle) insulin resistance was clearly present at 7 weeks of age in ZDF rats, yet circulating glucose was only slightly above normal as a result of compensatory hyperinsulinemia. At a crucial stage from 7 to 8 weeks, a reduction in insulin levels instigated several deleterious changes resulting in reduced whole-body carbohydrate utilization and increased glycemia. In subsequent weeks, an inability to sustain peripheral glucose disposal as a consequence of a continuous decline in insulin levels further reduced carbohydrate utilization (increased lipid utilization) and enhanced the overt hyperglycemia. These observations document in a systematic fashion the alterations that define diabetic progression in ZDF rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号