首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
固体脂质纳米粒的研究新进展   总被引:6,自引:0,他引:6  
固体脂质纳米粒是近年来很受重视的一种新型药物传递载体,具有靶向、控释、提高药物稳定性、毒性小、可大批量生产等优点,是一种极有发展前景的新型给药系统.现综述了近年来国内外固体脂质纳米粒的制备技术、作为药物载体的应用、存在问题以及发展前景.  相似文献   

2.
姚健康  钟拥军 《医药导报》2005,24(11):1031-1032
固体脂质纳米粒的制备方法有熔融 匀质法、冷却 匀质法和微乳法等,所制备的固体脂质纳米粒的稳定性和释放机制与粒子大小、δ电位、结晶度、脂类的修饰、多种交替结构共存的特性以及药物的药动学等因素有关。目前固体脂质纳米粒可通过静脉注射、口服、肺部、经皮、经眼部以及疫苗佐剂等途径给药。限制固体脂质纳米粒临床应用的因素包括物理稳定性差、对脂溶性差的药物包封率低等,一般可通过加入离子对试剂、对药物进行PEG衍生化、β-环糊精包合等方法解决。  相似文献   

3.
固体脂质纳米粒的研究进展   总被引:12,自引:4,他引:8  
以生理相容的高熔点脂质为骨架材料制备的固体脂质纳米粒(solid lipid nanoparticels,SLN)是近年来研究十分活跃且极有发展潜力的靶向-控释给药系统的载体,本文综述了迄今SLN研究历程中一些主要发现,包括制备及影响因素,结构,稳定性,降解与释药,已研究的剂型等,指出了它的发展前景和尚待解决的问题。  相似文献   

4.
固体脂质纳米粒的制备与应用   总被引:1,自引:0,他引:1  
周小菊  杨蓓  王庭贤  易以木 《医药导报》2003,22(11):814-816
介绍固体脂质纳米粒作为药物载体的发展现状.以国外有代表性的文献资料为依据,进行分析和归纳,综述了固体脂质纳米粒的制备工艺、理化性质、稳定性及应用,指出固体脂质纳米粒作为药物载体,具有广阔应用前景.  相似文献   

5.
目的:介绍固体脂质纳米粒制备方法的新进展.方法:参阅相关文献,经综合、归纳写成综述.结果:不同的制备技术和工艺适合不同性质药物SLN的制备.结论:固体脂质纳米粒具有良好的应用前景.  相似文献   

6.
张峻琦 《海峡药学》2004,16(1):19-22
目的 介绍固体脂质纳米粒的制备方法及物理化学性质等的研究概况及展望。方法 以国内外发表的文献为依据,总结归纳了固体脂质纳米粒的制备方法及物理化学性质等的研究进展。结果和结论 固体脂质纳米粒是一种十分有发展前景的给药系统。  相似文献   

7.
口服葛根素固体脂质纳米粒的制备   总被引:2,自引:0,他引:2  
目的 研究葛根素固体脂质纳米粒(Pue-SLN)的制备工艺,并考察其制备过程中的影响因素.方法 采用溶剂扩散法制备Pue-SLN,并考察其形态、粒径分布、包封率、载药量、Zeta电位等.结果 Pue-SLN在透射电镜下呈球形或近球形,分布均匀,平均粒径为160 nm,包封率达80%~85%,平均Zeta电位为-35.43 mV.结论 所用制备工艺简单稳定,可用于制备口服Pue-SLN.  相似文献   

8.
固体脂质纳米粒研究新进展   总被引:4,自引:0,他引:4  
陈玲  周建平 《药学进展》2003,27(6):354-358
综述固体脂质纳米粒(SLN)的制备方法、应用、存在的问题和解决方法以及发展前景,介绍基于SLN而开发的新型载体——纳米脂质载体和药脂结合物纳米粒。  相似文献   

9.
固体脂质纳米粒的研究进展   总被引:2,自引:0,他引:2  
固体脂质纳米粒是新一代亚微粒给药系统,由于其生理相容性好,可控制药物释放以及良好的靶向性等优点,日益受到各国研究者的重视。本文综述了固体脂质纳米粒的制备方法,体外释药,给药途径及存在问题等方面的内容。  相似文献   

10.
酮洛芬固体脂质纳米粒的制备与评价   总被引:1,自引:0,他引:1       下载免费PDF全文
摘 要 目的:制备酮洛芬固体脂质纳米粒的处方并对其进行质量评价。方法: 以包封率为评价指标,通过正交试验优化制剂处方并对其从形态、粒径、Zeta电位、药物存在状态进行表征,采用透析法进行体外释放并对释放过程进行拟合。结果: 酮洛芬固体脂质纳米粒的最优处方为酮洛芬50 mg、泊洛沙姆0.1 g、吐温 80 0.2 g、卵磷脂0.15 g、单硬脂酸甘油酯0.05 g,其包封率为61.95%,粒径151.7 nm,Zeta电位为-30.2 mv,形态圆整,差示扫描量热(DSC)分析表明药物以非结晶形式分散于纳米粒骨架中;体外释药曲线显示纳米粒体外释药先快后慢,12 h累积释放药物(85.11±7.62)%,包封于降解材料骨架内的药物通过骨架溶蚀缓慢释放,药物的体外释放符合Higuchi方程。结论: 酮洛芬固体脂质纳米粒制备方法简便、可行,质量评价较好,值得进一步研究。  相似文献   

11.
Abstract

Nocodazole (NCD) has more carcinogenic effect than similar drugs. Moreover, it has low drug release time and high particle size. Solid Lipid Nanoparticles (SLNs) have been evaluated for decrease in particle size and therefore increase in drug release time, for such drugs. In this study, NCD has been successfully incorporated into SLNs systems and remained stable for a period of 90 days. NCD structure related to the chemical nature of solid lipid is a key factor to decide whether anticarcinogenic agent will be incorporated in the long term and for a controlled optimization of active ingredient incorporation and loading, intensive characterization of the physical state of the lipid particles were highly essential. Thus, NMR, FT-IR, DSC (for thermal behavior) analyses were performed and the results did not indicate any problem on stability. Moreover, SLNs were decreased size of NCD in addition to increase in time of the drug release. After SLN preparation, particle size, polydispersity index, electrical conductivity and zeta potential were measured and drug release from NCD-loaded SLNs were performed. These values seem to be of the desired range.  相似文献   

12.
The purpose of this study was to construct isotretinoin-loaded SLN (IT-SLN) formulation with skin targeting for topical delivery of isotretinoin. PRECIROL ATO 5 was selected as the lipid of SLN. Tween 80 and soybean lecithin were used as the surfactants to stabilize SLN. The hot homogenization method was performed to prepare the drug-loaded SLN. The various formulations were characterized by photon correlation spectroscopy and all the SLN formulations had low average size between 30 and 50 nm. Transmission electron microscopy studies showed that the IT-SLN formulation had a spherical shape. All the formulations had high entrapment efficiency ranging from 80% to 100%. The penetration of isotretinoin from the IT-SLN formulations through skins and into skins were evaluated in vitro using Franz diffusion cells fitted with rat skins. The in vitro permeation data showed that all the IT-SLN formulations can avoid the systemic uptake of isotretinoin in skins, however the control tincture had a permeation rate of 0.76+/-0.30 microg cm(-2)h(-1) through skins. The IT-SLN consisting of 3.0% PRECIROL ATO 5, 4.0% soybean lecithin and 4.5% Tween 80 could significantly increased the accumulative uptake of isotretinoin in skin and showed a significantly enhanced skin targeting effect. The studied IT-SLN showed a good stability. These results indicate that the studied IT-SLN formulation with skin targeting may be a promising carrier for topical delivery of isotretinoin.  相似文献   

13.
Metal ion-assisted drug loading model, in which metal ion was used to modify the microstructure of lipid layer, has been developed to improve drug loading efficiency of solid lipid nanoparticles (SLNs). The microstructure and properties of metal ion-assisted cisplatin-loading SLNs were investigated by infra-red spectroscopy, fluorescence spectroscopy and zetasizer. The reactions of hydrogenated soybean lecithin with Zn2+, Cu2+, Mn2+?and Mg2+?have been detected; the mechanism for higher drug encapsulation efficiency (EE) has been investigated. In metal ion introduction SLNs, the compact degree of the lipid molecules was increased due to the electrostatic interaction between metal ions and phospholipid acyl and choline polarity groups, which result in increasing of drug EE. Meanwhile, these electrostatic interactions slowed the releasing rate of encapsulated drug. The study of cytotoxic activity in vitro indicated that the cell cytotoxicity of metal ions introduction SLNs depended on both cell uptake of SLNs and drug releasing from SLNs.  相似文献   

14.
为改善布地奈德的溶解度和吸收,制备并评价了布地奈德固体脂质纳米粒(BUD-SLNs)。通过计算部分溶解度参数选择了单硬脂酸甘油酯作为脂材。经处方优化采用乳化-超声分散的方法制备的BUD-SLNs,包封率为(97.77±2.60)%;平均粒径是147.3nm,粒径分布均匀(PDI=0.228)。透射电镜下可见圆整颗粒。差热分析和X射线衍射实验的结果表明BUD以分子形式分散在SLNs中,体外释放结果表明BUD-SLNs符合双相动力学方程,属于均相骨架结构。研究结果为BUD-SLNs在肺部给药奠定了基础。  相似文献   

15.
贾莉  陈文  赵辉 《齐鲁药事》2013,32(6):336-337,347
目的建立多西他赛固体脂质纳米粒的含量测定方法。方法采用Hypersil ODS C18柱(4.6 mm×200mm,5μm),流动相为乙腈-水(60∶40,V/V),检测波长:228 nm,流速:1 mL.min-1。结果多西他赛在0.50~50.00μg.mL-1的浓度范围内,峰面积对浓度有良好的线性关系(R2=0.999 9,n=7),方法的日内与日间精密度RSD均<2%,回收率分别为98.81%、99.22%、101.5%。结论该方法具有简便、快速、准确的特点,可用于多西他赛固体脂质纳米粒的含量测定。  相似文献   

16.
Objective: Dermal delivery of Doxorubicin (Dox) would be an ideal way in maximising drug efficiency against skin cancer accompanying with minimising side effects. We investigated the potential of Dox-loaded Solid lipid nanoparticles (SLNs) for topical delivery against skin cancer.

Methods: In vitro and in vivo cytotoxicity of optimised formulation were evaluated on murine melanoma (B16F10) cells by MTT assay and melanoma induced Balb/C mice, respectively. Animal study followed by histological analysis.

Results: Optimised formulation showed mean particle size and encapsulation efficiency (EE) of 92?nm and 86% w/w (0.86% w/w value of encapsulated Dox in the lipid matrix), respectively. FTIR experiment confirmed drug–lipid interaction interpreting the observed high EE value for Dox. In vitro and in vivo results indicated the superiority of cytotoxic performance of Dox-loaded SLN compared to Dox solution.

Conclusion: Our findings may open the possibilities for the topical delivery of Dox to the skin cancerous tissues.  相似文献   

17.
The objective of the present study was to develop a novel solid lipid nanoparticle (SLN) for the lung-targeting delivery of dexamethasone acetate (DXM) by intravenous administration. DXM loaded SLN colloidal suspensions were prepared by the high pressure homogenization method. The mean particle size, drug loading capacity and drug entrapment efficiency (EE%) of SLNs were investigated. In vitro drug release was also determined. The biodistribution and lung-targeting efficiency of DXM-SLNs and DXM-solutions (DXM-sol) in mice after intravenous administration were studied using reversed-phase high-performance liquid chromatography (HPLC). The results (expressed as mean +/- SD) showed that the DXM-SLNs had an average diameter of 552 +/- 6.5 nm with a drug loading capacity of 8.79 +/- 0.04% and an entrapment efficiency of 92.1 +/- 0.41%. The in vitro drug release profile showed that the initial burst release of DXM from DXM-SLNs was about 68% during the first 2 h, and then the remaining drug was released gradually over the following 48 hours. The biodistribution of DXM-SLNs in mice was significantly different from that of DXM-sol. The concentration of DXM in the lung reached a maximum level at 0.5 h post DXM-SLNs injection. A 17.8-fold larger area under the curve of DXM-SLNs was achieved compared to that of DXM-sol. These results indicate that SLN may be promising lung-targeting drug carrier for lipophilic drugs such as DXM.  相似文献   

18.
《Drug delivery》2013,20(6):443-451
Topical application of the drugs at the pathological sites offers potential advantages of delivering the drug directly to the site of action. The main aim of this work was to formulate and evaluate Miconazole nitrate (MN) loaded solid lipid nanoparticles (SLN) for topical application. MN-loaded SLN were prepared by modified solvent injection method and characterized for shape, surface morphology, particle size, and drug entrapment. These solid lipid nanoparticles were spherical in shape with smooth surface and possessed mean average size of 206.39?±?9.37?nm. In vitro drug release of MN-loaded SLN-bearing hydrogel was compared with MN suspension and MN hydrogel; MN-loaded SLN-bearing hydrogel depicted a sustained drug release over a 24-h period. Tape stripping experiments demonstrated 10-fold greater retention with MN-loaded SLN-bearing hydrogel as compared to MN suspension and MN hydrogel. The in vivo studies were performed by infecting the rats with candida species. It was observed that MN-loaded SLN-bearing hydrogel was more efficient in the treatment of candidiasis. Results indicate that MN-loaded SLN-bearing hydrogel provides a sustaining MN topical effect as well as quicker relief from fungal infection.  相似文献   

19.
目的:建立HPLC法同时测定葛根总黄酮固体脂质纳米粒中4种异黄酮类成分的包封率及载药量。方法采用RP-HPLC法,Kromasil C18(4.6mm ×250mm,5μm)色谱柱;甲醇-0.1%枸橼酸溶液为流动相梯度洗脱;流速1.0mL/min,柱温40℃,检测波长250nm。采用高速离心法分离固体脂质纳米粒中游离药物。结果3-羟基葛根素、葛根素、大豆苷和大豆苷元线性关系良好,平均回收率分别为(100.28±2.52)%、(100.26±2.33)%、(100.08±3.35)%及(100.44±3.48)%。3批次葛根总黄酮固体脂质纳米粒中3'-羟基葛根素、葛根素、大豆苷和大豆苷元的包封率分别为(84.35±0.45)%、(86.84±0.48)%、(89.52±0.86)%及(93.80±0.50)%,其载药量分别为(10.37±0.36)%、(14.19±0.52)%、(16.79±0.34)%及(20.00±0.97)%。结论本法简单快速、结果准确可靠,可同时测定葛根总黄酮固体脂质纳米粒4种成分的载药量与包封率。  相似文献   

20.
ABSTRACT

Introduction: Although eye drops are widely used as drug delivery systems for the anterior segment of the eye, they are also associated with poor drug bioavailability due to transient contact time and rapid washout by tearing. Moreover, effective drug delivery to the posterior segment of the eye is challenging, and alternative routes of administration (periocular and intravitreal) are generally needed, the blood–retinal barrier being the major obstacle to systemic drug delivery.

Areas covered: Nanotechnology, and especially lipid nanoparticles, can improve the therapeutic efficiency, compliance and safety of ocular drugs, administered via different routes, to both the anterior and posterior segment of the eye. This review highlights the main ocular barriers to drug delivery, as well as the most common eye diseases suitable for pharmacological treatment in which lipid nanoparticles have proved efficacious as alternative delivery systems.

Expert opinion: Lipid-based nanocarriers are among the most biocompatible and versatile means for ocular delivery. Mucoadhesion with consequent increase in pre-corneal retention time, and enhanced permeation due to cellular uptake by corneal epithelial cells, are the essential goals for topical lipid nanoparticle delivery. Gene delivery to the retina has shown very promising results after intravitreal administration of lipid nanoparticles as non-viral vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号