首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid (CAA) transport at the basolateral membrane of epithelial cells in the intestine and kidney. The SLC7A7 gene, mutated in LPI, encodes the y(+)LAT-1 protein, which is the light subunit of the heterodimeric CAA transporter in which 4F2hc is the heavy chain subunit. Co-expression of 4F2hc and y(+)LAT-1 induces the y(+)L activity. This activity is also exerted by another complex composed of 4F2hc and y(+)LAT-2, the latter encoded by the SLC7A6 gene and more ubiquitously expressed than SLC7A7. On the basis of both the pattern of expression and the transport activity, y(+)LAT-2 might compensate for CAA transport when y(+)LAT-1 is defective. By expression in Xenopus laevis oocytes and mammalian cells, we functionally analysed two SLC7A7 mutants, E36del and F152L, respectively, the former displaying a partial dominant-negative effect. The results of the present study provide further insight into the molecular pathogenesis of LPI: a putative multiheteromeric structure of both [4F2hc/y(+)LAT-1] and [4F2hc/y(+)LAT-2], and the interference between y(+)LAT-1 and y(+)LAT-2 proteins. This interference can explain why the compensatory mechanism, that is, an increased expression of SLC7A6 as seen in lymphoblasts from LPI patients, may not be sufficient to restore the y(+)L system activity.  相似文献   

2.
We test the hypothesis that lysinuric protein intolerance (LPI), a rare autosomal recessive defect of cationic amino acid transport, results from the absence of the recently described y+L amino acid transporter. We compare fluxes of lysine (1 microM) into erythrocytes of normal subjects with those of patients homozygous for the LPI mutation. No significant differences in fluxes through system y+L in normal or LPI cells were found, excluding the possibility that system y+L cannot be expressed in patients with LPI. Reasons for supposing that there may be tissue-specific processing of two recently described genes encoding the y+L transporter are discussed. Polymerase chain reaction measurement of expression of these two genes in an erythroleukemic cell line suggests that alternatively there may be an as-yet-unidentified additional member of this gene family.  相似文献   

3.
Lysinuric protein intolerance (LPI) is an autosomal recessive disorder caused by mutations in cationic amino acid transporter gene SLC7A7. Although all Finnish patients share the same homozygous mutation, their clinical manifestations vary greatly. The symptoms range from failure to thrive, protein aversion, anemia and hyperammonaemia, to immunological abnormalities, nephropathy and pulmonary alveolar proteinosis. To unravel the molecular mechanisms behind those symptoms not explained directly by the primary mutation, gene expression profiles of LPI patients were studied using genome-wide microarray technology. As a result, we discovered 926 differentially-expressed genes, including cationic and neutral amino acid transporters. The functional annotation analysis revealed a significant accumulation of such biological processes as inflammatory response, immune system processes and apoptosis. We conclude that changes in the expression of genes other than SLC7A7 may be linked to the various symptoms of LPI, indicating a complex interplay between amino acid transporters and various cellular processes.  相似文献   

4.
Two distinct human light subunits of the heteromeric amino acid transporter, y+LAT-1 coded by SLC7A7 and y+LAT-2 coded by SLC7A6, are both known to induce transport system y+L activity. SLC7A7 has already been identified as the gene responsible for lysinuric protein intolerance (LPI). We successfully identified five novel SLC7A7 variants (S238F, S489P, 1630delC, 1673delG, and IVS3-IVS5del9.7kb) in Japanese patients with LPI by PCR amplification and direct DNA sequencing. In addition, we performed a semi-quantitative expression analysis of SLC7A7 and SLC7A6 in human tissue. In normal tissue, the gene-expression ratio of SLC7A6 to SLC7A7 was high in the brain, muscle, and cultured skin fibroblasts; low in the kidneys and small intestine; and at an intermediate level in peripheral blood leukocytes, the lungs, and cultured lymphoblasts. The gene-expression ratio of SLC7A6 to SLC7A7 in cultured lymphoblasts was significantly different between normal subjects and LPI patients with R410X and/or S238F, where the relative amount of SLC7A7 mRNA was significantly lower and the relative amount of SLC7A6 mRNA was statistically higher in affected lymphoblasts than in normal cells. Expression of SLC7A7 and SLC7A6 may thus be interrelated in cultured lymphoblasts.  相似文献   

5.
Lysinuric protein intolerance is an autosomal recessive disease characterized by defective transport of the dibasic aminoacids. Mutational analysis of LPI patients in the northern part of Japan revealed that six were homozygous for the R410X mutation and two others were compound heterozygotes of R410X and other unknown mutations. In the population epidemiology study in a local cluster in the northern part of Iwate, ten heterozygotes were found in 1190 newborn babies leading to an estimated LPI incidence of 1/57,000. Polymorphism analysis revealed two major alleles, A and B, in intron 8. While the population frequency of allele A was 0.9 and that of allele B was 0.1 in the northern part of Japan the R410X mutations were exclusively on allele B in 31 chromosomes suggesting a founder effect. Genetic analysis in patients revealed strong linkage disequilibrium with D14S283 and TCRA indicating that the R410X mutation occurred before at least 130 generations ago (about 2600 years). The R410X mutation was shown to be useful as a molecular marker for screening LPI patients in the northern part of Japan.  相似文献   

6.
ATP-sensitive potassium (KATP) channels, composed of pore-forming Kir6.2 and regulatory sulphonylurea receptor (SUR) subunits, play an essential role in insulin secretion from pancreatic beta cells. Binding of ATP to Kir6.2 inhibits, whereas interaction of Mg-nucleotides with SUR, activates the channel. Heterozygous activating mutations in Kir6.2 (KCNJ11) are a common cause of neonatal diabetes (ND). We assessed the functional effects of six novel Kir6.2 mutations associated with ND: H46Y, N48D, E227K, E229K, E292G, and V252A. KATP channels were expressed in Xenopus oocytes and the heterozygous state was simulated by coexpression of wild-type and mutant Kir6.2 with SUR1 (the beta cell type of SUR). All mutations reduced the sensitivity of the KATP channel to inhibition by MgATP, and enhanced whole-cell KATP currents. Two mutations (E227K, E229K) also enhanced the intrinsic open probability of the channel, thereby indirectly reducing the channel ATP sensitivity. The other four mutations lie close to the predicted ATP-binding site and thus may affect ATP binding. In pancreatic beta cells, an increase in the KATP current is expected to reduce insulin secretion and thereby cause diabetes. None of the mutations substantially affected the sensitivity of the channel to inhibition by the sulphonylurea tolbutamide, suggesting patients carrying these mutations may respond to these drugs.  相似文献   

7.
Mutations in the cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin–Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.  相似文献   

8.
X‐linked adrenal hypoplasia congenita (AHC) is caused by mutations in the NR0B1 gene. This gene encodes an orphan member of the nuclear receptor superfamily, DAX1. Ongoing efforts in our laboratory have identified nine novel NR0B1 mutations in X‐linked AHC patients (Y81X, 343delG, 457delT, 629delG, L295P, 926‐927delTG, 1130delA, 1141‐1155del15, and E428X). Two additional families segregate previously identified NR0B1 mutations (501delA and R425T). Sequence analysis of the mitochondrial D‐loop indicates that the 501delA family is unrelated through matrilineal descent to our previously analyzed 501delA family. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation caused by defective carnitine transport. This disease is caused by mutations in the novel organic cation transporter OCTN2 (SLC22A5 gene). The disease can present early in life with hypoketotic hypoglycemia or later in life with skeletal myopathy or cardiomyopathy. To determine whether the variation in phenotypic severity is due to mutations retaining residual function, we extended mutational analysis of OCTN2 to four additional European families with primary carnitine deficiency. Three patients were homozygous for novel missense mutations (R169W, G242V, A301D). The fourth patient was compound heterozygous for R169W and W351R substitutions. Stable expression of all the mutations in CHO cells confirmed that all mutations abolished carnitine transport, with the exception of the A301D mutation in which residual carnitine transport was 2-3% of the value measured in cells expressing the normal OCTN2 cDNA. Analysis of the patients characterized in molecular detail by our laboratory failed to indicate a correlation between residual carnitine transport and severity of the phenotype or age at presentation.  相似文献   

10.
11.
12.
Fpmtr1, an amino acid transporter gene from Fusarium proliferatum was strongly expressed during conidial germination and repressed in late stationary phase. To identify the specific function of this gene, DeltaFpmtr1 knock-out mutants were generated by gene replacement. Vegetative growth of the DeltaFpmtr1 mutants was normal both in liquid and on solid media, but conidial germination was delayed. The DeltaFpmtr1 mutants and the wild type were equally fertile when used as males in sexual crosses, however if the mutants were used as the female parent then the fertility of the cross decreased dramatically. Inactivation of Fpmtr1 abolished vegetative self-incompatibility in strain ITEM 2287 of F. proliferatum, but the DeltaFpmtr1 mutants were still vegetatively incompatible with the other strains of the fungus. Endophytic colonization capability of the mutants, assessed on maize seedlings also was adversely affected. These data suggest that Fpmtr1 is involved in multiple developmental processes related to both sexual and parasexual events in F. proliferatum. Furthermore, the fungus might have problems in adapting to a less than optimal environment if this otherwise dispensable transporter has been inactivated.  相似文献   

13.
Amino acid transport systems play an important role in cellular proliferation. L-type amino acid transporter 1 (LAT1) has been associated with tumor growth, and is highly expressed in the established tumor cell lines and primary human neoplasms. In this study, we investigated the expression of LAT1 to evaluate the malignant potential and prognostic significance in neuroendocrine (NE) tumors of the lung. Twenty-one surgically resected, large cell neuroendocrine carcinomas (LCNEC), 13 small cell lung cancers (SCLC), five atypical carcinoids (AC), and 10 typical carcinoids (TC) were enrolled in the study. LAT1 expression and Ki-67 labeling index of the NE tumors were analyzed by immunohistochemical staining. LAT1 was overexpressed in 52.4% of the LCNEC, in 46.2% of the SCLC, and in 25% of the AC. LAT1 expression in LCNEC was significantly associated with lymph node metastasis and poor outcome. Moreover, a significant correlation was found between LAT1 expression and Ki-67 in both LCNEC and SCLC. Expression of LAT1 tended to increase from low-grade to high-grade NE tumors. The present results suggest that LAT1 may play a significant role in cellular proliferation, lymph node metastasis, and poor outcome in patients with NE tumors of the lung.  相似文献   

14.
Defects in sulfate transport in chondrocytes lead to undersulfation of the cartilage extracellular matrix proteoglycans. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene have been linked to four chondrodysplasias of varying severity. To characterize disease-causing mutations of DTDST, we expressed DTDST-mediated sulfate transport in mammalian HEK-293 cells and determined that the wild-type protein is glycosylated and localized to the cell plasma membrane. Four mutations, A715V, C653S, Q454P and R279W, stimulated sulfate transport at rates only 39-62% of wild-type DTDST. These four mutations were expressed on the plasma membrane of the cell, but the amount of expressed protein was reduced when compared with wild-type DTDST. The Q454P mutant is unique in that it is not properly glycosylated in HEK cells. There was no difference in sulfate transport activity between cells transfected with either the DeltaV340 or the G678V mutations and control HEK cells. Furthermore, the G678V mutation is not expressed along the plasma membrane, but is trapped within the cytoplasm. When comparing the sulfate transport capacity of each DTDST mutation with the chondrodysplasia in which it has been identified, we find that individuals with severe achondrogenesis 1B phenotype have null mutations on both DTDST alleles. Heterozygotes for both a null mutation and a partial-function mutation result in either atelosteogenesis type 2 or DTD, whereas the milder, recessive multiple epiphyseal dysplasia phenotype is homozygous for partial-function mutations. In contrast to previous studies in Xenopus laevis oocytes, we find a strong correlation between the severity of the phenotype and the level of residual transport function in mammalian cells.  相似文献   

15.
Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by reduced plasma levels of low density lipoprotein cholesterol (LDL-C) and its protein constituent apolipoprotein B (apoB), which may be due to mutations in APOB gene, mostly located in the coding region of this gene. We report two novel APOB gene mutations involving the acceptor splice site of intron 11 (c.1471-1G>A) and of intron 23 (c.3697-1G>C), respectively, which were identified in two patients with heterozygous FHBL associated with severe fatty liver disease. The effects of these mutations on APOB pre-mRNA splicing were assessed in COS-1 cells expressing the mutant APOB minigenes.The c.1471-1G>A APOB minigene generated two abnormal mRNAs. In one mRNA the entire intron 11 was retained; in the other mRNA exon 11 joined to exon 12, in which the first nucleotide was deleted due to the activation of a novel acceptor splice site. The predicted products of these mRNAs are truncated proteins of 546 and 474 amino acids, designated apoB-12.03 and apoB-10.45, respectively. The c.3697-1G>C APOB minigene generated a single abnormal mRNA in which exon 23 joined to exon 25, with the complete skipping of exon 24. This abnormal mRNA is predicted to encode a truncated protein of 1220 amino acids, designated apoB-26.89.These splice site mutations cause the formation of short truncated apoBs, which are not secreted into the plasma as lipoprotein constituents. This secretion defect is the major cause of severe fatty liver observed in carriers of these mutations.  相似文献   

16.
We studied the distribution and cellular localization of Na(+)-coupled neutral amino acid transporter 2, a member of the system A family of amino acid transporters, in the rat and human cerebral cortex using immunocytochemical methods. Na(+)-coupled neutral amino acid transporter 2-positive neurons were pyramidal and non-pyramidal, and Na(+)-coupled neutral amino acid transporter 2/GABA double-labeling studies revealed that Na(+)-coupled neutral amino acid transporter 2 was highly expressed by GABAergic neurons. Double-labeling studies with the synaptophysin indicated that rare axon terminals express Na(+)-coupled neutral amino acid transporter 2. Na(+)-coupled neutral amino acid transporter 2-immunoreactivity was also found in astrocytes, leptomeninges, ependymal cells and choroid plexus. Electron microscopy showed robust Na(+)-coupled neutral amino acid transporter 2-immunoreactivity in the somato-dendritic compartment of neurons and in glial processes, but, as in the case of double-labeling studies, failed to reveal Na(+)-coupled neutral amino acid transporter 2-immunoreactivity in terminals. To rule out the possibility that the absence of Na(+)-coupled neutral amino acid transporter 1- and Na(+)-coupled neutral amino acid transporter 2-positive terminals was due to insufficient antigen detection, we evaluated Na(+)-coupled neutral amino acid transporter 1/synaptophysin and Na(+)-coupled neutral amino acid transporter 2/synaptophysin coexpression using non-standard immunocytochemical procedures and found that Na(+)-coupled neutral amino acid transporter 1 and Na(+)-coupled neutral amino acid transporter 2+ terminals were rare in all conditions. These findings indicate that Na(+)-coupled neutral amino acid transporter 1 and Na(+)-coupled neutral amino acid transporter 2 are virtually absent in cortical terminals, and suggest that they do not contribute significantly to replenishing the Glu and GABA transmitter pools through the glutamate-glutamine cycle. The strong expression of Na(+)-coupled neutral amino acid transporter 2 in the somato-dendritic compartment and in non-neuronal elements that are integral parts of the blood-brain and brain-cerebrospinal fluid barrier suggests that Na(+)-coupled neutral amino acid transporter 2 plays a role in regulating the levels of Gln and other amino acids in the metabolic compartment of cortical neurons.  相似文献   

17.
18.
19.
Hereditary diffuse gastric cancer (HDGC) is a cancer predisposition syndrome caused by germline mutation of the gene encoding the tumour-suppressor E-cadherin (CDH1). We describe the search for CDH1 mutations in 36 new diffuse gastric cancer families. All 16 CDH1 exons, neighbouring intronic sequence and an essential promoter region were screened by DNA sequencing. We detected nine different mutations, seven of which were novel. Of the seven novel mutations, five were identified in families who met the IGCLC clinical criteria for HDGC. Two mutations resulted in a premature stop codon and truncation of the protein. Three mutations affected splice sites; two of the splice-site mutations were shown by RT-PCR to disturb normal CDH1 splicing, while the third splice-site mutation was present in two unrelated HDGC families. The remaining two mutations resulted in amino acid substitutions and impaired the ability of E-cadherin protein to form cellular aggregates and suppress invasion in vitro. Together with the occurrence of extra-gastric tumours such as lobular breast and colorectal cancer, these findings further extend the types of CDH1 mutations and the spectrum of tumours associated with HDGC.  相似文献   

20.
The entire NF1 coding region was analyzed for mutations in a panel of 108 unrelated Italian NF1 patients. Using PTT, SSCP, and DNA sequencing, we found 10 mutations which have never been reported before. Clinical diagnosis of NF1 was established according to the NIH consensus criteria in 100 individuals, while 8 were young children with only multiple cafè-au-lait spots. We detected 46 truncated fragments, and 24 of them were fully characterized by SSCP and direct sequencing. Of the 24, 14 were known mutations (R304X, R681X, Q682X, R1306X, R1362X, R1513X, R1748X, Q1794X, R1947X, Y2264X, R2237X, 2674delA, 6789delTTAC, 2027insC). The other 10 mutations represent novel changes that contribute to the germline mutational spectrum of the NF1 gene (K810X, Q2595X, 6772delT, 7190delCT, 7331delA, 1021insTT, 3921insT, 4106insTA, 7149insC, 2033insCG / 2034delA). PTT in a large number of Italian NF1 patients supports the usefulness of this method for characterization of mutations in disorders where the responsible gene is very large and the disease-causing mutations often create a stop codon. In agreement with previous reports, no mutational hotspots within the NF1 gene were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号