首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena.  相似文献   

2.
Yan QS  Zheng SZ  Yan SE 《Brain research》2004,1009(1-2):228-233
The pregnant rats received daily sc injections of cocaine (30 mg/kg) or saline from the gestational day (GD) 7 to GD 20. At 1 week postnatal, all pups were killed and the hippocampus, cortex and striatum were dissected out. Levels of brain-derived neurotrophic factor (BDNF) under the basal condition and depolarization with high potassium (40 mM) were measured. The results showed that hippocampal BDNF levels under basal and depolarization conditions were all significantly lower in the pups prenatally exposed to cocaine than those exposed to saline. There were no significant differences in basal BDNF levels between the cocaine and saline groups in the cortex or striatum. However, the prenatally cocaine-treated pups showed significantly less BDNF release following high potassium depolarization than the saline-treated animals did in both these regions. The results support the suggestion that prenatal cocaine exposure decreases BDNF expression in the offspring.  相似文献   

3.
We previously reported that prenatal cocaine exposure (40 mg/kg s.c., E10-E20) increased susceptibility to convulsant-induced seizures later in life, with female rats becoming more sensitive to seizures induced by cocaine and pentylenetetrazol (PTZ), and males more sensitive to PTZ-induced seizures (Snyder-Keller and Keller, 1995, 2000). In order to determine the locus of enhanced seizure susceptibility in the brains of prenatally cocaine-treated rats, we examined the distribution and density of Fos-immunoreactive cells after cocaine- and PTZ-induced seizures in mature rats. Subconvulsive cocaine doses induced c-fos in cortical areas as well as densely dopamine-innervated regions such as striatum and nucleus accumbens. Following cocaine-induced seizures, intense c-fos induction was observed in piriform cortex, amygdala, and hippocampus. Quantification of the number of Fos-immunoreactive cells in the brains of prenatally cocaine-treated versus prenatally saline-treated rats revealed differences in piriform cortex and amygdala that were indicative of a lower threshold in prenatally cocaine-treated female rats. Following PTZ-induced seizures, the same pattern of limbic structures were recruited with increasing seizure severity. Only females exhibited changes in the number of Fos-immunoreactive cells as a result of prenatal cocaine treatment. Pretreatment with the noncompetitive NMDA antagonist MK-801 blocked both cocaine- and PTZ-induced seizures, and Fos expression in limbic areas was also blocked. The dopamine D1 antagonist SCH 23390 blocked cocaine-induced seizures and associated c-fos induction, but not PTZ-induced seizures or Fos. Examination of the pattern of Fos expression at 15-20 min postseizure revealed that the initial site of c-fos induction associated with PTZ-induced seizures appeared to be the piriform cortex, whereas cocaine-induced seizures induced early expression in both piriform cortex and lateral amygdala. These findings suggest that neural alterations residing in the piriform cortex and amygdala are likely to account for the increased seizure susceptibility of prenatally cocaine-treated rats.  相似文献   

4.
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNF(Val/Val)) mice, and mice homozygous for the BDNF Val66Met SNP (BDNF(Met/Met)). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNF(Met/Met) mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNF(Met/Met) mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.  相似文献   

5.
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle.The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.  相似文献   

6.
Differential BDNF gene (BDNF) promoter use leads to protein isoforms differing by 8 or 15 N-terminal residues (BDNF1 and BDNF2) whose regulation and function are not completely understood versus the well-known 247-aa BDNF “short” form. To describe how BDNF isoform levels were regulated by chronic drug use, we measured BDNF isoform-specific mRNA levels in different human brain regions from cocaine addicts relative to age, race, and gender-matched controls. The cocaine group had threefold higher levels of exon 4-specific (BDNF Short) mRNAs in cerebellum versus controls (P < 0.01). In cortex, exon 4 and exon 1-specific BDNF mRNA levels (BDNF1) were significantly reduced in the cocaine group relative to controls (40%, P < 0.01). We also tested the hypothesis that the signal peptides of isoforms BDNF1 and BDNF2 confer different functional properties and determined if the functional Val66Met polymorphism influenced these functions. In contrast to transfected AtT-20 cells producing BDNF Short, regulated secretion of BDNF1 or BDNF2 was not affected by the Met66 substitution. Hippocampal neurons producing BDNF1 or BDNF2 on either the Val66 or Met66 background were similarly distributed in dendrites and had similar colocalization patterns with the secretory granule marker Sec II. This pattern differed from neurons producing BDNF Short Met66, which had impaired trafficking. Together, these findings support a mechanism by which variant BDNF proteins can overcome the functional defect of the Met66 substitution and suggest how functional differences in BDNF may impact brain responses in disease. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
It is largely unknown why some patients with Alzheimer's disease (AD) decline cognitively more rapidly than others. Genetic differences among patients could influence rate of decline. Brain-derived neurotrophic factor (BDNF) is a neurotrophin important in the survival neurons and in memory function. BDNF levels are reduced in the brain in AD. The Val66Met polymorphism in the BDNF gene modifies neuronal BDNF secretion, and affects hippocampal function and memory performance. We tested the hypothesis that the BDNF Val66Met polymorphism influences rate of cognitive decline in AD. In a sample of 149 AD patients followed for an average of 3.9 years, we found no effect of BDNF Val66Met genotype on rate of change in the Mini Mental State Examination. Results were similar when we excluded patients taking an acetylcholinesterase inhibitor, those placed in a nursing home during the study, or those with a neuropathological diagnosis that included AD plus an entity other than AD. We also found no evidence that the effects of the BDNF Val66Met genotype depend on APOE genotype, which itself had no effect on rate of cognitive change. These findings suggest that the functional BDNF Val66Met variant is not a major determinant of rate of cognitive decline in AD.  相似文献   

8.
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNF(Met) carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here, we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNF(Met/Met) mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in NMDA and GABA receptor-mediated synaptic transmission in the pyramidal neurons of BDNF(Met/Met) mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNF(Met/Met) mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNF(Met/Met) neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNF(Met/Met) mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this impact of SNP on affective disorders and cognitive dysfunction.  相似文献   

9.
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with affective disorders, but its role in emotion processing has not been fully established. Due to the clinically heterogeneous nature of these disorders, studying the effect of genetic variation in the BDNF gene on a common attribute such as fear processing may elucidate how the BDNF Val66Met polymorphism impacts brain function. Here we use functional magnetic resonance imaging examine the effect of the BDNF Val66Met genotype on neural activity for fear processing. Forty healthy participants performed an implicit fear task during scanning, where subjects made gender judgments from facial images with neutral or fearful emotion. Subjects were tested for facial emotion recognition post-scan. Functional connectivity was investigated using psycho-physiological interactions. Subjects were genotyped for the BDNF Val66Met polymorphism and the measures compared between genotype groups. Met carriers showed overactivation in the anterior cingulate cortex (ACC), brainstem and insula bilaterally for fear processing, along with reduced functional connectivity from the ACC to the left hippocampus, and impaired fear recognition ability. The results show that during fear processing, Met allele carriers show an increased neural response in regions previously implicated in mediating autonomic arousal. Further, the Met carriers show decreased functional connectivity with the hippocampus, which may reflect differential retrieval of emotional associations. Together, these effects show significant differences in the neural substrate for fear processing with genetic variation in BDNF.  相似文献   

10.
CONTEXT: Brain-derived neurotrophic factor (BDNF) modulates hippocampal plasticity, which is believed to be altered in patients with major depression. OBJECTIVE: To examine the effect of the BDNF Val66Met polymorphism on hippocampal and amygdala volumes in patients with major depression and in healthy control subjects. DESIGN: Cross-sectional comparison between patients and controls. SETTING: Inpatients with major depression from the Department of Psychiatry and Psychotherapy and healthy controls from the community were recruited. PARTICIPANTS: The study population of 120 subjects included 60 patients with major depression and 60 healthy controls. MAIN OUTCOME MEASURES: Using a combined strategy, hippocampal and amygdala volumes were estimated on high-resolution magnetic resonance images, and genotyping was performed for the BDNF Val66Met polymorphism. RESULTS: Patients had significantly smaller hippocampal volumes compared with controls (P = .02). Significantly smaller hippocampal volumes were observed for patients and for controls carrying the Met-BDNF allele compared with subjects homozygous for the Val-BDNF allele (P = .006). With respect to amygdala volumes, no significant differences between patients and controls and no significant main effects for the BDNF Val66Met polymorphism were observed. CONCLUSIONS: These genotype-related alterations suggest that Met-BDNF allele carriers might be at risk to develop smaller hippocampal volumes and may be susceptible to major depression. This study supports findings from animal studies that the hippocampus is involved in brain development and plasticity.  相似文献   

11.
Altered hippocampal volume, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and neuroticism have each been implicated in the etiology of psychiatric disorders, especially depression. However, the relationship between these variables is not well understood. Here, we determined the effects of the BDNF Val66met polymorphism on the five-factor personality dimensions (assessed using the NEO-FFI), trait depression (assessed with the DASS-21) in a cross-sectional cohort of 467 healthy volunteers. A large matched subset of this cohort was also assessed for grey matter volume of the hippocampus and contiguous temporal cortical regions using magnetic resonance imaging. In Met carriers, elevations in neuroticism and trait depression and stress were associated with lower mean hippocampal volume, but there were no such associations in Val homozygotes. Trait depression, in particular, was found to moderate the effects of BDNF genotypes on hippocampal volume. Met carriers with high trait depression showed a reduction in grey matter volume of the mean hippocampus compared with Val homozygotes. These findings suggest that even in otherwise healthy subjects, trait depression may contribute to the susceptibility of Met carriers to hippocampal grey matter loss.  相似文献   

12.
Several lines of evidence support a role for brain-derived neurotrophic factor (BDNF) alterations in the etiology of eating disorders (EDs). BDNF heterozygous knockout mice show alterations in eating behavior, increased body weight and adipocyte hypertrophy. BDNF also regulates the synaptic efficiency through the modulation of key neurotransmitter systems previously known to be involved in ED. These findings, together with the fact that this neurotrophin is expressed in the hypothalamus nuclei associated with weight regulation and feeding control, led us to propose BDNF as a candidate gene for ED. To investigate the possible involvement of this neurotrophin in eating behavior, we screened the BDNF gene in 95 ED patients and identified four sequence variants. Two of them, -374A/T and -256G/A, were found in two patients with anorexia nervosa (AN) and consisted of single-nucleotide mutations within the 5' untranslated region (5'UTR). The other two polymorphisms resulted in a C to T transition located at the 5'UTR of the BDNF gene and an amino-acid substitution within the BDNF precursor protein (Val66Met). We performed a case-control study for these two Single-nucleotide polymorphisms in a sample of 143 ED patients and 112 unrelated controls and found a strong association of restricting AN (ANR) with the Met allele of the Val66Met BDNF polymorphism (2p=0.002). There was also evidence for a significant effect of this sequence variant on the minimum body mass index (MBMI) (2p=0.006). These results suggest that the BDNF Met66 variant may be a susceptibility factor to ED, mainly to ANR and low MBMI.  相似文献   

13.
Schizophrenia is believed to arise from complex gene–environment interactions. Brain-derived neurotrophic factor (BDNF) is involved in neuronal development, differentiation and plasticity. A functional single nucleotide polymorphism that results in a valine (Val) to methionine (Met) substitution at codon 66 (Val66Met) results in the aberrant sorting and release of mature BDNF through the activity-dependent secretion pathway. The Val66Met polymorphism has been linked to impaired neurocognitive function in healthy adults, and identified as a locus of risk for a range of neuropsychiatric disorders including schizophrenia. Here we provide a comprehensive review of the relationship between the BDNF Val66Met polymorphism and schizophrenia, integrating evidence from the fields of genetic epidemiology, clinical psychiatry, behavioral neuroscience and neuroimaging. We argue that while the Val66Met polymorphism may not be a major risk-conferring agent for the development of schizophrenia per se, there is mounting evidence that the polymorphism modulates a range of clinical features of the illness, including age of onset, symptoms, therapeutic responsiveness, neurocognitive function and brain morphology.  相似文献   

14.
The brain‐derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity‐dependent secretion of BDNF. The current event‐related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non‐significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.  相似文献   

15.
A functional polymorphism of the brain derived neurotrophic factor gene (BDNF) (Val66Met) has been suggested to be involved in the pathogenesis of attention-deficit/hyperactivity disorder (ADHD). It also has an impact on peripheral BDNF levels in psychiatric disorders. This study examined the association of Val66Met with plasma BDNF level of ADHD in Han Chinese children (170 medication – naïve ADHD patients and 155 unaffected controls, aged 6–16 years). The Val allele was showed a higher frequency in females with ADHD (n=84) than controls (P=0.029) from the case-control association study. The analysis of covariance (ANCOVA) indicated that the mean plasma BDNF levels of ADHD patients were significantly higher than that of controls (P=0.001). We performed both total sample and sex stratified analyses to investigate the effect of Val66Met genotype on the plasma BDNF levels, but only a trend of association was found in females with ADHD (n=84), with a tendency of lower plasma BDNF level in Val allele carriers than Met/Met genotype carriers (P=0.071). Our results suggested a sex-specific association between BDNF and ADHD. Furthermore, there was a possible sex-specific relationship between the BDNF Val66Met genotype and plasma BDNF levels. However, further studies are required to elucidate the role of BDNF in ADHD.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNF(Met)) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNF(Met) polymorphism and stress are unclear. We found that heterozygous BDNF(+/Met) mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF(+/Met) mice exhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF(+/Met) mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNF(Met) polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF(+/Met) mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF.  相似文献   

17.
目的探讨弥漫性轴索损伤(DAI)(Ⅱ型)患者伤后1个月血清脑源性神经营养因子(BDNF)水平及其Val66Met基因多态性与认知功能的关系。 方法选取晋江市医院神经外科自2015年8月至2020年8月收治的106例DAI(Ⅱ型)患者为病例组,选择同期来本院体检的105名健康体检者为对照组,采用第二版洛文斯顿作业疗法认知量表(LOTCA)、蒙特利尔评估量表中文版(MoCA)分别评估对照组和病例组伤后1个月时的认知功能;采用酶联免疫吸附试验测定2组研究对象的血清BDNF水平;聚合酶链反应-限制性片段长度多态性分析BDNF Val66Met基因多态性;多元逐步回归法分析病例组整体认知功能与BDNF及BDNF Val66Met基因多态性的相关性。 结果病例组伤后1个月相同基因亚型血清BDNF浓度均低于对照组,差异有统计学意义(P<0.05);病例组Val/Val亚型血清BDNF浓度高于Val/Met、Met/Met亚型,差异有统计学意义(P<0.05),而Val/Met和Met/Met亚型血清BDNF浓度比较差异无统计学意义(P>0.05)。病例组患者3种基因亚型伤后1个月的LOTCA和MoCA评分均低于对照组,差异有统计学意义(P<0.05);病例组Val/Val亚型评分高于Val/Met、Met/Met评分,差异有统计学意义(P<0.05),而Val/Met和Met/Met亚型评分比较,差异无统计学意义(P>0.05)。DAI(Ⅱ型)整体认知水平与BDNF Val66Met基因多态性、BDNF浓度具有线性回归关系(F=11.417,P<0.001),其具有一定的相关性(|β|=0.966、0.877;r=0.569、0.579)。 结论BDNF可影响DAI认知功能,其BDNF Val66Met基因多态性可能是影响DAI认知功能的风险因素之一。  相似文献   

18.
Obesity in children and adolescents is a worldwide health problem, characterized by various somatic, psychosocial and psychiatric complications, and is often associated with adult obesity and related complications. Brain-derived neurotrophic factor (BDNF) is a neurotrophin with important roles in feeding behavior, food intake regulation, energy metabolism and weight control. A common polymorphism of the BDNF genotype (Val66Met) has been associated with various forms of eating disorders, alterations in body mass index (BMI) values and obesity in adult populations. The aim of this study was to determine the association between the gene variants of the BDNF Val66Met polymorphism and obesity in 300 healthy Caucasian children and adolescents of the same ethnic background of Croatian origin, subdivided according to the BMI percentile, but without any form of eating disorders. The frequency of the Met/Met, Met/Val and Val/Val genotypes, Met and Val alleles, and Met carriers (the combined Met/Met and Met/Val genotypes versus the homozygous Val/Val genotype) differed significantly between underweight, normal weight, overweight and obese children, and the presence of one or two Met alleles contributed to this significant effect. These results showed for the first time the significant association between the presence of one or two Met alleles and obesity in ethnically homogenous groups of healthy Caucasian children and adolescents. These data confirmed the major role of BDNF in energy metabolism, food regulation and BMI.  相似文献   

19.
20.
A functional polymorphism of the brain‐derived neurotrophic factor (BDNF) gene (Val66Met) has been associated with the risk for schizophrenia and volume differences in the hippocampus. However, little is known about the association between progressive brain volume change in schizophrenia and BDNF genotype. The aim of this study was to investigate the relationship between hippocampal volume change in patients with schizophrenia and healthy control subjects and BDNF genotype. Two structural magnetic resonance imaging brain scans were acquired of 68 patients with schizophrenia and 83 healthy subjects with an interval of approximately 5 yrs. Hippocampal volume change was measured and related to BDNF genotype in patients and healthy controls. BDNF genotype was not associated with hippocampal volume change over time in patients or healthy controls, nor could we replicate earlier findings on smaller hippocampal volume in Met‐carriers. However, we did find a genotype‐by‐diagnosis interaction at baseline demonstrating smaller hippocampal volumes in patients homozygous for the Val‐allele relative to healthy Val‐homozygotes. In addition, irrespective of genotype, patients showed smaller hippocampal volumes compared with healthy controls at baseline. In summary, our results suggest that the BDNF Val66Met polymorphism is not associated with hippocampal volume change over time. Nevertheless, our findings may support the possibility that BDNF affects brain morphology differently in schizophrenia patients and healthy subjects. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号