首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergytrade mark linear accelerator produced an unattenuated beam for a central "target zone" and a partially attenuated beam for an outer "set-up zone". Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error.  相似文献   

2.
Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.  相似文献   

3.
目的:采用循环对抗生成网络算法建立胸部锥形束CT(CBCT)校正模型,探讨该模型用于提升CBCT质量的可行性,评估校正的CBCT(CCBCT)用于剂量计算的准确性。方法:选择食管癌或肺癌患者已配准的CBCT和定位CT 70例,随机选取其中60例作为训练集,用来训练循环对抗生成网络,生成CBCT的校正模型。剩余10例作为测试集,对CBCT、CCBCT和定位CT之间的CT值平均绝对误差、峰值信噪比、归一化互相关进行统计学分析。将原调强计划(CT Plan)移植到CCBCT上,生成CCBCT Plan,以CT Plan剂量分布为参考,对CCBCT Plan进行三维剂量γ分析。结果:CBCT经校正后散射伪影显著减少,CT值平均绝对误差降低了52.74[%±]6.47%,峰值信噪比和归一化互相关分别提高了7.95[%±]3.56%和1.68[%±]3.38%,差异均有统计学意义(t=18.47、-7.31、-6.77, P[<]0.05)。在2 mm/2%、2 mm/1%和1 mm/1%条件下,CCBCT Plan三维剂量平均γ通过率分别为99.16[%±]0.34%、98.01[%±]0.72%、93.95[%±]1.62%。结论:基于循环对抗生成网络构建的CBCT影像校正模型用于提升CBCT影像质量是可行的,经校正的胸部CBCT可用于放疗剂量计算,为CBCT用于自适应放疗剂量计算奠定基础。  相似文献   

4.
We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as a function of the number of projections and the error in the projection angles. The detector dose response is linear (R2 value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.  相似文献   

5.
Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The presented method corrects the MV CBCT images for cupping artifacts and extracts reliable ED information of objects with varying geometries and composition, making these corrected MV CBCT images suitable for accurate dose calculation purposes.  相似文献   

6.
Four-dimensional cone-beam computed tomography using an on-board imager   总被引:2,自引:0,他引:2  
Li T  Xing L  Munro P  McGuinness C  Chao M  Yang Y  Loo B  Koong A 《Medical physics》2006,33(10):3825-3833
On-board cone-beam computed tomography (CBCT) has recently become available to provide volumetric information of a patient in the treatment position, and holds promises for improved target localization and irradiation dose verification. The design of currently available on-board CBCT, however, is far from optimal. Its quality is adversely influenced by many factors, such as scatter, beam hardening, and intra-scanning organ motion. In this work we quantitatively study the influence of organ motion on CBCT imaging and investigate a strategy to acquire high quality phase-resolved [four-dimensional (4D)] CBCT images based on phase binning of the CBCT projection data. An efficient and robust method for binning CBCT data according to the patient's respiratory phase derived in the projection space was developed. The phase-binned projections were reconstructed using the conventional Feldkamp algorithm to yield 4D CBCT images. Both phantom and patient studies were carried out to validate the technique and to optimize the 4D CBCT data acquisition protocol. Several factors that are important to the clinical implementation of the technique, such as the image quality, scanning time, number of projections, and radiation dose, were analyzed for various scanning schemes. The general references drawn from this study are: (i) reliable phase binning of CBCT projections is accomplishable with the aid of external or internal marker and simple analysis of its trace in the projection space, and (ii) artifact-free 4D CBCT images can be obtained without increasing the patient radiation dose as compared to the current 3D CBCT scan.  相似文献   

7.
The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT.  相似文献   

8.

Purpose:

The imaging characteristics of two popular kV cone-beam CT (CBCT) and two MVCT systems utilised in image-guided radiation therapy (IGRT) were evaluated.

Materials and methods:

The study was performed on Varian Clinac iX, Elekta Synergy S, Siemens Oncor, and Tomotherapy. A CT phantom (Catphan-504, Phantom Laboratory, Salem, NY) was scanned for measurements of image quality including image noise, uniformity, density accuracy, spatial resolution, contrast linearity, and contrast resolution. The measurement results were analysed using in-house image analysis software. Reproducibility, position correction, and geometric accuracy were also evaluated with markers in a smaller alignment phantom. The performance evaluation compared volumetric image properties from these four systems with those from a conventional diagnostic CT (CCT).

Results:

It was shown that the linearity of the two kV CBCT was fairly consistent with CCT. The Elekta CBCT with half-circle 27-cm FOV had higher CT numbers than the other three systems. The image noises of the Elekta kV CBCT, Siemens MV CBCT, and Tomotherapy fan-beam CT (FBCT) are about 2–4 times higher than that of the Varian CBCT. The spatial resolutions of two kV CBCTs and two MV CBCTs were 8-11 lp/cm and 3-5 lp/cm, respectively.

Conclusion:

Elekta CBCT provided a faster image reconstruction and low dose per scan for half-circle scanning. Varian CBCT had relatively lower image noise. Tomotherapy FBCT had the best uniformity.  相似文献   

9.
The development and performance of a system for x-ray cone-beam computed tomography (CBCT) using an indirect-detection flat-panel imager (FPI) is presented. Developed as a bench-top prototype for initial investigation of FPI-based CBCT for bone and soft-tissue localization in radiotherapy, the system provides fully three-dimensional volumetric image data from projections acquired during a single rotation. The system employs a 512 x 512 active matrix of a-Si:H thin-film transistors and photodiodes in combination with a luminescent phosphor. Tomographic imaging performance is quantified in terms of response uniformity, response linearity, voxel noise, noise-power spectrum (NPS), and modulation transfer function (MTF), each in comparison to the performance measured on a conventional CT scanner. For the geometry employed and the objects considered, response is uniform to within 2% and linear within 1%. Voxel noise, at a level of approximately 20 HU, is comparable to the conventional CT scanner. NPS and MTF results highlight the frequency-dependent transfer characteristics, confirming that the CBCT system can provide high spatial resolution and does not suffer greatly from additive noise levels. For larger objects and/or low exposures, additive noise levels must be reduced to maintain high performance. Imaging studies of a low-contrast phantom and a small animal (a euthanized rat) qualitatively demonstrate excellent soft-tissue visibility and high spatial resolution. Image quality appears comparable or superior to that of the conventional scanner. These quantitative and qualitative results clearly demonstrate the potential of CBCT systems based upon flat-panel imagers. Advances in FPI technology (e.g., improved x-ray converters and enhanced electronics) are anticipated to allow high-performance FPI-based CBCT for medical imaging. General and specific requirements of kilovoltage CBCT systems are discussed, and the applicability of FPI-based CBCT systems to tomographic localization and image-guidance for radiotherapy is considered.  相似文献   

10.
The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.  相似文献   

11.
Lu J  Guerrero TM  Munro P  Jeung A  Chi PC  Balter P  Zhu XR  Mohan R  Pan T 《Medical physics》2007,34(9):3520-3529
We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies.  相似文献   

12.
Image fusion, target localization, and setup accuracy of cone-beam computed tomography (CBCT) for stereotactic radiosurgery (SRS) were investigated in this study. A Rando head phantom rigidly attached to a stereotactic Brown-Roberts-Wells (BRW) frame was utilized to study the geometric accuracy of CBCT. Measurements of distances and angular separations between selected pairs of multiple radio-opaque targets embedded in the head phantom from a conventional simulation CT provided comparative data for geometric accuracy analysis. Localization accuracy of the CBCT scan was investigated from an analysis of BRW localization of four cylindrical objects (9 mm in diameter and 25 mm in length) independently computed from CBCT and conventional CT scans. Image fusion accuracy was quantitatively evaluated from BRW localization of multiple simulated targets from the CBCT and conventional CT scan. Finally, a CBCT setup procedure for stereotactic radiosurgery treatments was proposed and its accuracy was assessed using orthogonal target verification imaging. Our study showed that CBCT did not present any significant geometric distortions. Stereotactic coordinates of the four cylindrical objects as determined from the CBCT differed from those determined from the conventional CT on average by 0.30 mm with a standard deviation (SD) of 0.09 mm. The mean image registration accuracy of CBCT with conventional CT was 0.28 mm (SD = 0.10 mm). Setup uncertainty of our proposed CBCT setup procedure was on the same order as the conventional framed-based stereotactic systems reported in the literature (mean = 1.34 mm, SD = 0.33 mm). In conclusion, CBCT can be used to guide SRS treatment setup with accuracy comparable to the currently used frame-based stereotactic radiosurgery systems provided that intra-treatment patient motion is prevented.  相似文献   

13.
Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi(4)Ge(3)O(12) (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast-to-noise ratio are presented as a function of dose and compared to those from a conventional MV AMFPI.  相似文献   

14.
主要分析放射治疗kV级锥形束CT(CBCT)图像引导系统和诊断用扇形束CT的技术原理及临床应用的差异,包 括数据获取方式、图像处理方式、空间分辨率、成像剂量、图像噪声、密度分辨率等方面的差异,从而进一步分析CBCT和 扇形束CT技术审评要求中电气安全、性能指标等要求的差异,以及CBCT说明书、注册单元划分的要求,预期为制造商准 备CBCT图像引导系统的注册申报资料提供参考。  相似文献   

15.
机载锥形束CT(CBCT)作为重要的图像引导装置,广泛应用于乳腺癌放射治疗摆位误差的测量。众多文献研究显示通过CBCT扫描,乳腺癌放射治疗靶区各个方向上的摆位误差控制在5 mm以内。对比电子射野影像仪,CBCT扫描有着巨大的临床优势,特别是对于大乳房患者,但是CBCT的使用所带来的额外辐射剂量可能会增加第二原发肿瘤的发生,需要更多的临床研究来评估CBCT扫描在乳腺癌放射治疗中的作用。  相似文献   

16.
In mammography, the image contrast and dose delivered to the patient are determined by the x-ray spectrum and the scatter to primary ratio S/P. Thus the quality of the mammographic procedure is highly dependent on the choice of anode and filter material and on the method used to reduce the amount of scattered radiation reaching the detector. Synchrotron radiation is a useful tool to study the effect of beam energy on the optimization of the mammographic process because it delivers a high flux of monochromatic photons. Moreover, because the beam is naturally flat collimated in one direction, a slot can be used instead of a grid for scatter reduction. We have measured the ratio S/P and the transmission factors for grids and slots for monoenergetic synchrotron radiation. In this way the effect of beam energy and scatter rejection method were separated, and their respective importance for image quality and dose analyzed. Our results show that conventional mammographic spectra are not far from optimum and that the use of a slot instead of a grid has an important effect on the optimization of the mammographic process. We propose a simple numerical model to quantify this effect.  相似文献   

17.
Kilovoltage cone-beam CT (kV CBCT) can be acquired during the delivery of volumetric modulated arc therapy (VMAT), in order to obtain an image of the patient during treatment. However, the quality of such CBCTs is degraded by megavoltage (MV) scatter from the treatment beam onto the imaging panel. The objective of this paper is to introduce a novel MV scatter correction method for simultaneous CBCT during VMAT, and to investigate its effectiveness when compared to other techniques. The correction requires the acquisition of a separate set of images taken during VMAT delivery, while the kV beam is off. These images--which contain only the MV scatter contribution on the imaging panel--are then used to correct the corresponding kV/MV projections. To test this method, CBCTs were taken of an image quality phantom during VMAT delivery and measurements of contrast to noise ratio were made. Additionally, the correction was applied to the datasets of three VMAT prostate patients, who also received simultaneous CBCTs. The clinical image quality was assessed using a validated scoring system, comparing standard CBCTs to the uncorrected simultaneous CBCTs and a variety of correction methods. Results show that the correction is able to recover some of the low and high-contrast signal to noise ratio lost due to MV scatter. From the patient study, the corrected CBCT scored significantly higher than the uncorrected images in terms of the ability to identify the boundary between the prostate and surrounding soft tissue. In summary, a simple MV scatter correction method has been developed and, using both phantom and patient data, is shown to improve the image quality of simultaneous CBCTs taken during VMAT delivery.  相似文献   

18.
目的:利用循环生成对抗网络模型(CycleGAN)进行锥形束CT (CBCT)图像迁移,生成伪CT(sCT)图像,从而实现CBCT图像的HU值矫正。方法:回顾性分析在福建省肿瘤医院行放射治疗的鼻咽癌患者39例,所有患者均接受临床CT与CBCT扫描。以CBCT图像为基准,采用刚性配准算法对临床CT和CBCT进行配准,获得重采样计划CT(pCT)。经阈值分割及形态学处理获取配对影像的外轮廓内部区域作为掩膜,对配对影像进行掩膜操作及归一化预处理。建立CycleGAN神经网络,训练sCT生成模型。基于体素点计算平均绝对误差(MAE)和平均误差(ME),用于比较测试集sCT与pCT之间的差异。结果:测试集的sCT图像与pCT图像相比较,在体外轮廓内的MAE和ME分别为(99.00±15.37) HU和(-24.00±12.64) HU;软组织区域的MAE和ME分别为(48.00±7.45) HU和(-7.00±8.96) HU。结论:CycleGAN能修正CBCT图像的HU值,迁移生成的sCT图像具有与pCT图像近似的HU值及平滑性,可用于放射治疗剂量计算。  相似文献   

19.
The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号