首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show here that the expression of 4–1BB is rapidly induced in γδ T cells following antigenic stimulation in both mice and humans, and ligation of the newly acquired 4–1BB with an agonistic anti‐4–1BB augments cell division and cytokine production. We further demonstrate that γδ rather than αβ T cells protect mice from Listeria monocytogenes (LM) infection and 4–1BB stimulation enhances the γδ T‐cell activities in the acute phase of LM infection. IFN‐γ produced from γδ T cells was the major soluble factor regulating LM infection. Vγ1+ T cells were expanded in LM‐infected mice and 4–1BB signal triggered an exclusive expansion of Vγ1+ T cells and induced IFN‐γ in these Vγ1+ T cells. Similarly, 4–1BB was induced on human γδ T cells and shown to be fully functional. Combination treatment with human γδ T cells and anti‐hu4–1BB effectively protected against LM infection in human γδ T cell‐transferred NOD‐SCID mice. Taken together, these data provide evidence that the 4–1BB signal is an important regulator of γδ T cells and induces robust host defense against LM infection.  相似文献   

2.
Extensive evidence suggests that the immune system exerts powerful effects on bone cells, particularly in chronic disease pathologies such as rheumatoid arthritis (RA). The chronic inflammatory state in RA, particularly the excessive production of T cell‐derived proinflammatory cytokines such as tumour necrosis factor (TNF)‐α and interleukin (IL)‐17, triggers bone erosions through the increased stimulation of osteoclast formation and activity. While evidence supports a role for IL‐17 and TNF‐α secreted by conventional CD4+ T cells in RA, recent evidence in animal models of RA have implicated γδ T cells as a major producer of pathogenic IL‐17. However, the capacity of γδ T cells to influence osteoclast formation and activity in humans has not yet been investigated widely. To address this issue we investigated the effects of γδ T cells on osteoclast differentiation and resorptive activity. We have demonstrated that anti‐CD3/CD28‐stimulated γδ T cells or CD4+ T cells inhibit human osteoclast formation and resorptive activity in vitro. Furthermore, we assessed cytokine production by CD3/CD28‐stimulated γδ T cells and observed a lack of IL‐17 production, with activated γδ T cells producing abundant interferon (IFN)‐γ. The neutralization of IFN‐γ markedly restored the formation of osteoclasts from precursor cells and the resorptive activity of mature osteoclasts, suggesting that IFN‐γ is the major factor responsible for the inhibitory role of activated γδ T cells on osteoclastogenesis and resorptive activity of mature osteoclasts. Our work therefore provides new insights on the interactions between γδ T cells and osteoclasts in humans.  相似文献   

3.
4.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

5.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

6.
Cytomegalovirus (CMV) usually causes lifelong asymptomatic infection, but over time can distort immune profiles. Recent reports describe selective expansion of Vδ2neg γδ T cells in healthy and immunocompromised CMV carriers. Having shown previously that virus‐specific CD8+ and CD4+ T cell responses are increased significantly in elderly CMV carriers, probably driven by chronic stimulation, we hypothesized that Vδ2neg γδ T cells may also be expanded with age. Our results show that Vδ2neg γδ T cells are increased significantly in CMV‐seropositive healthy individuals compared to CMV‐seronegative controls in all age groups. The differences were most significant in older age groups (P < 0·0001). Furthermore, while Vδ2neg γδ T‐ cells comprise both naive and memory cells in CMV‐seronegative donors, highly differentiated effector memory cells are the dominant phenotype in CMV carriers, with naive cells reduced significantly in numbers in CMV‐seropositive elderly. Although phenotypically resembling conventional CMV‐specific T cells, Vδ2neg γδ T cells do not correlate with changes in magnitude of CMV‐specific CD4+ or CD8+ T cell frequencies within those individuals, and do not possess ex‐vivo immediate effector function as shown by CMV‐specific CD4+ and CD8+ T cells. However, after short‐term culture, Vδ2neg γδ T cells demonstrate effector T cell functions, suggesting additional requirements for activation. In summary, Vδ2neg γδ T cells are expanded in many older CMV carriers, demonstrating a further level of lymphocyte subset skewing by CMV in healthy individuals. As others have reported shared reactivity of Vδ2neg γδ T cells towards tumour cells, the composition of γδ T cell subsets may also have implications for risk of developing cancer in elderly people.  相似文献   

7.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

8.
γδ T cells are a heterogeneous cell population with different subsets playing specialized and often opposing roles during immune responses. A key question is whether γδ thymocytes are determined for their effector function already at an early stage, before their commitment to the γδ T‐cell lineage, or are instructed during their later development. Here, we show that the adult Vγ1.1+ and Vγ2+ γδ T‐cell subsets both go through a CD73+CD24+ development stage, and that the gene regulation involved in lineage commitment is shared by both subsets. We demonstrate that the major subset diversification first occurs after the cells have committed to the γδ T‐cell lineage, strongly supporting an instructive model for functional programming of γδ T cells. In conclusion, we show that the two major adult γδ T‐cell subsets in mice develop through a shared pathway utilizing similar cellular machinery and that they diverge after the CD24+CD73+ maturity stage.  相似文献   

9.
The physiological functions of human TCRVγ9Vδ2+ γδ lymphocytes reactive to non‐peptide phosphoantigens contribute to cancer immunosurveillance and immunotherapy. However, their regulation by mesenchymal stem cells (MSC), multipotent and immunomodulatory progenitor cells able to infiltrate tumors, has not been investigated so far. By analyzing freshly isolated TCRVγ9Vδ2+ lymphocytes and primary cell lines stimulated with synthetic phosphoantigen or B‐cell lymphoma cell lines in the presence of MSC, we demonstrated that MSC were potent suppressors of γδ‐cell proliferation, cytokine production and cytolytic responses in vitro. This inhibition was mediated by the COX‐2‐dependent production of prostaglandin E2 (PGE2) and by MSC through EP2 and EP4 inhibitory receptors expressed by Vγ9Vδ2 T lymphocytes. COX‐2 expression and PGE2 production by MSC were not constitutive, but were induced by IFN‐γ and TNF‐α secreted by activated Vγ9Vδ2 T cells. This regulatory cross‐talk between MSC and Vγ9Vδ2 T lymphocytes involving PGE2 could be of importance for the antitumor and antimicrobial activities of γδ T cells.  相似文献   

10.
We investigated the ability of the most common TCR‐γ and δ chains to express on the cell surface. Vγ1Cγ4 and Vγ7Cγ1 chains paired with all TCR‐δ chains tested, whereas Vγ4Cγ1 chains were found with Vδ4 and Vδ5, but not with Vδ2 or Vδ6 chains, and Vγ2Cγ2 chains were expressed only with Vδ5. Mapping studies showed that up to four polymorphic residues influence the different co‐expressions of Vγ1 and Vγ2 chains with Vδ chains. Unexpectedly, these residues are not located in the canonical γ/δ interface, but in the outer part of the γδ TCR complex exposed to the solvent. Expression of functional Vδ4 or Vδ6 chains in Vγ2/Vδ5+ cells or of functional Vγ2Cγ2 in Vγ1+ cells reduced cell‐surface expression of the γδ TCR. Taken together, these data show that (i) the Vγ/Vδ repertoire of mouse γδ T cells is reduced by physical constraints in their associations. (ii) Lack of Vγ2/Vδ expression is due to the formation of aberrant TCR complexes, rather than to an intrinsic inability of the chains to pair and (iii) despite not being expressed at the cell surface, the presence of a functionally rearranged Vγ2 chain in γδ T cells results in reduced TCR levels.  相似文献   

11.
Tuberculous pleurisy is a naturally occurring site of Mycobacterium tuberculosis (Mtb) infection. Herein, we describe the expression of activation, natural killer (NK) and cell migration markers, as well as effector functions from γδT cells in peripheral blood (PB) and pleural effusion (PE) from tuberculosis patients (TB). We observed a decreased percentage of circulating γδT from TB patients and differential expression of NK as well as of chemokine receptors on PB and PE. Two subsets of γδT cells were differentiated by the CD3/γδT cell receptor (γδTCR) complex. The γδTCRlow subset had a higher CD3 to TCR ratio and was enriched in Vδ2+ cells, whereas most Vδ1+ cells belonged to the γδTCRhigh subset. In PB from TB, most γδTCRhigh were CD45RA+CCR7 and γδTCRlow were CD45RA+/?CCR7+CXCR3+. In the pleural space the proportion of CD45RACCR7+CXCR3+ cells was higher. Neither spontaneous nor Mtb‐induced interferon (IFN)‐γ production was observed in PB‐γδT cells from TB; however, PE‐γδT cells showed a strong response. Both PB‐ and PE‐γδ T cells expressed surface CD107a upon stimulation with Mtb. Notably, PE‐γδTCRlow cells were the most potent effector cells. Thus, γδT cells from PB would acquire a further activated phenotype within the site of Mtb infection and exert full effector functions. As γδT cells produce IFN‐γ within the pleural space, they would be expected to play a beneficial role in tuberculous pleurisy by helping to maintain a T helper type 1 profile.  相似文献   

12.
The term immunological memory has long been a trademark restricted to adaptive lymphocytes such as memory B cells and plasma cells as well as memory CD8+ αβ T cells. In recent years, innate lymphocytes such as NK cells have also been shown to adapt to their environment by antigen‐specific expansion and selective survival. However, whether γδ T cells mount comparable memory responses to pathogenic stimuli is less well understood. In this issue of European Journal of Immunology, Hartwig et al. [Eur. J. Immunol. 2015. 45: 3022–3033] identify a subset of IL‐17‐producing γδ T cells that are capable of establishing long‐lived memory in the skin of mice exposed to imiquimod in the Aldara psoriasis model. These γδ T cells uniformly express a Vγ4+Vδ4+ TCR. They produce IL‐17A/F and persist in the dermis for long periods of time, also at untreated distal sites. Upon secondary challenge, experienced Vγ4+Vδ4+ cells show enhanced effector functions and mediate exacerbated secondary inflammation. These findings showcase innate γδ T‐cell memory that uses a single conserved public TCR combination. Furthermore, they provide mechanistic insight to the observed psoriatic relapses in patients in response to topical treatment with imiquimod.  相似文献   

13.
We have studied the in vitro activation of chicken γδ T cells. Both splenic αβ and γδ T cells obtained from complete Freund's adjuvant-primed chickens proliferated in vitro when stimulated with mycobacterial sonicate or purified protein derivative of Mycobacterium tuberculosis. When CD4+ cells or αβ T cell receptor (TcR)-positive cells were removed, both the proliferation and the blast formation of γδ T cells in response to mycobacterial antigens were abrogated. The response was restored if supernatant from concanavalin A (Con A)-activated lymphocyte cultures (CAS) as a source of helper factors was added together with the specific antigen purified protein derivative. The CD4- or αβ TcR-depleted cells still proliferated in response to Con A, although a decrease of the response was observed. To analyze the γδ T cell response more specifically we stimulated peripheral blood cells with immobilized monoclonal antibodies against T cell receptor. Anti-γδ TcR antibody alone did not induce significant proliferation. When CAS was added together with the anti-γδ TcR monoclonal antibody, a strong proliferation of γδ T cells was observed. In contrast, both Vβ1- and Vβ2-expressing αβ T cells proliferated in vitro in response to stimulation with the relevant anti-TcR monoclonal antibody alone. Depletion of either Vβ1+ or Vβ2+ T cell subset alone had no negative effect on the proliferation or blast formation of γδ T cells stimulated with mycobacterial antigens. Taken together our results suggest that CD4+ αβ T cells (both Vβl- and Vβ2-expressing) play a role in the activation and response of chicken γδ T cells.  相似文献   

14.
15.
We have established human γδ T cell lines specific for Streptococcus sanguis (S. sanguis) KTH-1 present in normal oral cavity flora. The CD4?CD8? CD3+Vγ9+Vδ1?CD45RO+ CD25+ T cell lines showed a proliferative response to the streptococcal antigen (Ag) in the presence of autologous antigen-presenting cells without apparent evidence of HLA restriction. The proliferative response of the γδ T cell lines was completely blocked by anti-TcRγδ monoclonal antibody (mAb) and anti-HLA class I mAb (W6/32), whereas anti-HLA classical class Ia mAb (B-H9; anti-HLA-A,B,C), anti-HLA class II mAb (anti-DR, anti-DQ, and anti-DP) and anti-CD4 mAb did not have any inhibitory effects. Surprisingly, the γδ T cell lines showed the proliferative response against the original bacterial Ag KTH-1 exclusively, and exhibited no cross-reactivity with nominal Ag such as purified protein derivative of tuberculin, tetanus toxoid and Mycobacterium tuberculosis, or the same species but different strain of S. sanguis, American Type Culture Collection (ATCC) standard strain (10556), or even with the same strain but different serotype of S. sanguis, KTH-3. Moreover, cytokine production of the γδ T cell lines was similar to the Th1 pattern [interferon-γ, tumor necrosis factor (TNF)-α and TNF-β]. They also produced interleukin-8 that functions as one of chemoattractants for polymorphonuclear cells. Using direct sequencing technique of the polymerase chain reaction products, we found that junctional diversity of the T cell receptor (TcR) used by the parental KTH-1 specific γδ T cell line and its subclones is rather limited. It is suggested that γδ T cells with canonical TcR could preferentially respond to KTH-1 Ag. Thus, in addition to a broad or cross-reactivity of γδ T cells against phylogenetically conserved stress/heat-shock protein, which is well characterized by others, some peripheral blood γδ T cells could recognize and kill exogenous agents with fine antigenic specificity to protect the body against them.  相似文献   

16.
Proinflammatory cytokines produced during immune responses to infectious stimuli are well‐characterized to have secondary effects on the function of hematopoietic progenitor cells in the BM. However, these effects on the BM are poorly characterized during chronic infection with intestinal helminth parasites. In this study, we use the Trichuris muris model of infection and show that Th1 cell‐associated, but not acute Th2 cell‐associated, responses to chronic T. muris infection cause a major, transient expansion of CD48?CD150? multipotent progenitor cells in the BM that is dependent on the presence of adaptive immune cells and IFN‐γ signaling. Chronic T. muris infection also broadly stimulated proliferation of BM progenitor cells including CD48?CD150+ hematopoietic stem cells. This shift in progenitor activity during chronic T. muris infection correlated with a functional increase in myeloid colony formation in vitro as well as neutrophilia in the BM and peripheral blood. In parallel, we observed an accumulation of CD4+, CD8+, and CD4?CD8? (double negative) T cells that expressed IFN‐γ, displaying activated and central memory‐type phenotypes in the bone marrow during chronic infection. Thus, these results demonstrate that Th1 cell‐driven responses in the intestine during chronic helminth infection potently influence upstream hematopoietic processes in the BM via IFN‐γ.  相似文献   

17.
18.
19.
Using a large panel of MoAbs in quantitative morphometric analysis of immunohistochemically stained tissue sections, we compared the frequency and distribution of immune cells in palatine tonsils from patients with recurrent tonsillitis (RT) and patients with idiopathic tonsillar hypertrophy (ITH). We found that differences between the two patient groups in leucocyte populations were limited to the surface epithelium, whereas the cellular composition of interfollicular and follicular areas was similar. Most intraepithelial lymphocytes were CD8+ T cells in both groups. However, the number of intraepithelial T cells was significantly higher in RT compared with ITH. This was due to a selective increase in the number of intraepithelial CD8+γδ T cells utilizing Vδ1 and Vγ9. In both patient groups the majority of the intraepithelial γδ T cells expressed Vδ1 and Vγ9. Subepithelially, γδ T cells utilizing Vγ9 dominated over cells utilizing Vγ8, while equal proportions expressed Vδ1 and Vδ2. These results suggest that cells utilizing the otherwise rare combination Vδ1/Vγ9 in their T cell receptors (TCR) may constitute a major γδ T cell population in palatine tonsils and are probably reactive to antigens specific to the tonsillar milieu. Furthermore, they indicate that preferentially this γδ T cell subpopulation is involved in immune reactions within the surface epithelium in RT. We speculate that γδ T cells are involved in clearing infectious bacteria at the tonsillar surface and in limiting inflammatory responses in the tonsils. Both local expansion and infiltration of blood cells probably contribute to the high numbers of γδ T cells in RT patients.  相似文献   

20.
Whether cytokines can influence the adaptive immune response by antigen‐specific γδ T cells during infections or vaccinations remains unknown. We previously demonstrated that, during BCG/Mycobacterium tuberculosis (Mtb) infections, Th17‐related cytokines markedly upregulated when phosphoantigen‐specific Vγ2Vδ2 T cells expanded. In this study, we examined the involvement of Th17‐related cytokines in the recall‐like responses of Vγ2Vδ2 T cells following Mtb infection or vaccination against TB. Treatment with IL‐17A/IL‐17F or IL‐22 expanded phosphoantigen 4‐hydroxy‐3‐methyl‐but‐enyl pyrophosphate (HMBPP)‐stimulated Vγ2Vδ2 T cells from BCG‐vaccinated macaques but not from naïve animals, and IL‐23 induced greater expansion than the other Th17‐related cytokines. Consistently, Mtb infection of macaques also enhanced the ability of IL‐17/IL‐22 or IL‐23 to expand HMBPP‐stimulated Vγ2Vδ2 T cells. When evaluating IL‐23 signaling as a prototype, we found that HMBPP/IL‐23‐expanded Vγ2Vδ2 T cells from macaques infected with Mtb or vaccinated with BCG or Listeria ΔactA prfA*‐ESAT6/Ag85B produced IL‐17, IL‐22, IL‐2, and IFN‐γ. Interestingly, HMBPP/IL‐23‐induced production of IFN‐γ in turn facilitated IL‐23‐induced expansion of HMBPP‐activated Vγ2Vδ2 T cells. Furthermore, HMBPP/IL‐23‐induced proliferation of Vγ2Vδ2 T cells appeared to require APC contact and involve the conventional and novel protein kinase C signaling pathways. These findings suggest that Th17‐related cytokines can contribute to recall‐like expansion and effector function of Ag‐specific γδ T cells after infection or vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号