首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.  相似文献   

2.
Severe hypertriglyceridemia (HTG), characterized by triglycerides (TG) permanently over 10 mmol/L, may correspond to familial chylomicronemia syndrome (FCS), a rare disorder. However, hypertriglyceridemic patients more often present multifactorial chylomicronemia syndrome (MCS), characterized by highly variable TG. A few nonsense variants of LMF1 gene were reported in literature in FCS patients. In this study, we described a woman with an intermittent severe HTG. NGS analysis and the sequencing of a long range PCR product revealed a homozygous deletion of 6507 base pairs in LMF1 gene, c.730-1528_898-3417del, removing exon 6, predicted to create an in-frame deletion of 56 amino acids, p.(Thr244_Gln299del). Despite an exon 6 homozygous deletion of LMF1, the patient’s highly variable lipid phenotype was suggestive of MCS diagnosis.  相似文献   

3.
Disease causing variants in the Ryanodine receptor 1 (RYR1) gene are a common cause for congenital myopathy and for malignant hyperthermia susceptibility. We report a 17 year old boy with congenital muscle weakness progressing to a myasthenia like myopathy with muscle weakness, fatigability, ptosis, and ophthalmoplegia. Muscle biopsy showed predominance and atrophy of type 1 fibers. Whole-exome trio sequencing revealed three variants in the RYR1-gene in the patient: c.6721C > T,p.(Arg2241*) and c.2122G > A,p.(Asp708Asn) in cis position, and the c.325C > T,p.(Arg109Trp) variant in trans. Treatment with pyridostigmine improved symptoms. This case supports that a myasthenia like phenotype is part of the phenotypic spectrum of RYR1 related disorders, and that treatment with pyridostigmine can be beneficial for patients with this phenotype.  相似文献   

4.
Spinal muscular atrophy (SMA) is a common autosomal recessive genetic disorder characterized by degeneration of motor neurons and weakness and muscle atrophy. Approximately 95% of SMA patients are caused by homozygous deletions of the SMN1 gene, whereas the remaining 5% of patients harbor compound heterozygous mutations such as an SMN1 deletion allele and an intragenic mutation (insertions, deletions, or point mutations) in the other SMN1 allele. Although analysis for the SMN1/SMN2 copy number is relatively easy, molecular genetic testing for patients with subtle mutations is still compromised due to the presence of a highly homologous SMN2 gene. Herein, we analyzed the SMN1/SMN2 copy number by multiplex ligation-dependent probe amplification (MLPA) and subtle mutations by long-range PCR (LR-PCR) for two “nondeletion” SMA patients. We identified a missense mutation (c.280G > T, p. (Val94Phe)) and a splicing mutation c.*3+3A > T in SMN1 gene not previously described in the scientific literature. Giving the severe phenotype of the two patients, we speculated that these two point mutations could significantly affect the function of SMN proteins. Our results provide important information for genetic counseling and prenatal diagnosis in these families and enrich the SMN1 mutation database.  相似文献   

5.
Chylomicronemia caused by a deficiency in lipoprotein lipase (LPL) or GPIHBP1 (the endothelial cell protein that transports LPL to the capillary lumen) is typically diagnosed during childhood and represents a serious, lifelong medical problem. Affected patients have high plasma triglyceride levels (>1500 mg/dL) and a high risk of acute pancreatitis. However, chylomicronemia frequently presents later in life in the absence of an obvious monogenic cause. In these cases, the etiology for the chylomicronemia is presumed to be “multifactorial” (involving diabetes, drugs, alcohol, or polygenic factors), but on a practical level, the underlying cause generally remains a mystery. Here, we describe a 15-year-old female with chylomicronemia caused by GPIHBP1 autoantibodies (which abolish LPL transport to the capillary lumen). Remarkably, chylomicronemia in this patient was intermittent, interspersed between periods when the plasma triglyceride levels were normal. GPIHBP1 autoantibodies were easily detectable during episodes of chylomicronemia but were undetectable during periods of normotriglyceridemia. During the episodes of chylomicronemia (when GPIHBP1 autoantibodies were present), plasma LPL levels were low, consistent with impaired LPL transport into capillaries. During periods of normotriglyceridemia, when GPIHBP1 autoantibodies were absent, plasma LPL levels normalized. Because the chylomicronemia in this patient was accompanied by debilitating episodes of acute pancreatitis, the patient was ultimately treated with immunosuppressive drugs, which resulted in disappearance of GPIHBP1 autoantibodies and normalization of plasma triglyceride levels. GPIHBP1 autoantibodies need to be considered in patients who present with unexplained acquired cases of chylomicronemia.  相似文献   

6.
《Genetics in medicine》2014,16(2):149-156
PurposeSpinal muscular atrophy is a common autosomal-recessive disorder caused by mutations of the SMN1 gene. Spinal muscular atrophy carrier screening uses dosage-sensitive methods that determine SMN1 copy number, and the frequency of carriers varies by ethnicity, with detection rates ranging from 71 to 94% due to the inability to identify silent (2 + 0) carriers with two copies of SMN1 on one chromosome 5 and deletion on the other. We hypothesized that identification of deletion and/or duplication founder alleles might provide an approach to identify silent carriers in various ethnic groups.MethodsSMN1 founder alleles were investigated in the Ashkenazi Jewish population by microsatellite analysis and next-generation sequencing.ResultsAn extended haplotype block, specific to Ashkenazi Jewish SMN1 duplications, was identified by microsatellite analysis, and next-generation sequencing of SMN1 further defined a more localized haplotype. Of note, six novel SMN1 sequence variants were identified that were specific to duplications and not present on single-copy alleles. The haplotype was also identified on SMN1 duplication alleles in additional ethnic groups.ConclusionIdentification of these novel variants in an individual with two copies of SMN1 significantly improves the accuracy of residual risk estimates and has important implications for spinal muscular atrophy carrier screening.Genet Med16 2, 149–156.  相似文献   

7.
Lipoprotein lipase (LPL) is a 448-amino-acid head-to-tail dimeric enzyme that hydrolyzes triglycerides within capillaries. LPL is secreted by parenchymal cells into the interstitial spaces; it then binds to GPIHBP1 (glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1) on the basolateral face of endothelial cells and is transported to the capillary lumen. A pair of amino acid substitutions, C418Y and E421K, abolish LPL binding to GPIHBP1, suggesting that the C-terminal portion of LPL is important for GPIHBP1 binding. However, a role for LPL's N terminus has not been excluded, and published evidence has suggested that only full-length homodimers are capable of binding GPIHBP1. Here, we show that LPL's C-terminal domain is sufficient for GPIHBP1 binding. We found, serendipitously, that two LPL missense mutations, G409R and E410V, render LPL susceptible to cleavage at residue 297 (a known furin cleavage site). The C terminus of these mutants (residues 298-448), bound to GPIHBP1 avidly, independent of the N-terminal fragment. We also generated an LPL construct with an in-frame deletion of the N-terminal catalytic domain (residues 50-289); this mutant was secreted but also was cleaved at residue 297. Once again, the C-terminal domain (residues 298-448) bound GPIHBP1 avidly. The binding of the C-terminal fragment to GPIHBP1 was eliminated by C418Y or E421K mutations. After exposure to denaturing conditions, the C-terminal fragment of LPL refolds and binds GPIHBP1 avidly. Thus, the binding of LPL to GPIHBP1 requires only the C-terminal portion of LPL and does not depend on full-length LPL homodimers.  相似文献   

8.
Rhombencephalosynapsis is a rare cerebellar malformation developing during embryogenesis defined by vermian agenesis or hypogenesis with fusion of the cerebellar hemispheres. It occurs either alone or in association with other cerebral and/or extracerebral anomalies. Its association with microlissencephaly is exceedingly rare and to date, only a heterozygous de novo missense variant in ADGRL2, a gene encoding Adhesion G-Protein-Coupled Receptor L2, has been identified. We report on two siblings of Roma origin presenting with severe growth retardation, fetal akinesia, microlissencephaly and small cerebellum with vermian agenesis. Neuropathological studies revealed extreme paucity in pontine transverse fibres, rudimentary olivary nuclei and rhombencephalosynapsis with vanishing spinal motoneurons in both fetuses. Comparative fetus-parent exome sequencing revealed in both fetuses a homozygous variant in exon 1 of the EXOSC3 gene encoding a core component of the RNA exosome, c.92G > C; p.(Gly31Ala). EXOSC3 accounts for 40%–75% of patients affected by ponto-cerebellar hypoplasia with spinal muscular atrophy (PCH1B). The c.92G > C variant is a founder mutation in the Roma population and has been reported in severe PCH1B. PCH1B is characterized by a broad phenotypic spectrum, ranging from mild phenotypes with spasticity, mild to moderate intellectual disability, pronounced distal muscular and cerebellar atrophy/hypoplasia, to severe phenotypes with profound global developmental delay, progressive microcephaly and atrophy of the cerebellar hemispheres. In PCH1B, the usual cerebellar lesions affect mainly the hemispheres with relative sparing of vermis that radically differs from rhombencephalosynapsis. This unusual foetal presentation expands the spectrum of PCH1B and highlights the diversity of rhombencephalosynapsis etiologies.  相似文献   

9.
Extreme hypertriglyceridemia can lead to acute pancreatitis and rapid lowering of serum triglycerides (TG) is necessary for preventing such life-threatening complications. However, there is no established consensus on the acute management of extreme hypertriglyceridemia. We retrospectively reviewed 10 cases of extreme hypertriglyceridemia with mean serum TG on presentation of 101.5 ± 23.4 mmol/L (8982 ± 2070 mg/dL) managed with insulin. Serum TG decreased by 87 ± 4% in 24 hours in those patients managed with intravenous insulin and fasting and 40 ± 8.4% in those managed with intravenous insulin alone (P = .0003). The clinical course was uncomplicated in all except 1 patient who subsequently developed a pancreatic pseudocyst. Thus, combination of intravenous insulin with fasting appears to be an effective, simple, and safe treatment strategy in immediate management of extreme hypertriglyceridemia.  相似文献   

10.
Rare pathogenic variants in the LMF1 gene, which encodes lipase maturation factor 1, are a minor cause of familial chylomicronemia syndrome (FCS) and severe hypertriglyceridemia. In this report we present three adult patients, all of them born and raised in Quito, Ecuador, with severe hypertriglyceridemia secondary to biallelic LMF1 variants. In two of the three cases (patients 1 and 3), the presentation was acute pancreatitis secondary to plasma triglycerides well above 10 mmol/L. The other case (patient 2) was a sibling of one of the initial patients, who was asymptomatic but markedly hypertriglyceridemic. Next-generation sequencing revealed a homozygous splice-site variant in exon 6 of LMF1 in patients 1 and 2 (c.897G>A, p.Gln299=), and a homozygous missense variant in exon 2 of LMF1 in patient 3 (c.233T>C, p.Leu78Pro). The finding of two disease-causing variants in three patients from the same location raises the question of whether LMF1 may be a more prevalent cause of severe hypertriglyceridemia among Latin-American patients.  相似文献   

11.
Optimal molecular diagnosis of primary dyslipidemia is challenging to confirm the diagnosis, test and identify at risk relatives. The aim of this study was to test the application of a single targeted next‐generation sequencing (NGS) panel for hypercholesterolemia, hypocholesterolemia, and hypertriglyceridemia molecular diagnosis. NGS workflow based on a custom AmpliSeq panel was designed for sequencing the most prevalent dyslipidemia‐causing genes (ANGPTL3, APOA5, APOC2, APOB, GPIHBP1, LDLR, LMF1, LPL, PCSK9) on the Ion PGM Sequencer. One hundred and forty patients without molecular diagnosis were studied. In silico analyses were performed using the NextGENe software and homemade tools for detection of copy number variations (CNV). All mutations were confirmed using appropriate tools. Eighty seven variations and 4 CNV were identified, allowing a molecular diagnosis for 40/116 hypercholesterolemic patients, 5/13 hypocholesterolemic patients, and 2/11, hypertriglyceridemic patients respectively. This workflow allowed the detection of CNV contrary to our previous strategy. Some variations were found in previously unexplored regions providing an added value for genotype‐phenotype correlation and familial screening. In conclusion, this new NGS process is an effective mutation detection method and allows better understanding of phenotype. Consequently this assay meets the medical need for individualized diagnosis of dyslipidemia.  相似文献   

12.
BackgroundThe association of hepatitis B virus (HBV) preS1 and preS2 deletions with progressive liver diseases are not fully understood.ObjectiveThe study aimed to investigate characteristics of HBV preS deletion in HBV-infected patients with different illness categories.Study designTotal of 539 HBV-infected patients were enrolled in the study, including 146 with chronic hepatitis B (CHB), 111 with HBV-related liver cirrhosis (LC), 146 with HBV-related acute-on-chronic liver failure (ACLF), and 136 with HBV-related hepatocellular carcinoma (HCC). PreS deletion was determined by sequencing. Replicons containing representative preS1 and preS2 deletion mutants and wild-type were respectively constructed and transfected into HepG2 cells for phenotypic analysis.ResultsThe detection rates of overall preS deletion were 15.8%, 26.1%, 24.0%, and 34.6% in CHB, LC, ACLF, and HCC patients, respectively. PreS1 deletion was most frequently detected in LC patients while preS2 deletion was most frequently detected in HCC patients, both frequencies were significantly higher than that in CHB patients (17.1% vs. 4.8%, P < 0.01; 19.1% vs. 4.8%, P < 0.01). The deletion patterns across preS gene were different among the 4 illness categories. Compared with wild-type strain, the preS1 deletion mutant had defected preS1 expression, significantly decreased viral mRNA level and SP II promoter activity; while preS2 deletion mutant had defected preS2 expression, and significantly decreased viral mRNA level.ConclusionsHBV preS deletion was associated with advancement of liver diseases not only presented in preS deletion incidence, but also in the deletion pattern. Patients with preS2 deletion might have a higher risk to develop HCC.  相似文献   

13.
The constellation of clinico-pathological and laboratory findings including massive hepatomegaly, steatosis, and marked hypertriglyceridemia in infancy is extremely rare. We describe a child who is presented with the above findings, and despite extensive diagnostic testing no cause could be identified. Whole exome sequencing was performed on the patient and parents'' DNA. Mutations in GPD1 encoding glycerol-3-phosphate dehydrogenase that catalyzes the reversible redox reaction of dihydroxyacetone phosphate and NADH to glycerol-3-phosphate (G3P) and NAD+ were identified. The proband inherited a GPD1 deletion from the father determined using copy number analysis and a missense change p.(R229Q) from the mother. GPD1 protein was absent in the patient''s liver biopsy on western blot. Low normal activity of carnitine palmitoyl transferases, CPT1 and CPT2, was present in the patient''s skin fibroblasts, without mutations in genes encoding for these proteins. This is the first report of compound heterozygous mutations in GPD1 associated with a lack of GPD1 protein and reduction in CPT1 and CPT2 activity.  相似文献   

14.
Familial chylomicronemia syndrome is characterized by severe elevation in serum triglycerides and an increased risk of acute pancreatitis. Although familial chylomicronemia syndrome is mainly caused by mutations in the lipoprotein lipase (LPL) gene, few causal mutations in other genes (ie, APOC2, APOA5, LMF1, and GPIHBP1) have also been reported. In this case report, we present the discovery of a novel mutation in the glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) gene and discuss its pathogenicity through a familial segregation study.  相似文献   

15.
Autosomal recessive hypercholesterolemia is a rare genetic disorder due to homozygosity or compound heterozygosity for mutations in the low-density lipoprotein receptor adapter protein 1 gene (LDLRAP1), resulting in elevated low-density lipoprotein cholesterol (LDL-C) levels, large xanthomas, and increased cardiovascular risk. Here, we describe a Danish family of Syrian ancestry carrying a frameshift mutation in LDLRAP1, previously only described in Sardinia and Sicily in Italy and in Spain. In 2 children homozygous for this mutation, we evaluate the effect of long-term lipid-lowering treatment with atorvastatin as monotherapy or in combination with ezetimibe. At referral to the lipid clinic at Viborg Regional Hospital, 3 of 4 children had LDL-C levels of 468, 538, and 371 mg/dL, respectively, with 1 child already showing cutaneous xanthomas at 10 years of age. For comparison, the fourth child and the parents had LDL-C levels of 85, 116, and 124 mg/dL. Genetic testing revealed that all 3 children with severely elevated LDL-C were homozygous for a rare frameshift mutation in LDLRAP1, p.His144GlnfsTer27 (c.431dupA), whereas the fourth child and both parents were heterozygous for this mutation. Lipid-lowering treatment was started in the 2 oldest children (at 10 and 7 years of age). Atorvastatin (40 mg/d) combined with ezetimibe (10 mg/d) reduced LDL-C by 75% in the first child and resulted in near-complete regression of xanthomas. In the second child, atorvastatin (40 mg/d) as monotherapy reduced LDL-C by 61%. Both regimens were superior to treatment with pravastatin as monotherapy (20 mg/d) and to pravastatin in combination with cholestyramine (2 g twice daily). High-intensity statin therapy alone or in combination with ezetimibe resulted in marked reductions in LDL-C in 2 children homozygous for a rare frameshift mutation in LDLRAP1 and lead to regression of large xanthomas.  相似文献   

16.
We present three siblings afflicted with a disease characterized by cerebellar ataxia, cerebellar atrophy, pyramidal tract damage with increased lower limb tendon reflexes, and onset of 31 to 57 years, which is not typical for a known disease. In a region of shared homozygosity in patients, exome sequencing revealed novel homozygous c.*240T > C variant in the 3′UTR of STUB1, the gene responsible for autosomal recessive spinocerebellar ataxia 16 (SCAR16). In other genes, such an alteration of the evolutionarily highly conserved polyadenylation signal from AATAAA to AACAAA is known to highly impair polyadenylation. In contrast, RNA sequencing and quantification revealed that neither polyadenylation nor stability of STUB1 mRNA is affected. In silico analysis predicted that the secondary structure of the mRNA is altered. We propose that this change underlies the extremely low amounts of the encoded protein in patient leukocytes.  相似文献   

17.
《Genetics in medicine》2018,20(4):464-469
PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.  相似文献   

18.
Heterozygous mutations in TOR1A gene are known to be responsible for DYT1 dystonia with incomplete penetrance. Autosomal recessive TOR1A disease is a very recently described syndrome characterized by severe arthrogryposis, developmental delay, strabismus and tremor. A 2 month-old boy with severe arthrogryposis and developmental delay was referred to our department for genetic counseling. Dystonic movements were observed on physical examination. Whole exome sequencing revealed a homozygous nonsense variant in exon 5 of TOR1A (c.862C > T, p.Arg288*). Our results expand the phenotypic and mutational spectrum of biallelic TOR1A disease, while emphasizing the importance of reverse phenotyping in the diagnosis of rare genetic disorders.  相似文献   

19.
We report on a 20-year-old man with the combination of two independent familial lipoprotein disorders: heterozygous familial hypercholesterolemia (FH) and type III hyperlipoproteinemia (HLP). Familial hypercholesterolemia was diagnosed by elevated total and low density lipoprotein cholesterol levels and family history. By denaturing gradient gel electrophoresis, DNA sequencing and restriction fragment length polymorphism analysis, a G→A splice donor mutation in intron 3 of the proband's low density lipoprotein receptor gene was identified as the underlying molecular defect. This mutation was described previously as a receptor-negative founder mutation in Norway (FH-Elverum) and subsequently in 6 unrelated heterozygous English patients, creating a severe phenotype of familial hypercholesterolemia. Type III HLP was confirmed by homozygosity for apolipoprotein (apo) E2 and an elevated ratio of very low density lipoprotein cholesterol to serum triglycerides (0.40; normal ratio about 0.20). The patient has unusual flat xanthomas in the interdigital webs of the hands which are normally not found in either disease. These dermatological findings might therefore be indicative of the rare combination of both disorders of lipoprotein metabolism in one individual. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Type I diabetes mellitus (T1DM) is an organ‐specific autoimmune disorder affecting the insulin‐producing pancreatic cells. T1DM genetic association studies have so far revealed the involvement of more than 40 loci, with particularly strong associations for the human leucocyte antigens (HLA). Further to the well‐established HLA class II associations, the immunomodulatory elements in the telomeric major histocompatibility complex locus, specifically nonclassical HLA class I, were also associated with T1DM, either in conferring susceptibility or by contributing to the overall pathogenesis. This study investigates the involvement of a 14‐bp deletion polymorphism (rs371194629) at the 3′ untranslated region of HLA‐G in the context of T1DM and age of onset. The frequency of the polymorphism was determined in unrelated T1DM Cypriot patients and findings that emerge from this study show a strong association between the HLA‐G 14‐bp polymorphism and T1DM with respect to the age of onset. Specifically, the deletion/deletion (DEL/DEL) genotype was found to be associated with an early age of onset (P = 0.001), while the presence of the insertion allele (INS) was associated to a later age of onset (P = 0.0001), portraying a possible dominant effect over the deletion allele, a role in delaying disease onset and an overall involvement of HLA‐G in the pathogenesis of type I diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号