首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation to repeated stimuli suggest that this pathway should be sensitive to approaches of individual objects within a complex visual scene. We presented locusts with compound looming objects while recording from the DCMD to test the effects of nonuniform edge expansion on looming responses. We also presented paired objects approaching from different regions of the visual field at nonoverlapping, closely timed and simultaneous approach intervals to study DCMD responses to multiple looming stimuli. We found that looming compound objects evoked characteristic responses in the DCMD and that the time of peak firing was consistent with predicted values based on a weighted ratio of the half size of each distinct object edge and the absolute approach velocity. We also found that the azimuthal position and interval of paired approaches affected DCMD firing properties and that DCMDs responded to individual objects approaching within 106 ms of each other. Moreover, comparisons between individual and paired approaches revealed that overlapping approaches are processed in a strongly sublinear manner. These findings are consistent with biophysical mechanisms that produce nonlinear integration of excitatory and feed-forward inhibitory inputs onto the LGMD that have been shown to underlie responses to looming stimuli.  相似文献   

2.
We demonstrate pronounced differences in the visual system of a polyphenic locust species that can change reversibly between two forms (phases), which vary in morphology and behavior. At low population densities, individuals of Schistocerca gregaria develop into the solitarious phase, are cryptic, and tend to avoid other locusts. At high densities, individuals develop instead into the swarm-forming gregarious phase. We analyzed in both phases the responses of an identified visual interneuron, the descending contralateral movement detector (DCMD), which responds to approaching objects. We demonstrate that habituation of DCMD is fivefold stronger in solitarious locusts. In both phases, the mean time of peak firing relative to the time to collision nevertheless occurs with a similar characteristic delay after an approaching object reaches a particular angular extent on the retina. Variation in the time of peak firing is greater in solitarious locusts, which have lower firing rates. Threshold angle and delay are therefore conserved despite changes in habituation or behavioral phase state. The different rates of habituation should contribute to different predator escape strategies or flight control for locusts living either in a swarm or as isolated individuals. For example, increased variability in the habituated responses of solitarious locusts should render their escape behaviors less predictable. Relative resistance to habituation in gregarious locusts should permit the continued responsiveness required to avoid colliding with other locusts in a swarm. These results will permit us to analyze neuronal plasticity in a model system with a well-defined and controllable behavioral context.  相似文献   

3.
The lobula giant movement detector (LGMD) in the locust visual system and its target neuron, the descending contralateral movement detector (DCMD), respond to approaching objects looming on a collision course with the animal. They thus provide a good model to study the cellular and network mechanisms underlying the sensitivity to this specific class of behaviorally relevant stimuli. We determined over an entire locust eye the density distribution of optical axes describing the spatial organization of local inputs to the visual system and compared it with the sensitivity distribution of the LGMD/DCMD to local motion stimuli. The density of optical axes peaks in the equatorial region of the frontal eye. Local motion sensitivity, however, peaks in the equatorial region of the caudolateral visual field and only correlates positively with the dorso-ventral density of optical axes. On local stimulation, both the velocity tuning and the response latency of the LGMD/DCMD depend on stimulus position within the visual field. Spatial and temporal integration experiments in which several local motion stimuli were activated either simultaneously or at fixed delays reveal that the LGMD processes local motion in a strongly sublinear way. Thus the neuron's integration properties seem to depend on several factors including its dendritic morphology, the local characteristics of afferent fiber inputs, and inhibition mediated by different pathways or by voltage-gated conductances. Our study shows that the selectivity of this looming sensitive neuron to approaching objects relies on more complex biophysical mechanisms than previously thought.  相似文献   

4.
The lobula giant movement detector (LGMD) is an identified neuron in the locust visual system that responds preferentially to objects approaching on a collision course with the animal. For such looming stimuli, the LGMD firing rate gradually increases, peaks, and decays toward the end of approach. The LGMD receives both excitatory and feed-forward inhibitory inputs on distinct branches of its dendritic tree, but little is known about the contribution of feed-forward inhibition to its response properties. We used picrotoxin, a chloride channel blocker, to selectively block feed-forward inhibition to the LGMD. We then computed differences in firing rate and membrane potential between control and picrotoxin conditions to study the activation of feed-forward inhibition. For looming stimuli, a significant activation of inhibition was observed early, as objects exceeded on average approximately 23 degrees in angular extent at the retina. Inhibition then increased in parallel with excitation over the remainder of approach trials. Experiments in which the final angular size of the approaching objects was systematically varied revealed that the relative activation of excitation and inhibition remains well balanced over most of the course of looming trials. Feed-forward inhibition actively contributed to the termination of the response to approaching objects and was particularly effective for large or slowly moving objects. Suddenly appearing and receding objects activated excitation and feed-forward inhibition nearly simultaneously, in contrast to looming stimuli. Under these conditions, the activation of excitation and feed-forward inhibition was weaker than for approaching objects, suggesting that both are preferentially tuned to approaching objects. These results support a phenomenological model of multiplication within the LGMD and provide new constraints for biophysical models of its responses to looming and receding stimuli.  相似文献   

5.
Neural circuits are strongly affected by temperature and failure ensues at extremes. However, detrimental effects of high temperature on neural pathways can be mitigated by prior exposure to high, but sublethal temperatures (heat shock). Using the migratory locust, Locusta migratoria, we investigated the effects of heat shock on the thermosensitivity of a visual interneuron [the descending contralateral movement detector (DCMD)]. Activity in the DCMD was elicited using a looming stimulus and the response was recorded from the axon using intracellular and extracellular methods. The thoracic region was perfused with temperature-controlled saline and measurements were taken at 5 degrees intervals starting at 25 degrees C. Activity in DCMD was decreased in control animals with increased temperature, whereas heat-shocked animals had a potentiated response such that the peak firing frequency was increased. Significant differences were also found in the thermosensitivity of the action potential properties between control and heat-shocked animals. Heat shock also had a potentiating effect on the amplitude of the afterdepolarization. The concurrent increase in peak firing frequency and maintenance of action potential properties after heat shock could enhance the reliability with which DCMD initiates visually guided behaviors at high temperature.  相似文献   

6.
Flying locusts perform a characteristic gliding dive in response to predator-sized stimuli looming from one side. These visual looming stimuli trigger trains of spikes in the descending contralateral movement detector (DCMD) neuron that increase in frequency as the stimulus gets nearer. Here we provide evidence that high-frequency (>150 Hz) DCMD spikes are involved in triggering the glide: the DCMD is the only excitatory input to a key gliding motor neuron during a loom; DCMD-mediated EPSPs only summate significantly in this motor neuron when they occur at >150 Hz; when a looming stimulus ceases approach prematurely, high-frequency DCMD spikes are removed from its response and the occurrence of gliding is reduced; and an axon important for glide triggering descends in the nerve cord contralateral to the eye detecting a looming stimulus, as the DCMD does. DCMD recordings from tethered flying locusts showed that glides follow high-frequency spikes in a DCMD, but analyses could not identify a feature of the DCMD response alone that was reliably associated with glides in all trials. This was because, for a glide to be triggered, the high-frequency spikes must be timed appropriately within the wingbeat cycle to coincide with wing elevation. We interpret this as flight-gating of the DCMD response resulting from rhythmic modulation of the flight motor neuron's membrane potential during flight. This means that the locust's escape behavior can vary in response to the same looming stimulus, meaning that a predator cannot exploit predictability in the locust's collision avoidance behavior.  相似文献   

7.
1. The "descending contralateral movement detector" (DCMD) neuron in the locust has been challenged with a variety of moving stimuli, including scenes from a film (Star Wars), moving disks, and images generated by computer. The neuron responds well to any rapid movement. For a dark object moving along a straight path at a uniform velocity, the DCMD gives the strongest response when the object travels directly toward the eye, and the weakest when the object travels away from the eye. Instead of expressing selectivity for movements of small rather than large objects, the DCMD responds preferentially to approaching objects. 2. The neuron shows a clear selectivity for approach over recession for a variety of sizes and velocities of movement both of real objects and in simulated movements. When a disk that subtends > or = 5 degrees at the eye approaches the eye, there are two peaks in spike rate: one immediately after the start of movement; and a second that builds up during the approach. When a disk recedes from the eye, there is a single peak in response as the movement starts. There is a good correlation between spike rate and angular acceleration of the edges of the image over the eye. 3. When an object approaches from a distance sufficient for it to subtend less than one interommatidial angle at the start of its approach, there is a single peak in response. The DCMD tracks the approach, and, if the object moves at 1 m/s or faster, the spike rate increases throughout the duration of object movement. The size of the response depends on the speed of approach. 4. It is unlikely that the DCMD encodes the time to collision accurately, because the response depends on the size as well as the velocity of an approaching object. 5. Wide-field movements suppress the response to an approaching object. The suppression varies with the temporal frequency of the background pattern. 6. Over a wide range of contrasts of object against background, the DCMD gives a stronger response to approaching than to receding objects. For low contrasts, the selectivity is greater for objects that are darker than the background than for objects that are lighter.  相似文献   

8.
Locusts have two large collision-detecting neurons, the descending contralateral movement detectors (DCMDs) that signal object approach and trigger evasive glides during flight. We sought to investigate whether vision for action, when the locust is in an aroused state rather than a passive viewer, significantly alters visual processing in this collision-detecting pathway. To do this we used two different approaches to determine how the arousal state of a locust affects the prolonged periods of high-frequency spikes typical of the DCMD response to approaching objects that trigger evasive glides. First, we manipulated arousal state in the locust by applying a brief mechanical stimulation to the hind leg; this type of change of state occurs when gregarious locusts accumulate in high-density swarms. Second, we examined DCMD responses during flight because flight produces a heightened physiological state of arousal in locusts. When arousal was induced by either method we found that the DCMD response recovered from a previously habituated state; that it followed object motion throughout approach; and--most important--that it was significantly more likely to generate the maintained spike frequencies capable of evoking gliding dives even with extremely short intervals (1.8 s) between approaches. Overall, tethered flying locusts responded to 41% of simulated approaching objects (sets of 6 with 1.8 s ISI). When we injected epinastine, the neuronal octopamine receptor antagonist, into the hemolymph responsiveness declined to 12%, suggesting that octopamine plays a significant role in maintaining responsiveness of the DCMD and the locust to visual stimuli during flight.  相似文献   

9.
An investigation was made into the directional sensitivity of cells in the macaque anterior superior temporal polysensory region (STPa) to the motion of objects. The cells studied were sensitive to the presence of motion but showed little or no selectivity for the form of the stimulus. Directional tuning was not continuously distributed about all possible directions. The majority of cells were most responsive to motion in a direction within 15° of one of the three cartesian axes (up/down, left/right, towards/away). Tuning to direction varied in sharpness. For most (34/37) cells the angular change in direction required to reduce response to half maximal was between 45 and 70° (for 3/37 cells it was > 90°). The estimates of the directionality (median I d = 0.97) of STPa cells was similar to that reported for posterior motion processing areas (the middle temporal area, MT, and the medial superior temporal area, MST). The tuning for direction (sharpness, distribution and discrimination) of the motion-sensitive STPa cells were found to be similar to the tuning for perspective view of STPa cells selective for static form of the head and body. On average the STPa responses showed a 100- to 300-ms transient burst of activity followed by a tonic discharge maintained at approximately 20% of the peak firing rate for the duration of stimulation. The responses of motion-sensitive STPa cells occurred at an earlier latency (mean 91 ms) than responses of cells selective for static form (mean 119 ms), but the time course of responses of the two classes of cell were similar in many other respects. The early response latency and directional selectivity indicate that motion sensitivity in STPa cells derives from the dorsal visual pathway via MT/MST. The similarity of tuning for direction and perspective view within STPa may facilitate the integration of motion and form processing within this high-level brain area.  相似文献   

10.
Temporal and spatial information are necessary when pointing to touch moving objects at a specific location. Here, we introduce an interception paradigm that allows us to uncorrelate spatial and temporal errors so that subjects did not have to trade one for the other. We showed the initial trajectories of two objects that moved (laterally or sagittally) with random presentation times and speeds along a collision path. Subjects had to point manually to the collision place at the correct time. We found better temporal accuracy when hand movements matched the motion target direction (e.g., the hand sagittally pointed to a collision point defined along a sagittal trajectory). This temporal selectivity disappeared when subjects had to judge the collision time responding with a single press. The results point to a contribution of proprioceptive information of hand velocity in reducing the temporal uncertainty in a temporal coincidence task.  相似文献   

11.
Sensory areas should be adapted to the properties of their natural stimuli. What are the underlying rules that match the properties of complex cells in primary visual cortex to their natural stimuli? To address this issue, we sampled movies from a camera carried by a freely moving cat, capturing the dynamics of image motion as the animal explores an outdoor environment. We use these movie sequences as input to simulated neurons. Following the intuition that many meaningful high-level variables, e.g., identities of visible objects, do not change rapidly in natural visual stimuli, we adapt the neurons to exhibit firing rates that are stable over time. We find that simulated neurons, which have optimally stable activity, display many properties that are observed for cortical complex cells. Their response is invariant with respect to stimulus translation and reversal of contrast polarity. Furthermore, spatial frequency selectivity and the aspect ratio of the receptive field quantitatively match the experimentally observed characteristics of complex cells. Hence, the population of complex cells in the primary visual cortex can be described as forming an optimally stable representation of natural stimuli.  相似文献   

12.
Although the firing patterns of collision-detecting neurons have been described in detail in several species, the mechanisms generating responses in these neurons to visual objects on a collision course remain largely unknown. This is partly due to the limited number of intracellular recordings from such neurons, particularly in vertebrate species. By employing patch recordings in a novel integrated frog eye-tectum preparation we tested the hypothesis that OFF retinal ganglion cells were driving the responses to visual objects on a collision course in the frog optic tectum neurons. We found that the majority (22/26) of neurons in layer 6 responding to visual stimuli fitted the definition of η class collision-detectors: they readily responded to a looming stimulus imitating collision but not a receding stimulus (spike count difference ∼10 times) and the spike firing rate peaked after the stimulus visual angle reached a threshold value of ∼20–45°. In the majority of these neurons (15/22) a slow frequency oscillation (f = ∼20 Hz) of the neuronal membrane potential could be detected in the responses to a simulated collision stimulus, as well as to turning off the lights. Since OFF retinal ganglion cells could produce such oscillations, our observations are in agreement with the hypothesis that ‘collision’ responses in the frog optic tectum neurons are driven by synaptic inputs from OFF retinal ganglion cells.  相似文献   

13.
Recent investigations have indicated that human perception of the trajectory of objects approaching in the horizontal plane is precise but biased away from straight ahead. This is remarkable because it could mean that subjects perceive objects that approach on a collision course as missing the head. Approach within the horizontal plane through the eyes and the fixation point (the plane of regard) is special, as general motions will also have a component of motion perpendicular to the plane of regard. Thus, we investigated three-dimensional motion perception in the vicinity of the head, including vertical components. Subjects judged whether an object that moved in the mid-sagittal plane was going to hit below or above a well-known reference point on the face like the center of the chin or the forehead (perceptual task). Tactile and proprioceptive information about the reference point significantly improved precision. Precision did not change with distance of the approaching target or with fixation direction. Bias was virtually absent for these vertical motions. When subjects pointed with their index finger to the perceived location of impact on their face (visuo-motor task), they overestimated (1.7 cm) the horizontal eccentricity of the point of impact (pointing task). Vertical bias, however, was again virtually absent. Interestingly, when trajectories intersected the plane of regard, higher precision was observed in the perceptual task regardless of the other conditions. In contrast, neither bias nor precision of the pointing task changed significantly when the trajectories intersected the plane of regard. When asked to point to the location where a trajectory intersected the plane of regard, subjects overestimated the depth component of this intersection location by about 3 cm. The absence of perceptual and pointing bias in the vertical direction in contrast to the clear horizontal bias suggests that different (combinations of) cues are used to judge these components of the trajectory of an approaching object. The results of our perceptual task suggest a role for somatosensory signals in the visual judgment of impending impact.  相似文献   

14.
1. We examine the critical image cues that are used by the locust visual system for the descending contralateral motion detector (DCMD) neuron to distinguish approaching from receding objects. Images were controlled by computer and presented on an electrostatic monitor. 2. Changes in overall luminance elicited much smaller and briefer responses from the DCMD than objects that appeared to approach the eye. Although a decrease in overall luminance might boost the response to an approaching dark object, movement of edges of the image is more important. 3. When two pairs of lines, in a cross-hairs configuration, were moved apart and then together again, the DCMD showed no preference for divergence compared with convergence of edges. A directional response was obtained by either making the lines increase in extent during divergence and decrease in extent during convergence; or by continually increasing the velocity of line movement during divergence and decreasing velocity during convergence. 4. The DCMD consistently gave a larger response to growing than to shrinking solid rectangular images. An increase compared with a decrease in the extent of edge in an image is, therefore, an important cue for the directionality of the response. For single moving edges of fixed extent, the neuron gave the largest response to edges that subtended 15 degrees at the eye. 5. The DCMD was very sensitive to the amount by which an edge traveled between frames on the display screen, with the largest responses generated by 2.5 degrees of travel. This implies that the neurons in the optic lobe that drive this movement-detecting system have receptive fields of about the same extent as a single ommatidium. 6. For edges moving up to 250 degree/s, the excitation of the DCMD increases with velocity. The response to an edge moving at a constant velocity adapts rapidly, in a manner that depends on velocity. Movement over one part of the retina can adapt the subsequent response to movement over another part of the retina. 7. For the DCMD to track and continue to respond to the image of an approaching object, the edges of the image must continually increase in velocity. This is the second important stimulus cue. 8. Edges of opposite contrasts (light-dark compared with dark-light) are processed in separate pathways that inhibit each other. This would contribute to the reduction of responses to wide-field movements.  相似文献   

15.
To perceive the relative positions of objects in the visual field, the visual system must assign locations to each stimulus. This assignment is determined by the object's retinal position, the direction of gaze, eye movements, and the motion of the object itself. Here we show that perceived location is also influenced by motion signals that originate in distant regions of the visual field. When a pair of stationary lines are flashed, straddling but not overlapping a rotating radial grating, the lines appear displaced in a direction consistent with that of the grating's motion, even when the lines are a substantial distance from the grating. The results indicate that motion's influence on position is not restricted to the moving object itself, and that even the positions of stationary objects are coded by mechanisms that receive input from motion-sensitive neurons.  相似文献   

16.
Neurons in area MT, a motion-sensitive area of extrastriate cortex, respond to a step of target velocity with a transient-sustained firing pattern. The transition from a high initial firing rate to a lower sustained rate occurs over a time course of 20-80 ms and is considered a form of short-term adaptation. The present paper asks whether adaptation is due to input-specific mechanisms such as short-term synaptic depression or if it results from intrinsic cellular mechanisms such as spike-rate adaptation. We assessed the contribution of input-specific mechanisms by using a condition/test paradigm to measure the spatial scale of adaptation. Conditioning and test stimuli were placed within MT receptive fields but were spatially segregated so that the two stimuli would activate different populations of inputs from the primary visual cortex (V1). Conditioning motion at one visual location caused a reduction of the transient firing to subsequent test motion at a second location. The adaptation field, estimated as the region of visual space where conditioning motion caused adaptation, was always larger than the MT receptive field. Use of the same stimulus configuration while recording from direction-selective neurons in V1 failed to demonstrate either adaptation or the transient-sustained response pattern that is the signature of short-term adaptation in MT. We conclude that the shift from transient to sustained firing in MT cells does not result from an input-specific mechanism applied to inputs from V1 because it operates over a wider range of the visual field than is covered by receptive fields of V1 neurons. We used a direct analysis of MT neuron spike trains for many repetitions of the same motion stimulus to assess the contribution to adaptation of intrinsic cellular mechanisms related to spiking. On a trial-by-trial basis, there was no correlation between number of spikes in the transient interval and the interval immediately after the transient period. This is opposite the prediction that there should be a correlation if spikes cause adaptation directly. Further, the transient was suppressed or extinguished, not delayed, in trials in which the neuron emitted zero spikes during the interval that showed a transient in average firing rate. We conclude that the transition from transient to sustained firing in neurons in area MT is caused by mechanisms that are neither input-specific nor controlled by the spiking of the adapting neuron. We propose that the short-term adaptation observed in area MT emerges from the intracortical circuit within MT.  相似文献   

17.
It is still unclear how sensory systems efficiently encode signals with statistics as experienced by animals in the real world and what role adaptation plays during normal behavior. Therefore, we studied the performance of visual motion-sensitive neurons of blowflies, the horizontal system neurons, with optic flow that was reconstructed from the head trajectories of semi-free-flying flies. To test how motion adaptation is affected by optic flow dynamics, we manipulated the seminatural optic flow by targeted modifications of the flight trajectories and assessed to what extent neuronal responses to an object located close to the flight trajectory depend on adaptation dynamics. For all types of adapting optic flow object-induced response increments were stronger in the adapted compared with the nonadapted state. Adaptation with optic flow characterized by the typical alternation between translational and rotational segments produced this effect but also adaptation with optic flow that lacked these distinguishing features and even pure rotation at a constant angular velocity. The enhancement of object-induced response increments had a direction-selective component because preferred-direction rotation and natural optic flow were more efficient adaptors than null-direction rotation. These results indicate that natural dynamics of optic flow is not a basic requirement to adapt neurons in a specific, presumably functionally beneficial way. Our findings are discussed in the light of adaptation mechanisms proposed on the basis of experiments previously done with conventional experimenter-defined stimuli.  相似文献   

18.
We investigated in vivo the characteristics of spike-frequency adaptation and the intrinsic membrane properties of an identified, looming-sensitive interneuron of the locust optic lobe, the lobula giant movement detector (LGMD). The LGMD had an input resistance of 4-5 MOmega, a membrane time constant of about 8 ms, and exhibited inward rectification and rebound spiking after hyperpolarizing current pulses. Responses to depolarizing current pulses revealed the neuron's intrinsic bursting properties and pronounced spike-frequency adaptation. The characteristics of adaptation, including its time course, the attenuation of the firing rate, the mutual dependency of these two variables, and their dependency on injected current, closely followed the predictions of a model first proposed to describe the adaptation of cat visual cortex pyramidal neurons in vivo. Our results thus validate the model in an entirely different context and suggest that it might be applicable to a wide variety of neurons across species. Spike-frequency adaptation is likely to play an important role in tuning the LGMD and in shaping the variability of its responses to visual looming stimuli.  相似文献   

19.
The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a "planetarium-projector," casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow.  相似文献   

20.
Warzecha AK  Kurtz R  Egelhaaf M 《Neuroscience》2003,119(4):1103-1112
Synaptic transmission is usually studied in vitro with electrical stimulation replacing the natural input of the system. In contrast, we analyzed in vivo transfer of visual motion information from graded-potential presynaptic to spiking postsynaptic neurons in the fly. Motion in the null direction leads to hyperpolarization of the presynaptic neuron but does not much influence the postsynaptic cell, because its firing rate is already low during rest, giving only little scope for further reductions. In contrast, preferred-direction motion leads to presynaptic depolarizations and increases the postsynaptic spike rate. Signal transfer to the postsynaptic cell is linear and reliable for presynaptic graded membrane potential fluctuations of up to approximately 10 Hz. This frequency range covers the dynamic range of velocities that is encoded with a high gain by visual motion-sensitive neurons. Hence, information about preferred-direction motion is transmitted largely undistorted ensuring a consistent dependency of neuronal signals on stimulus parameters, such as motion velocity. Postsynaptic spikes are often elicited by rapid presynaptic spike-like depolarizations which superimpose the graded membrane potential. Although the timing of most of these spike-like depolarizations is set by noise and not by the motion stimulus, it is preserved at the synapse with millisecond precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号