首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
吴茱萸次碱在人肝微粒体中对细胞色素P450酶的抑制作用   总被引:10,自引:1,他引:10  
目的研究吴茱萸次碱(WZY)在人肝微粒体中对细胞色素P450酶的抑制作用。方法对照组和抑制组酶活性均用探针药测定,探针药物及其代谢产物用HPLC进行检测。用代谢产物与母药比值来表达酶的活性。结果加入50μmol·L-1吴茱萸次碱组CYP1A2,CYP2C19,CYP2E1和CYP2D6的活性显著降低,CYP3A4和CYP2C9活性无显著变化。结论吴茱萸次碱对CYP1A2,CYP2C19,CYP2E1和CYP2D6的活性有显著抑制作用,而对CYP2C9和CYP3A4的活性无显著影响。  相似文献   

2.
六味地黄丸对大鼠肝微粒体代谢酶P450活性的影响   总被引:1,自引:0,他引:1  
目的:考察六味地黄丸对大鼠肝微粒体代谢酶P450活性的影响.方法:大鼠灌胃分别给予生理盐水、西咪替丁、苯巴比妥钠和六味地黄丸7 d后,腹腔注射非那西丁,不同时间点采集血样,用HPLC法测定血浆中探针药物非那西丁的浓度,用DAS软件估算其药动学参数.结果:生理盐水组、西咪替丁组、苯巴比妥钠组和六味地黄丸组探针药物的t1/2分别为(93.5±9.2),(161.7±11.0),(85.4±9.0),(67.0±6.7)min.结论:六味地黄丸对大鼠肝微粒体代谢酶P450活性有一定的诱导作用.  相似文献   

3.
采用正常及经不同剂量 ( 80、160、2 40mg/kg ,ip ,7d)左氧氟沙星诱导的大鼠肝微粒体 ,研究美托洛尔代谢特征及酶动力学参数。HPLC法用于美托洛尔浓度的测定。研究结果显示 ,经不同剂量的左氧氟沙星诱导后 ,大鼠的肝重及P45 0含量均明显降低 ,中剂量组及高剂量组分别与对照组及低剂量组比较有极显著性差异 (P <0 0 1)。对美托洛尔的代谢率随诱导剂剂量的增加而降低 ,低剂量组与对照组比较无差异 ,中剂量组及高剂量组分别与对照组及低剂量组比较有统计学意义。酶动力学参数测定结果显示 ,经左氧氟沙星诱导的细胞色素P45 0酶系统对美托洛尔代谢的Km 和Vmax值均增加 ,与对照组比较有极显著性差异 (P <0 0 1)。结论 :左氧氟沙星可抑制大鼠肝微粒体细胞色素P45 0系统对美托洛尔的代谢。  相似文献   

4.
食物,细胞色素P450酶与药物代谢   总被引:1,自引:0,他引:1  
金念祖  陆晓和 《药学进展》1995,19(4):220-222
细胞色素P450系列酶对药物及外源性化合物的人体内代谢具有影响,有的可使之提高药效,减少毒副反应,有的可降低药效,增加毒性,甚至致癌。而食物可改变体内各种P450异检酶的含量和活性,因而可对药物代谢发挥间接作用。  相似文献   

5.
细胞色素P450酶系及其在药物代谢中的作用   总被引:1,自引:0,他引:1  
综述了细胞色素P450酶系近年来的研究进展,对P450认识的不断深入,使人们有可能预测药物的相互作用和环境因素对药物代谢的影响  相似文献   

6.
目的:比较不同中国人肝微粒体中几种重要细胞色素P450(CYP)的酶含量和活性。方法:运用West-ern斑点分析和光密度扫描,对17个汉族、17个壮族和8个苗族受试者肝微粒体中的细胞色素P4501A2(CYP1A2)、2C9及3A4进行定量;非那西丁、甲磺丁脲、异喹胍和奥美拉唑分别用于体外测量CYP1A2、2C9、2D6及3A4的活性。结果:CYP1A2、2C9及3A4的含量和活性具有很大的个体间变异,另外CYP2D6的活性在各样本间也有很大差异;CYP3A4(32%)是中国人肝微粒体中含量最丰富的CYP,CYP2C9(19%)和CYP1A2(16%)的含量也很可观;除了CYP1A2的含量和活性具有一定的种族和性别差异外,未发现其它CYP具有种族和性别差异;CYP1A2、2C9和3A4的酶蛋白含量分别和它们的活性具有很好的相关性。结论:我们的结果为在中国人中进行药物代谢研究提供了非常有价值的信息。  相似文献   

7.
目的 建立测定肝微粒体孵育体系中诃子酸浓度的方法,并比较其在人、犬、猴、小鼠、大鼠肝微粒体中的Ⅰ相、Ⅱ相代谢稳定性及种属差异,确定其在人肝微粒中的代谢表型。方法 将诃子酸与不同种属肝微粒体共同孵育,应用UPLCMS/MS检测孵育液中诃子酸的含量,考察其代谢稳定性及体外动力学参数。采用化学抑制剂法确定其在人肝微粒中的代谢表型。将诃子酸与各CYP450同工酶CYP1A2、CYP2A6、CYP2C9、CYP2C19、CYP2D6、CYP2E1和CYP3A4的特异性抑制剂(α-萘黄酮、香豆素、磺胺苯吡唑、噻氯匹定、奎尼丁、二乙基二硫代氨基甲酸钠、酮康唑)共同孵育,确定其代谢酶表型。结果 诃子酸在Ⅰ相、Ⅱ相孵育体系中均可代谢,在Ⅰ相代谢中,犬肝微粒体孵育与人最为相似,半衰期(t1/2)分别为115.50 min和121.58 min;Ⅱ相代谢中5个种属代谢稳定性均中等,其中猴与人肝微粒体代谢趋势最为相近。诃子酸在人肝微粒中的代谢是由多种CYP酶共同介导的,其中CYP2C9、CYP2E1和CYP3A4是主要的同工酶。结论 建立的UPLCMS/MS方法简便、快速、专属性强、灵敏性高,可用于肝微粒体孵育体系中诃子酸浓度的测定及体外代谢的研究。诃子酸在人、犬、猴、小鼠、大鼠肝微粒体中代谢存在一定种属差异,且其代谢过程与多种CYP酶相关。  相似文献   

8.
大鼠肝星状细胞中多种细胞色素P450亚型的表达   总被引:1,自引:0,他引:1  
目的采用改良的肝星状细胞(HSCs)体外分离和纯化技术,观察刚分离的大鼠HSCs中细胞色素P450(CYP450)亚型的表达,初步探讨CYP450同工酶在HSCs生理功能和激活中的作用。方法采用链霉蛋白酶/胶原酶序贯灌流和Nycodenz密度梯度离心方法,分离和纯化大鼠HSCs,半定量RT-PCR法检测HSCs和肝细胞内多种与视黄醇代谢相关的CYP450亚型mRNA的表达。结果HSCs的得率为每肝(0.8~1.2)×107。刚分离的大鼠HSCs中均能检测到CYP1A1,CYP1B1,CYP2B1/2和CYP2E1mRNA表达,其中,HSCs中CYP1A1mRNA及CYP1B1mRNA表达量接近甚至高于同一个体肝细胞中的表达水平。但CYP3A1mRNA未检测到。结论刚分离的大鼠HSCs可较高水平地表达多种与视黄醇代谢相关CYP450亚型,提示HSCs中CYP450亚型可能参与了HSCs的生理功能调节和激活过程。  相似文献   

9.
肝细胞微粒体的制备和细胞色素P450氧化酶活性测定   总被引:9,自引:0,他引:9  
目的:为测定人肝细胞微粒体细胞色素P450氧化酶的活性。方法:用差速离心法制备3例人肝细胞微粒体。结果:细胞色素P450的含量为0.523±0.005nmol·mg-1;细胞色素b5为0.285±0.025nmol·mg-1;氨基比林N-脱甲基酶的活力为0.5±0.6nmol·mg-1;乙基吗啡N-脱甲基酶活力为0.98±0.08nmol·mg-1。结论:P450酶活性影响因素较多,个体差异大。临床用药时应考虑患者的个体情况。  相似文献   

10.
目的探究补骨脂酚在大鼠和人肝微粒体中细胞色素P450酶(CYP酶)和尿苷二磷酸葡萄糖醛酸转移酶(UGT酶)的代谢稳定性及性别差异。方法补骨脂酚分别与雄、雌性SD大鼠和男、女性人肝微粒体在37℃与不同辅酶因子孵育,应用高效液相色谱(HPLC)法测定补骨脂酚的剩余浓度,采用底物消除法观察补骨脂酚的代谢稳定性。结果补骨脂酚在雄、雌性SD大鼠肝微粒体中,CYP酶介导的Ⅰ相代谢固有清除率(Clint)分别是326.6±15.4和(77.2±4.8)mL·min~(-1)·kg~(-1),雄性代谢显著快于雌性(P<0.01);UGT酶介导的Ⅱ相代谢Clint分别是164.5±8.4和(419.1±24.1)mL·min~(-1)·kg~(-1),雌性代谢显著快于雄性(P<0.01);CYP酶和UGT酶共同代谢的Clint分别是1063.1±27.2和(781.2±16.5)mL·min~(-1)·kg~(-1),雄性代谢显著快于雌性(P<0.01)。在男、女性人肝微粒体中,CYP酶介导的Ⅰ相代谢Clint分别是24.8±2.1和(17.6±1.0)mL·min~(-1)·kg~(-1),男性代谢显著快于女性(P<0.01);UGT酶介导的Ⅱ相代谢Clint分别是176.4±26.5和(165.9±8.6)mL·min~(-1)·kg~(-1),代谢无显著性别差异;CYP酶和UGT酶共同代谢的Clint分别是262.5±20.9和(236.2±10.5)mL·min~(-1)·kg~(-1),代谢无显著性别差异。结论补骨脂酚在SD大鼠和人肝微粒体中,均发生CYP酶介导的Ⅰ相代谢和UGT酶介导的Ⅱ相代谢反应,且代谢稳定性具有一定的种属和性别差异。  相似文献   

11.
This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug–drug interactions when Dip is coadministered with other drugs.  相似文献   

12.
We examined the effect of 1,1-dichloroethylene (1,1-DCE) on microsomal cytochrome P450 (P450) enzymes in rat liver and kidney. Rats were treated intraperitoneally with 1,1-DCE daily for 4 days, at doses of 200, 400, and 800 mg/kg. Among the P450-dependent monooxygenase activities in liver microsomes, testosterone 2α-hydroxylase (T2AH), which is associated with CYP2C11 activity, was remarkably decreased by 800 mg/kg 1,1-DCE. The level relative to control activity was <10%. Furthermore, immunoblotting showed that 1,1-DCE (≥400 mg/kg) significantly decreased CYP2C11/6 protein levels in liver microsomes. In addition, 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), benzphetamine N-demethylase (BZND), chlorzoxazone 6-hydroxylase (CZ6H), and testosterone 6β-hydroxylase (T6BH) activities were significantly decreased by the highest dose of 1,1-DCE (by 40–70%). However, the activities of other P450-dependent monooxygenases, namely 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (EMND), lauric acid ω-hydroxylase (LAOH), and testosterone 7α-hydroxylase (T7AH) were not affected by 1,1-DCE at any dose. Immunoblotting showed CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A2/1 protein levels were significantly decreased by 60–66% by 1,1-DCE (800 mg/kg), whereas that of CYP4A1/2 was not affected by any dose of 1,1-DCE. By contrast, among the P450-dependent monooxygenase activities in kidney microsomes, only CZ6H activity was increased by 1,1-DCE (1.6-fold at 800 mg/kg). Also, it was␣observed that 1,1-DCE (800 mg/kg) significantly increased CYP2E1 protein levels by immunoblotting (∼1.5-fold). These results suggest that 1,1-DCE changes the constitutive P450 isoforms in the rat liver and kidney, and that these changes closely relate to the toxicity of 1,1-DCE. Received: 28 January 1997 / Accepted: 18 August 1997  相似文献   

13.
We examined the effect of bisphenol A (BPA) on microsomal cytochrome P450 (P450) enzymes in rats. Rats were treated intraperitoneally with BPA daily for 4 days, at doses of 10, 20, and 40 mg/kg. Among the P450-dependent monooxygenase activities, testosterone 2α-hydroxylase (T2AH) and testosterone 6β-hydroxylase (T6BH) activities, which are associated with CYP2C11 and CYP3A2 respectively, were remarkably decreased by 40 mg/kg BPA. The levels of the control activities were 13 and 50%, respectively. Furthermore, immunoblotting showed that BPA (20 or 40 mg/kg) significantly reduced CYP2C11/6 and CYP3A2/1 protein levels in rat liver microsomes. In addition, estradiol 2-hydroxylase (ED2H) and benzphetamine N-demethylase (BZND) activities were significantly decreased by BPA at 20 and 40 mg/kg (by 19–73%). The K m values for T2AH and T6BH in 20 and 40 mg/kg BPA-treated rats were significantly high compared with that in control rats. The V max for T2AH was dose-dependently decreased by BPA treatment, whereas that of T6BH was only decreased by BPA at 40 mg/kg. On the other hand, lauric acid ω-hydroxylase (LAOH) activity was significantly increased by BPA at 20 and 40 mg/kg (1.5- and 1.7-fold, respectively). Immunoblot analysis showed that 20 and 40 mg/kg BPA induced CYP4A1/2 protein expression. However, the activities 7-ethoxyresorufin O-deethylase (EROD), 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), chlorzoxazone 6-hydroxylase (CZ6H), erythromycin N-demethylase (EMND), and testosterone 7α-hydroxylase (T7AH) were not affected by BPA at any dose. These results suggest that BPA affects male-specific P450 isoforms in rat liver, and that these changes closely relate to the toxicity of BPA. Received: 26 January 1998 / Accepted: 26 February 1998  相似文献   

14.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   

15.
The aim of the present study was to investigate the potential effect of thymoquinone (TQ) on the metabolic activity of four major drug metabolizing enzymes in human liver microsomes, namely cytochrome P450 (CYP) 1A2, CYP2C9, CYP2D6 and CYP3A4. The inhibition of CYP enzymatic activities by TQ was evaluated by incubating typical substrates (phenacetin for CYP1A2, tolbutamide for CYP2C9, dextromethorphan for CYP2D6, and testosterone for CYP3A4) with human liver microsomes and NADPH in the absence or presence of TQ (1, 10 and 100?µM). The respective metabolite of the substrate that was formed was measured by HPLC. Results of the presented study presented that the metabolic activities of all the investigated CYP enzymes, viz. CYP1A2, CYP2C9, CYP2D6 and CYP3A4, were inhibited by TQ. At 1?µM TQ, CYP2C9 enzyme activity was maximally inhibited by 46.35%, followed by CYP2D6 (20.26%)?>?CYP1A2 (13.52%)?>?CYP3A4 (12.82%). However, at 10?µM TQ, CYP2C9 enzyme activity was maximally inhibited by 69.69%, followed by CYP3A4 (23.59%)?>?CYP1A2 (23.51%)?>?CYP2D6 (11.42%). At 100?µM TQ, CYP1A2 enzyme activity was maximally inhibited by 81.92%, followed by CYP3A4 (79.24%)?>?CYP2C9 (69.22%)?>?CYP2D6 (28.18%). The IC50 (mean?±?SE) values for CYP1A2, CYP2C9, CYP2D6 and CYP3A4 inhibition were 26.5?±?2.9?µM, 0.5?±?0.4?µM, >500?µM and 25.2?±?3.1?µM, respectively. These findings suggest that there is a high probability of drug interactions resulting from the co-administration of TQ or herbs containing TQ with drugs that are metabolized by the CYP enzymes, particularly CYP2C9.  相似文献   

16.
Summary The calcium channel blocker verapamil[2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] is widely used in the treatment of hypertension, angina pectoris and cardiac arrythmias. The drug undergoes extensive and variable hepatic metabolism in man with the major metabolic steps comprising formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile] and norverapamil [2,8-bis-(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoxtanitrile]. The enzymes involved in metabolism of verapamil have not been characterized so far. Identification of these enzymes would enable estimation of both interindividual variability in verapamil metabolism introduced by the respective pathway and potential for metabolic interactions. We therefore characterized the enzymes involved in formation of D-617 and norverapamil.The maximum rate of formation of D-617 and norverapamil was determined in the microsomal fraction of 21 human livers which had been previously characterized for the individual expression of various P450 enzymes (CYP1A2, CYP2C, CYP2D6, CYP2E1 and CYP3A3/4) by means of Western blotting. Specific antibodies directed against CYP3A were used to inhibit formation of D-617 and norverapamil. Finally, formation of both metabolites was investigated in microsomes obtained from yeast cells which were genetically engineered for stable expression of human P450.Formation of D-617 was correlated with the expression of CYP3A (r=0.85; P<0.001) and CYP1A2 (r=0.57; P<0.01) in the microsomal fraction of 21 human livers after incubation with racemic verapamil. Formation of norverapamil was correlated with the expression of CYP3A (r=0.58; P<0.01) and CYP1A2 (r=0.5; P<0.05) in the same preparations after incubation with racemic verapamil. Antibodies against CYP3A reduced maximum rate of formation of D-617 (to 37.1±11% and 40.6±6.801o of control after incubation with S- and R-verapamil, respectively) and norverapamil (to 38.2±4.5% and 29.2±5.5% of control after incubation with S- and R-verapamil, respectively). Both D-617 and norverapamil were formed by stable expressed CYP3A4 (16.6 pmol/mg protein/min and 22.6 pmol/mg protein/min, respectively). In summary, formation of D-617 and norverapamil is catalyzed mainly by CYP3A4. D-617 is also formed by CYP1A2. Veraparnil therefore has the potential to interact with other drugs which are substrates or inducers of CYP3A and CYP1A2.Part of this work has been presented at the 32 Annual Spring Meeting of the German Society for Pharmacology and Toxicology, 1991, The abstract was published in Naunyn-Schmiedeberg's Archives of Pharmacology (1991) 343:R124 Correspondence to H. K. Kroemer at the above address  相似文献   

17.
Effect of 4-tert-octylphenol on cytochrome P450 enzymes in rat liver   总被引:1,自引:0,他引:1  
The effects were studied of 4-tert-octylphenol (OP) on hepatic cytochrome P450 enzymes in rats. Rats were treated intraperitoneally with OP twice, at doses of 5, 10, and 20 mg/kg. Among the cytochrome P450-dependent monooxygenase activities, testosterone 2α-hydroxylase activity, which is associated with CYP2C11, was significantly decreased by OP at all doses. The level relative to control activity was 67–22%. CYP3A2-dependent monooxygenase, testosterone 6β-hydroxylase activity was also decreased by 51% by OP at 20 mg/kg. Furthermore, immunoblotting showed that OP (10 or 20 mg/kg) significantly decreased CYP2C11/6 and CYP3A2/1 protein levels. However, the reduction ratio of CYP2C11/6 and CYP3A2/1 protein levels by OP treatment was lower than that of testosterone 2α-hydroxylase and testosterone 6β-hydroxylase activities. The Cl int (V max/K m) value for testosterone 2α-hydroxylase was significantly decreased by OP at all doses, whereas the Cl int value for testosterone 6β-hydroxylase was only decreased by OP at 20 mg/kg. In addition, 7-ethoxycoumarin O-deethylase activity was significantly decreased by 32% by the highest dose of OP. By contrast, CYP1A1-, CYP1A2-, CYP2A1-, CYP2B1/2-, CYP2D1-, CYP2E1- and CYP4A1/2/3- dependent monooxygenase activities were not affected by OP at any dose. These results suggest that OP changes the male-specific cytochrome P450 isoforms in rat liver, and that these changes closely relate to the toxicity of OP. Received: 29 September 1999 / Accepted: 18 October 1999  相似文献   

18.
AIM: To study the in vivo and in vitro metabolism and the effect of para-toluene-sulfonamide (PTS) on cytochrome P450 enzymes (CYP450). METHODS: Total CYP450 and microsome protein content were determined after iv pretreatment of rats with PTS. CYP-specific substrates were incubated with rat liver microsomes. Specific CYP isoform activities were determined by using HPLC. CYP chemical inhibitors added to the incubation mixture were used to investigate the principal CYP isoforms involved in PTS metabolism. The effect of PTS on CYP isoforms was investigated by incubating PTS with specific substrates. RESULTS: The groups treated with 33 and 99 mg/kg per d PTS, respectively, had a total CYP content of 0.66+/-0.17 and 0.60+/-0.12 nmol/mg. The K(m) and V(max) were 92.2 micromol/L and 0.0137 nmol/min per mg protein. CYP2C7, CYP2D1 and CYP3A2 might contribute to PTS metabolism in the rat liver. The inhibitory effects of sulfaphenazole and ketoconazole on PTS metabolism were shown to have a mixed mechanism, whereas PTS metabolism was inhibited noncompetitively by quinidine. PTS had little effect on the activities of the selected CYP isoforms. CONCLUSION: Generally speaking, it is relatively safe for PTS to be co-administered with other drugs. However, care should be taken when administering PTS with CYP inhibitors and the substrates of CYP2C, CYP2D and CYP3A.  相似文献   

19.
Aims The present study was carried out to identify the cytochrome P450 isoenzyme(s) involved in the N-dealkylation of haloperidol (HAL). Methods In vitro studies were performed using human liver microsomes and c-DNA-expressed human P450 isoforms. N-dealkylation of HAL was assessed by measuring the formation of 4-(4-chlorophenyl)-4-hydroxypiperidine (CPHP). Results There was a tenfold variation in the extent of CPHP formation amongst the nine human liver microsomal preparations. The CPHP formation rates as a function of substrate concentration, measured in three livers, followed monophasic enzyme kinetics. Km and Vmax values ranged respectively from 50 to 78 μm and from 180 to 412 pmol mg−1 min−1. CPHP formation rates in the nine liver preparations were significantly correlated with dextromethorphan N-demethylase activity (a marker of CYP3A4 activity), but not with the activity of dextromethorphan O-demethylase (CYP2D6), phenacetin O-deethylase (CYP1A2) or tolbutamide hydroxylase (CYP2C9). Ketoconazole, an inhibitor of CYP3A4, inhibited competitively CPHP formation (Ki=0.1 μm ), whereas sulphaphenazole (CYP2C9), furafylline (CYP1A2) and quinidine (CYP2D6) gave only little inhibition (IC50>100 μm ). CPHP formation was, moreover, enhanced by α-naphtoflavone, an effect common to CYP3A4 mediated reactions. Anti-CYP3A4 antibodies strongly inhibited CPHP formation, whereas no inhibition was observed in the presence of CYP2D6 antibodies. Among the recombinant human CYP isoforms tested, CYP3A4 exhibited the highest activity with respect to CPHP formation rate, with no detectable effect of other CYP isoforms (CYP1A2, CYP2D6 and CYP2C9). HAL inhibited dextromethorphan O-demethylase (CYP2D6) with IC50 values between 2.7 and 8.5 μm, but not (IC50>100 μm ) dextromethorphan N-demethylase (CYP3A4), phenacetin O-deethylase (CYP1A2) or tolbutamide hydroxylase (CYP2C9). Conclusions These results strongly suggest that the N-dealkylation of HAL in human liver microsomal preparations is mediated by CYP3A4.  相似文献   

20.
多氯联苯诱导的六种鼠肝微粒体细胞色素P450重组酶系A_1,A_2,B,C_1,C_2和D对33种外来化合物代谢的催化速率不同,其中以C_1酶系和C_2酶系催化活力最强,其次为A_1酶系,B酶系催化活力最弱,外来化合物的种类不同,经重组酶系催化的途径也不同,如卤代烷烃,卤代烯烃,苯及其同系物,亚硝胺类等化合物主要经P450C_1酶系代谢,而大多数有机磷酸酯,氨基甲酸酯类化合物及多环芳烃类致癌物则以P450 C_2酶系代谢为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号