首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel strains of influenza A viruses (IAVs) have emerged with high infectivity and/or pathogenicity in recent years, causing worldwide concern. T cells are correlated with protection in humans through cross‐reactive immunity against heterosubtypes of IAV. However, the different hierarchical roles of IAV‐derived epitopes with distinct levels of polymorphism in the cross‐reactive T‐cell responses against IAV remain elusive. In this study, immunodominant epitopes scattered throughout the entire proteome of 2009 pandemic influenza A H1N1 virus and seasonal IAVs were synthesized and divided into different pools depending on their conservation. The overall profile of the IAV‐specific CD8+ T‐cell immunity was detected by utilizing these peptide pools and also individual peptides. A dominant role of the conserved peptide‐specific T‐cell immunity was illuminated within the anti‐IAV responses, while the CD8+ T‐cell responses against the variable epitopes were lower than the conserved peptides. As previously demonstrated within a Caucasian population, we determined that GL9‐specific T cells, which also utilize Vβ 17 TCR (BV19), play a pivotal role in IAV‐specific T‐cell immunity within an HLA‐A2+ Asian population. Our study objectively reveals the different predominant roles of T‐cell epitopes among IAV‐specific cross‐reactive cellular immunity. This may guide the development of vaccines with cross‐T‐cell immunogenicity against heterosubtypes of IAV.  相似文献   

2.
Targeting antigens to cross‐presenting dendritic cells (DCs) is a promising method for enhancing CD8+ T‐cell responses. However, expression patterns of surface receptors often vary between species, making it difficult to relate observations in mice to other animals. Recent studies have indicated that the chemokine receptor Xcr1 is selectively expressed on cross‐presenting murine CD8α+ DCs, and that the expression is conserved on homologous DC subsets in humans (CD141+ DCs), sheep (CD26+ DCs), and macaques (CADM1+ DCs). We therefore tested if targeting antigens to Xcr1 on cross‐presenting DCs using antigen fused to Xcl1, the only known ligand for Xcr1, could enhance immune responses. Bivalent Xcl1 fused to model antigens specifically bound CD8α+ DCs and increased proliferation of antigen‐specific T cells. DNA vaccines encoding dimeric Xcl1‐hemagglutinin (HA) fusion proteins induced cytotoxic CD8+ T‐cell responses, and mediated full protection against a lethal challenge with influenza A virus. In addition to enhanced CD8+ T‐cell responses, targeting of antigen to Xcr1 induced CD4+ Th1 responses and highly selective production of IgG2a antibodies. In conclusion, targeting of dimeric fusion vaccine molecules to CD8α+ DCs using Xcl1 represents a novel and promising method for induction of protective CD8+ T‐cell responses.  相似文献   

3.
Due to their capacity to differentiate into long‐lived memory cells, CD8+ T cells are able to resolve subsequent infections faster than during the primary response. Among other factors, CD4+ T cells play a crucial role during primary and secondary CD8+ T‐cell responses. However, the timing and mechanisms by which they influence CD8+ T cells may differ in primary and secondary responses. Here, we demonstrate that during both primary and secondary vaccinia virus infection, CD4+ T cells are necessary to promote CD8+ T‐cell responses. While CD4+ T cells contributed to memory CD8+ T‐cell development, they were even more important during memory recall responses during challenge, as absence of CD4+ T cells during challenge resulted in markedly decreased proliferation and increased apoptosis. T‐cell help during primary and secondary responses was mediated via CD40 signaling, with DCs being an integral part of that pathway. As opposed to primary CD8+ T‐cell responses where only a combination of agonistic CD40 signaling and provision of IL‐2 could substitute for T‐cell help, agonistic CD40 triggering alone was sufficient to rescue memory CD8+ T‐cell responses in absence of T‐cell help in the context of vaccinia virus infection.  相似文献   

4.
The role of CD28‐mediated costimulation in secondary CD8+ T‐cell responses remains controversial. Here, we have used two tools — blocking mouse anti‐mouse CD28‐specific antibodies and inducible CD28‐deleting mice — to obtain definitive answers in mice infected with ovalbumin‐secreting Listeria monocytogenes. We report that both blockade and global deletion of CD28 reveal its requirement for full clonal expansion and effector functions such as degranulation and IFN‐γ production during the secondary immune response. In contrast, cell‐intrinsic deletion of CD28 in transferred TCR‐transgenic CD8+ T cells before primary infection leads to impaired clonal expansion but an increase in cells able to express effector functions in both primary and secondary responses. We suggest that the proliferation‐impaired CD8+ T cells respond to CD28‐dependent help from their environment by enhanced functional differentiation. Finally, we report that cell‐intrinsic deletion of CD28 after the peak of the primary response does not affect the establishment, maintenance, or recall of long‐term memory. Thus, if given sufficient time, the progeny of primed CD8+ T cells adapt to the absence of this costimulator.  相似文献   

5.
The recent identification of a large array of different vaccinia virus‐derived CD8+ T‐cell epitopes offers a unique opportunity to systematically analyze the correlation between protective efficacy and variables such as kinetics of expression and function of viral proteins, binding affinity to MHC molecules, immunogenicity, and viral antigen processing/presentation. In the current study, 49 different H‐2b restricted epitopes were tested for their ability to protect peptide‐immunized C57Bl/6 mice from lethal i.n. challenge with vaccinia virus. The epitopes varied greatly in their ability to confer protection, ranging from complete protection with minimal disease to no protection at all. The function or kinetics of the viral antigen expression did not correlate with protective efficacy. However, binding affinity partially predicted protection efficacy and ultimately epitope immunogenicity and recognition of infected cells offered the best correlation.  相似文献   

6.
T cells against self‐antigens can be detected in peripheral blood of healthy individuals, although intrathymic negative selection removes most high‐avidity T cells specific for self‐antigens from the peripheral repertoire. Moreover, spontaneous T‐cell proliferation following stimulation with autologous monocyte‐derived dendritic cells (autoDCs) has been observed in vitro. In this study, we characterized the nature and immunological basis of the autoDC reactivity in the T‐cell repertoire of healthy donors. We show that a minority of naive and memory CD4+ T cells within the healthy human T‐cell repertoire mediates HLA‐restricted reactivity against autoDCs, which behave like a normal antigen‐specific immune response. This reactivity appeared to be primarily directed against myeloid lineage cells. Although cytokine production by the reactive T cells was observed, this did not coincide with overt cytotoxic activity against autoDCs. AutoDC reactivity was also observed in the CD8+ T‐cell compartment, but this appeared to be mainly cytokine‐induced rather than antigen‐driven. In conclusion, we show that the presence of autoreactive T cells harboring the potential to react against autologous and HLA‐matched allogeneic myeloid cells is a common phenomenon in healthy individuals. These autoDC‐reactive T cells may help the induction of primary T‐cell responses at the DC priming site.  相似文献   

7.
CD8+ T‐cell responses must have at least two components, a replicative cell type that proliferates in the secondary lymphoid tissue and that is responsible for clonal expansion, and cytotoxic cells with effector functions that mediate the resolution of the infection in the peripheral tissues. To confer memory, the response must also generate replication‐competent T cells that persist in the absence of antigen after the primary infection is cleared. The current models of memory differentiation differ in regards to whether or not memory CD8+ T cells acquire effector functions during their development. In this review we discuss the existing models for memory development and the consequences that the recent finding that memory CD8+ T cells may express granzyme B during their development has for them. We propose that memory CD8+ T cells represent a self‐renewing population of T cells that may acquire effector functions but that do not lose the naïve‐like attributes of lymphoid homing, antigen‐independent persistence or the capacity for self‐renewal.  相似文献   

8.
Although immunodominance of CD8+ T‐cell responses is a well‐recognised feature of viral infections, its role in responses to more antigenically complex pathogens is less clear. In previous studies we have observed that CD8+ T‐cell responses to Theileria parva exhibit different patterns of parasite strain specificity in cattle of different MHC genotypes. In the current study, we demonstrated that animals homozygous for the A10 and A18 MHC haplotypes have detectable responses to only one of 5 T. parva antigens. Over 60% of the responding T cells from the A18+ and A10+ animals recognised defined epitopes in the Tp1 and Tp2 antigens, respectively. Comparison of T‐cell receptor β chain expression profiles of CD8+ T‐cell lines and CD8+ T cells harvested ex vivo confirmed that the composition of the T‐cell lines was representative of the in vivo memory CD8+ T‐cell populations. Analysis of the Tp1 and Tp2 antigens revealed sequence polymorphism, which was reflected by differential recognition by T‐cell lines. In conclusion, we have demonstrated a profound immunodominance in the CD8+ T‐cell response to T. parva, which we propose is a major determinant of the parasite strain specificity of the response and hence immune protection.  相似文献   

9.
Adenosine monophosphate‐activated protein kinase (AMPK) is a serine/threonine kinase and is crucial for cellular energy homeostasis. The exact role of AMPK during memory CD8+ T‐cell differentiation, a process that changes from the metabolically active state of effector T cells to one of quiescence in memory cells is not well understood; however, a report by Cantrell and colleagues [Eur. J. Immunol. 2013. 43: 889‐896] in this issue of the European Journal of Immunology shows that AMPK, by sensing glucose stress, is an important upstream molecule of mammalian target of rapamycin (mTOR) complex 1 for memory CD8+ T‐cell differentiation. This study provides new insights into how AMPK monitors energy stress to control effector and memory CD8+ T‐cell formation as discussed in this Commentary.  相似文献   

10.
Dendritic cells (DCs) are the key APCs not only for the priming of naïve T cells, but also for the induction and maintenance of peripheral T‐cell tolerance. We have recently shown that cognate interactions between Foxp3+ Tregs and steady‐state DCs are crucial to maintain the tolerogenic potential of DCs. Using DIETER mice, which allow the induction of antigen presentation selectively on DCs without altering their maturation status, we show here that breakdown of CD8+ T‐cell tolerance, which ensues after depletion of suppressive CD4+ T cells, is driven by a positive feedback loop in which autoreactive CD8+ T cells activate DCs via CD40. These data identify ligation of CD40 on DCs as a stimulus that promotes autoreactive T‐cell priming when regulatory T‐cell suppression fails and suggest that feedback from autoreactive T cells to DCs may contribute to the well‐documented involvement of CD40 in many autoimmune diseases.  相似文献   

11.
Decline of cell‐mediated immunity is often attributed to decaying T‐cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8+ T‐cell memory. Using a model of influenza virus infection, where loss of protective CD8+ T‐cell immunity was observed 6 months postinfection, we found no decline in antigen‐specific T‐cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen‐specific CD8+ T‐cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high‐avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high‐avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities.  相似文献   

12.
Type 1 diabetes is a T‐cell‐mediated autoimmune disease in which autoreactive CD8+ T cells destroy the insulin‐producing pancreatic beta cells. Vitamin D3 and dexamethasone‐modulated dendritic cells (Combi‐DCs) loaded with islet antigens inducing islet‐specific regulatory CD4+ T cells may offer a tissue‐specific intervention therapy. The effect of Combi‐DCs on CD8+ T cells, however, remains unknown. To investigate the interaction of CD8+ T cells with Combi‐DCs presenting epitopes on HLA class I, naive, and memory CD8+ T cells were co‐cultured with DCs and proliferation and function of peptide‐specific T cells were analyzed. Antigen‐loaded Combi‐DCs were unable to prime naïve CD8+ T cells to proliferate, although a proportion of T cells converted to a memory phenotype. Moreover, expansion of CD8+ T cells that had been primed by mature monocyte‐derived DCs (moDCs) was curtailed by Combi‐DCs in co‐cultures. Combi‐DCs expanded memory T cells once, but CD8+ T‐cell numbers collapsed by subsequent re‐stimulation with Combi‐DCs. Our data point that (re)activation of CD8+ T cells by antigen‐pulsed Combi‐DCs does not promote, but rather deteriorates, CD8+ T‐cell immunity. Yet, Combi‐DCs pulsed with CD8+ T‐cell epitopes also act as targets of cytotoxicity, which is undesirable for survival of Combi‐DCs infused into patients in therapeutic immune intervention strategies.  相似文献   

13.
In an immune response to infection, naïve T lymphocytes proliferate and give rise to a heterogeneous population of effector and memory cells. How is this diversity generated, and how can it be manipulated? Answering these questions requires an understanding of the lineage relationships between different effector and memory‐cell subsets, but these relationships remain to be identified definitively. In this issue of the European Journal of Immunology, a study moves us closer to this goal by combining a mathematical model and data from influenza infections in mice to support the hypothesis that CD8+ T‐cell differentiation is strongly coupled to cell division.  相似文献   

14.
Activation of mature CD8+ T cells requires recognition, via the T cell receptor (TCR), of peptide + MHC (pMHC) complexes with an avidity that exceeds a designated threshold. Multiple indicators of T cell avidity have been described that provide unique information on the characteristics of T cell interactions. However, these indicators are routinely used in isolation, and, consequently, little is known about correlations between these measures or which measure, if any, correlates with the quality of the T cell response. Following influenza virus infection of C57BL/6J mice, we analyzed the relative avidities of five epitope-specific CD8+ T cell populations using five different measures. We demonstrated that the quality of CD8+ T cell responses, in terms of cytokine profiles, correlates with TCR dissociation rate and CD8 dependence, but not with the sensitivity to tetramer binding or peptide stimulation. Thus, we propose that, despite significant differences in TCR dissociation rate, the stimulation threshold of influenza-specific CD8+ T cell populations may be equivalent due to compensatory mechanisms largely provided by the CD8 coreceptor. Furthermore, this study shows that different indicators of avidity do not necessarily provide similar information and should be used in combination to obtain an overall picture of the characteristics of TCR binding.  相似文献   

15.
Influenza is one of the most common infectious diseases afflicting humans, particularly the elderly. The murine model has been widely employed for investigation of immunity to influenza virus infection. In this paper, we review the recent advances in understanding the diminished CD8 T cell immune response to influenza virus infection in aged mice. Possible mechanisms of impaired CD8 T cell responses with aging are addressed, including: (1) the role of dendritic cells (DCs); (2) the effect of age-associated changes in the T cell repertoire; and (3) the interactions with CD4 T cells, including T regulatory (Treg) cells and CD4 T helper cells. The aged murine model of the CD8 T cell response to influenza virus is helping to elucidate the mechanisms of immunosenescence which can lead to therapeutic improvements in the primary CD8 T cell response to new infections, as well as the development of new strategies for immunization to prevent influenza in the elderly.  相似文献   

16.
Adult T‐cell leukemia/lymphoma (ATLL) is a peripheral T‐cell neoplasm caused by human T‐cell lymphotropic virus type I (HTLV‐I). The neoplastic cells are highly pleomorphic and are usually CD4+ and CD8? phenotypically. We reported the case of a 46‐year‐old woman presenting with fever, abdominal distention, lymphadenopathy, leukocytosis and hypercalcemia. Nodal biopsy showed diffuse infiltration by monomorphic small to medium‐sized atypical lymphocytes expressing CD3, CD25, CD30 and CD99, but not CD1a, CD4, CD8, CD34, terminal deoxynucleotidyl transferase or ALK. An initial diagnosis of T‐lymphoblastic leukemia/lymphoma was made based on cytomorphology, CD4 and CD8 double negativity, and the expression of CD99. The diagnosis was later revised to ATLL based on the positive serology study for anti‐HTLV I/II antibody and confirmation by the clonal integration of HTLV‐I proviral DNA into the tumor tissues by Southern blotting analysis. The patient had a stage IVB disease and died of septic shock after 2 courses of chemotherapy 3 months after diagnosis. Immunohistochemical staining for CD99 in archival ATLL tissues showed a positive rate of 67% (4 of 6 tumors). Our case showed that ATLL with atypical morphology and immunophenotype in HTLV non‐endemic areas might pose a diagnostic challenge and CD99 expression is frequent in ATLL.  相似文献   

17.
New data in the worlds of both innate‐like CD8+ T‐cells and natural killer (NK) cells have, in parallel, clarified some of the phenotypes of these cells and also their associated functions. While these cells are typically viewed entirely separately, the emerging innate functions of T‐cells and, similarly, the adaptive functions of NK cells suggest that many behaviours can be considered in parallel. In this review we compare the innate functions of CD8+ T‐cells (especially mucosal‐associated invariant T‐cells) and those of NK cells, and how these relate to expression of phenotypic markers, especially CD161 and CD56.  相似文献   

18.
Apoptotic cells represent an important source of self‐antigens and their engulfment by dendritic cells (DCs) is usually considered to be related to tolerance induction. We report here an unexpectedly high level of human CD4+ T‐cell proliferation induced by autologous DCs loaded with autologous apoptotic cells, due to the activation of more than 10% of naive CD4+ T cells. This proliferation is not due to an increase in the costimulatory capacity of DCs, but is dependent on apoptotic cell‐associated material processed through an endo‐lysosomal pathway and presented on DC MHC class II molecules. Autologous CD4+ T cells stimulated with apoptotic cell‐loaded DCs exhibit suppressive capacities. However, in the presence of bacterial lipopolysaccharide, apoptotic cell‐loaded DCs induce the generation of IL‐17‐producing cells. Thus, apoptotic cell engulfment by DCs may lead to increased autologous responses, initially generating CD4+ T cells with suppressive capacities able to differentiate into Th17 cells in the presence of a bacterial danger signal such as LPS.  相似文献   

19.
Tumor growth coincides with an accumulation of myeloid‐derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b+CD115+Ly6G?Ly6Chigh MDSCs and granulocytic CD11b+CD115?Ly6G+Ly6Cint polymorphonuclear (PMN)‐MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8+ T‐cell activation — including cytokine production, surface marker expression, survival, and cytotoxicity — is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen‐driven CD8+ T‐cell proliferation, but differ in their dependency on IFN‐γ, STAT‐1, IRF‐1, and NO to do so. Moreover, MO‐MDSC and PMN‐MDSCs diminish IL‐2 levels, but only MO‐MDSCs affect IL‐2Rα (CD25) expression and STAT‐5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN‐γ production by CD8+ T cells on a per cell basis, illustrating that some T‐cell activation characteristics are actually stimulated by MDSCs. Conversely, MO‐MDSCs counteract the activation‐induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8+ T‐cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL‐mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8+ T‐cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.  相似文献   

20.
T‐cell‐based immunological memory has the potential to provide the host with life‐long protection against pathogen reexposure and thus offers tremendous promise for the design of vaccines targeting chronic infections or cancer. In order to exploit this potential in the design of new vaccines, it is necessary to understand how and when memory T cells acquire their poised effector potential, and moreover, how they maintain these properties during homeostatic proliferation. To gain insight into the persistent nature of memory T‐cell functions, investigators have turned their attention to epigenetic mechanisms. Recent efforts have revealed that many of the properties acquired among memory T cells are coupled to stable changes in DNA methylation and histone modifications. Furthermore, it has recently been reported that the delineating features among memory T cells subsets are also linked to distinct epigenetic events, such as permissive and repressive histone modifications and DNA methylation programs, providing exciting new hypotheses regarding their cellular ancestry. Here, we review recent studies focused on epigenetic programs acquired during effector and memory T‐cell differentiation and discuss how these data may shed new light on the developmental path for generating long‐lived CD8+ T‐cell memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号