首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
在体剂量学方法是目前最直接、最有效的质量保证手段之一。EPID因具有优良的剂量学特性而被用于在体剂量验证。近年来,国内外有很多关于EPID的在体剂量学方法研究。此文目的是对基于EPID的在体剂量学方法研究进行综述,了解其研究现状,为后续运用研究和扩展提供参考。  相似文献   

2.
目的 使用模体验证基于电子射野影像装置(EPID)在体三维剂量验证建模的准确性,并进行临床应用的初步研究。方法 通过方野和调强计划在均匀和非均匀模体上检测EPID在体三维剂量验证系统应用于不同介质中的剂量计算精度和重建精度,比较不同剂量/距离一致性标准下的γ通过率。对临床病例进行靶区和危及器官剂量体积分析。结果 方野在均匀模体中3%/3mm标准平均γ通过率为(97.49±1.11)%,在非均匀模体中为(94.06±5.11)%(P>0.05)。不同出束方式的调强计划之间也相近(P>0.05)。临床病例疗前剂量验证3%/2mm标准γ通过率为(97.96±1.84)%,在体三维剂量验证3%/3mm标准为(90.51±6.96)%。临床病例中小体积和体积变化较大的危及器官有较大剂量偏差。结论 基于EPID建立的在体三维剂量验证模型,经初步测试可应用于临床提供更全面的质量保证,为以后自适应放疗工作提供了技术保障。  相似文献   

3.
应用EPID分析头颈部肿瘤调强放疗的摆位误差   总被引:3,自引:0,他引:3  
目的 通过对头颈部肿瘤患者群体的射野图像回顾性分析,了解患者群体的摆位误差分布情况,为治疗计划设计设置计划靶体积(PTV)时提供依据.方法 通过配准数字重建图像(DRR)和电子射野影像装置(EPID)拍摄的正、侧位验证像的骨性解剖结构,计算平移和旋转误差.结果 平移误差左右方向为(1.40±1.27)mm,头脚方向为(1.34±1.37)mm,腹背方向为(1.34±1.30)mm;旋转误差冠状面为(0.791±0.976).,矢状面为(0.531±0.750)..结论 对于头颈部肿瘤调强放疗(IMRT),临床靶体积(cTV)到PTV的外放边界在左右方向宜为3.7 mm,头脚及腹背方向宜为3.6 mm.考虑到旋转误差,当靶区比较长时靶区两端外放要更大一些.  相似文献   

4.
目的 基于EPID利用Edose软件重建三维剂量分布,帮助放疗工作人员更好地了解治疗期间患者相关危及器官和靶区的剂量变化情况。方法 对头颈部肿瘤和胸部肿瘤患者治疗前行1 次/周总共6次CBCT扫描,将CBCT图像与计划CT图像进行刚性配准后传入到Edose剂量分析软件中,利用Edose软件根据摆位误差基于EPID对其进行三维剂量重建,最后分析不同危及器官剂量并比较γ通过率。结果 与原计划剂量相比,鼻咽癌患者脊髓Dmax分次间受量波动较大且高于患者原计划剂量,脑干Dmax分次间受量变化较小,左右腮腺V30所受剂量变化较大,单次增加幅度最高可达28.69%;胸部肿瘤患者脊髓Dmax差异较小,肺与心脏实际受量都高于计划剂量,尤其肺V5与原计划平均偏差达16.99%(P<0.05)。通过对γ通过率分析可看出危及器官受量与原计划受量存在较大变化的节点为头颈部肿瘤第16次左右和胸部肿瘤第24次左右。结论 通过在单次治疗中利用Edose剂量验证系统基于EPID重建患者体内三维剂量的分布,可以了解相关靶区与危及器官的剂量变化,能够更好地保护危及器官以及提高靶区剂量的覆盖率,为下一步的剂量引导放射治疗和自适应放射治疗提供一定的参考。  相似文献   

5.
李强  贾勇士  张丽萍 《肿瘤学杂志》2014,20(10):852-855
[目的]探讨电子射野影像装置(EPID)辅助下头颈肩热塑膜在喉癌调强放疗(IMRT)中的摆位误差。[方法]选取喉癌患者40例,使用头颈肩热塑膜加以固定,在放射治疗过程中每周摄取电子射野影像片(EPI)1次,正侧位片各1张。在直线加速器的电子射野影像系统下将电子射野影像片与数字重建射线影像(DRR)进行匹配,测得在X轴(左右方向)、Y轴(头脚方向)和Z轴(前后方向)的摆位误差并加以记录。[结果]选取的40例患者在各个方向上的总体摆位误差分别为X轴左右方向(0.45±0.36)mm,Y轴头脚方向(0.56±0.47)mm,Z轴前后方向(0.40±0.33)mm,各周差异相比没有统计学意义(P〉0.05)。[结论]头颈肩热塑膜应用于喉癌调强放射治疗,体位移动少,重复性及固定性好,准确度高,在EPID的辅助下可以纠正摆位误差,提高摆位精确度。  相似文献   

6.
目的 使用EPID三维剂量验证系统进行物理建模和物理参数优化,并行临床应用前的初步研究。方法 通过EPID采集3、5、10、15、20、25 cm的方野图像建立物理模型,比较在均匀水模体中系统重建的百分深度剂量、射野总散因子及10 cm深度处的离轴比曲线,优化物理模型参数。采用指型电离室和免冲洗胶片,在均匀模体和仿真人模体中测量单野、组合野及IMRT计划点剂量和平面剂量,并与系统重建结果比较。在仿真人模体和 10例不同部位IMRT计划中,比较系统重建和TPS计算的5%/3 mm、3%/3 mm标准下的γ通过率,并对临床病例进行靶区和OAR剂量体积分析。结果 对于单野、组合野以及IMRT计划,系统重建剂量和电离室测量及TPS计算的点剂量平均偏差分别<0.5%和2.0%;在均匀或仿真人模体中以及临床病例中其平面或三维剂量的5%/3 mm、3%/3 mm平均γ通过率均>95%;但临床病例中体现小体积的OAR有较大剂量偏差。结论 通过一系列临床应用前测试,明确了该三维剂量验证系统可有效应用于临床剂量验证,并有较好的临床应用价值。  相似文献   

7.
EPID对鼻咽癌IMRT随机摆位误差的监测   总被引:2,自引:0,他引:2  
目的研究电子射野影像装置在鼻咽癌调强放射治疗(IMRT)过程中进行随机摆位误差监测的可行性。方法2006年3月~2007年12月随机抽取鼻咽癌IMRT患者96例,应用EPID在放疗过程中每周拍摄正侧位一次,共拍摄1016张。放疗前先采集CT定位后治疗计划系统中的数字重建射野图像片为参考图像,与治疗过程中实时采集的验证图像配准,测量随机摆位误差。结果在左右、头脚、腹背方向的摆位误差分别是(1.34±1.30)mm,(1.35±1.38)mm,(1.44±1.20)mm。结论EPID的应用可以及时发现放疗随机摆位误差,针对性提高技术员摆位的准确性,是质量控制和质量保证的有力工具。  相似文献   

8.
目的 实时监测并评估宫颈癌患者调强放疗中的在体剂量变化。方法 入组12例宫颈癌患者,使用PerFRACTIONTM监测其分次间在体剂量。每分次治疗中均采集电子射野影像装置(EPID)图像,进行二维在体剂量验证(γ、DD指数);记录运行日志(Log)文件并进行三维在体剂量验证(γ指数);Pearson法分析患者在体剂量与治疗分次的相关性。结果 EPID图像及其对应Log文件共计206组。所有患者三维在体剂量验证γ1%/1mm与治疗分次无关(P>0.05),其中94.66%分次γ1%/1mm的绝对差<1%。所有患者二维在体剂量验证平均DD3%均与治疗分次呈负相关(P<0.05),其中9例患者分次间平均γ3%/3mm>89%,该9例患者有98.57%分次平均γ3%/3mm>93%。另外3例患者分次间平均γ3%/3mm范围为38%~100%,CBCT图像显示这3例患者膀胱体积明显减小(相对变化分别为82.08%、84.41%和73.59%),靶区明显缩退(相对变化分别为38.12%、59.79%和24.46%)。结论 宫颈癌放疗中PerFRACTIONTM结合γ、DD指数可监测治疗分次间加速器机械到位、射野跳数传输的准确性及患者在体剂量变化,可提高宫颈癌患者调强放疗的安全性及质量保证并为患者自适应放疗提供指导。  相似文献   

9.
目的 基于电子射野影像装置(EPID)建立二维剂量精确重建模型并验证容积调强弧形治疗(VIMAT)剂量,与其他测量工具进行比较与分析。方法 采用EPID进行VIMAT的二维剂量验证,基于卷积、反卷积以及修正函数建立二维剂量重建模型。通过电离室测量的离轴比剂量曲线并用最小二乘法确定计算模型参数。对 12例不同部位肿瘤患者的VIMAT计划用电离室测量中心点剂量,采用其他平面剂量测量工具测量相应平面剂量分布。所有工具测量深度均设置为10 cm,并采用γ分析法比较测量结果。结果 对中心点绝对剂量,EPID与电离室测量结果偏差<1.5%。对平面剂量,2%2 mm标准下EPID与Seven29、Matrixx的平均γ通过率分别为98.9%、99.8%,3%3 mm标准下EPID与治疗计划系统计算结果的平均γ通过率为99.9%。结论 基于EPID建立的二维剂量重建模型能很好地用于调强放疗二维剂量验证工作,今后将考虑将该模型拓展到均匀模体的三维剂量验证中。  相似文献   

10.
[目的]分析采用个体化加长真空垫+热塑网状头颈肩膜体位固定技术实施调强放疗的鼻咽癌患者放疗期间摆位误差的大小及其体重的变化趋势.[方法]鼻咽癌患者23例,整个疗程1~6个周次中每周拍摄正侧位EPID图像一次并测量患者体重.将EPID图像与计划CT所生成的DRR图像进行配准,利用获得的配准差值分析摆位误差的大小及其在不同周次间的差异,同时分析患者体重的变化对摆位误差的影响.[结果]不分周次的情况下,头脚、腹背、左右三个方向的摆位误差分别为0.165±0.121cm、0.064±0.122cm、0.038±0.135cm.按不同周次进行划分,头脚、腹背、左右各个方向在6个不同周次的摆位误差无明显差别(P均>0.05).Bivariate相关分析结果显示头脚、腹背、左右三个方向上的偏移幅度与体重变化均无关(r=0.147,P=0.152;r=0.102,P=0.321;r=0.114,P=0.267).[结论]采用个体化加长真空垫+热塑网状头颈肩膜体位固定技术实施调强放疗的鼻咽癌患者在整个疗程中的摆位具有较好的准确性与重复性,患者体重的变化对摆位误差无明显影响.  相似文献   

11.
关于电子荧光类射野影像系统作为出射剂量仪使用的研究   总被引:1,自引:1,他引:1  
目的研究利用射野影像系统进行出射剂量测量的可能性。以便能进一步把该类系统发展为剂量仪系统。材料与方法使用荧光型电子射野影像系统,探头由金属板—荧光屏和Plumbicon照像机组成。通过与电离室及射野证实片所测结果的比较,建立一套与像素位置对应的灰度校正矩阵。并在多种射野面积和体模厚度下验证,所用射线为6MV-X线。结果通过对该系统的各种性能测试,如灰度的稳定性、探头的均匀性、剂量响应曲线、灰度的射野依赖性及对体模厚度的依赖性,发现短期稳定性好于1%,有较明显的灰度饱和性,但需作灰度饱和校正。作为相对剂量仪使用时,只要建立一个探头非均匀性校正矩阵,就能与证实片的剂量结果保持一致,误差小于±5%。结论研究证明,电子射野影像系统完全可以成为一套剂量仪系统。在对靶区的位置进行实时监测的同时,还能通过对影像灰度的计算,得出出射野的剂量分布  相似文献   

12.
PURPOSE: To investigate the feasibility of replacing pretreatment verification with in vivo electronic portal imaging device (EPID) dosimetry for prostate intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: Dose distributions were reconstructed from EPID images, inside a phantom (pretreatment) or the patient (five fractions in vivo) for 75 IMRT prostate plans. Planned and EPID dose values were compared at the isocenter and in two dimensions using the gamma index (3%/3 mm). The number of measured in vivo fractions required to achieve similar levels of agreement with the plan as pretreatment verification was determined. The time required to perform both methods was compared. RESULTS: Planned and EPID isocenter dose values agreed, on average, within +/-1% (1 SD) of the total plan for both pretreatment and in vivo verification. For two-dimensional field-by-field verification, an alert was raised for 10 pretreatment checks with clear but clinically irrelevant discrepancies. Multiple in vivo fractions were combined by assessing gamma images consisting of median, minimum and low (intermediate) pixel values of one to five fractions. The "low" gamma values of three fractions rendered similar results as pretreatment verification. Additional time for verification was approximately 2.5 h per plan for pretreatment verification, and 15 min +/- 10 min/fraction using in vivo dosimetry. CONCLUSIONS: In vivo EPID dosimetry is a viable alternative to pretreatment verification for prostate IMRT. For our patients, combining information from three fractions in vivo is the best way to distinguish systematic errors from non-clinically relevant discrepancies, save hours of quality assurance time per patient plan, and enable verification of the actual patient treatment.  相似文献   

13.
PURPOSE: To establish volume imaging using an on-board cone-beam CT (CB-CT) scanner for evaluation of three-dimensional patient setup errors. METHODS AND MATERIALS: The data from 24 patients were included in this study, and the setup errors using 209 CB-CT studies and 148 electronic portal images were analyzed and compared. The effect of rotational errors alone, translational errors alone, and combined rotational and translational errors on target coverage and sparing of organs at risk was investigated. RESULTS: Translational setup errors using the CB-CT scanner and an electronic portal imaging device differed <1 mm in 70.7% and <2 mm in 93.2% of the measurements. Rotational errors >2 degrees were recorded in 3.7% of pelvic tumors, 26.4% of thoracic tumors, and 12.4% of head-and-neck tumors; the corresponding maximal rotational errors were 5 degrees , 8 degrees , and 6 degrees . No correlation between the magnitude of translational and rotational setup errors was observed. For patients with elongated target volumes and sharp dose gradients to adjacent organs at risk, both translational and rotational errors resulted in considerably decreased target coverage and highly increased doses to the organs at risk compared with the initial treatment plan. CONCLUSIONS: The CB-CT scanner has been successfully established for the evaluation of patient setup errors, and its feasibility in day-to-day clinical practice has been demonstrated. Our results have indicated that rotational errors are of clinical significance for selected patients receiving high-precision radiotherapy.  相似文献   

14.
电子射野影像系统临床应用的研究进展   总被引:4,自引:0,他引:4  
电子射野影像系统(EPID)越来越多的被应用、对摆位误差的研究是电子射野影像系统的最初设计目的,利用其进行摆位误差的校正有在线和离线两种形式?随着对电子射野影像系统的剂量学特性的不断了解,用它进行剂量学验证也开始从实验室研究走向临床应用。电子射野影像系统在放疗元件的质量保证中也起到重要的作用,近年来在这方面的研究主要是埘多叶光阑质量保证:本文就电子射野影像系统的临床应用做一简要的概述。  相似文献   

15.
PURPOSE: To investigate the feasibility of using new micro-MOSFET detectors for QA and in vivo dosimetry of the urethra during transperineal interstitial permanent prostate implants (TIPPB). METHODS AND MATERIALS: This study involves measurements for several patients who have undergone the implant procedure with iodine-125 seeds. A new micro-MOSFET detector is used as a tool for in vivo measurement of the initial dose rate within the urethra. MOSFETs are calibrated using a single special order calibration seed. The angular response is investigated in a 100 kVp X-ray beam. RESULTS: micro-MOSFETs are found to have a calibration factor of 0.03 cGy/mV for low energy X-rays and a high isotropic response (within 2.5%). Prostate volume and shape changes during TIPPB due to edema caused by the trauma of needle insertion, making it difficult to achieve the planned implant geometry and hence the desired dose distribution. MOSFET measurements help us to evaluate the overall quality of the implant, by analyzing the maximum dose received by urethra, the prostate base coverage, the length of the prostatic urethra that is irradiated, and the apex coverage. CONCLUSIONS: We demonstrate that ease of use, quick calibration and the instantaneous reading of accumulated dose make micro-MOSFETs feasible for in vivo dosimetry during TIPPB.  相似文献   

16.
An increasing number of cancer treatment centres are using in vivo dosimetry as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. Equipment is usually limited to either thermoluminescent dosimeters (TLD) or semiconductor detectors such as p-type diodes. The semiconductor detector is more popular than the TLD due to the major advantage of real time analysis of the actual dose delivered. If a discrepancy is observed between the calculated and the measured entrance dose, it is possible to eliminate several likely sources of errors by immediately verifying all treatment parameters. Five Scanditronix EDP-10 p-type diodes were investigated to determine their calibration and relevant correction factors for entrance dose measurements using a Victoreen White Water-RW3 tissue equivalent phantom and a 6MV photon beam from a Varian Clinac 2100C linear accelerator. Correction factors were determined for individual diodes for the following parameters: source to surface distance (SSD), collimator size, wedge, plate (tray) and temperature. The directional dependence of diode response was also investigated. The SSD correction factor (CSSD) was found to increase by approximately 3% over the range of SSD from 80 to 130cm. The correction factor for collimator size (Cfield) also varied by approximately 3% between 5 × 5 and 40 × 40 cm2. The wedge correction factor (Cwedge) and plate correction factor (Cplate) were found to be a function of collimator size. Over the range of measurement, these factors varied by a maximum of 1 and 1.5%, respectively. The Cplate variation between the solid and the drilled plates under the same irradiation conditions was a maximum of 2.4%. The diode sensitivity demonstrated an increase with temperature. A maximum of 2.5% variation for the directional dependence of diode response was observed for angle of ± 60°. In conclusion, in vivo dosimetry is an important and reliable method for checking the dose delivered to the patient. Preclinical calibration and determination of the relevant correction factors for each diode are essential in order to achieve a high accuracy of dose delivered to the patient.  相似文献   

17.
PurposeThe present study investigates superficial in vivo dosimetry (IVD) by means of a previously proposed electron paramagnetic resonance (EPR) dosimetry system aiming at measuring and verifying total doses delivered by complex radiotherapy treatments. In view of novel regulatory requirements in Germany, differences between measured and planned total doses to the EPR dosimeters are analyzed and compared to reporting thresholds for significant occurrences.MethodsEPR dosimeters, each consisting of one lithium formate monohydrate (LFM) and one polycrystalline l-alanine (ALA) pellet, were attached to the surface of an anthropomorphic head phantom. Three head and neck treatments with total target doses ranging from 30 to 64 Gy were fully delivered to the phantom by helical tomotherapy. During each treatment, eight EPR dosimeters were placed at distinct spots: (i) within or next to the planning target volume (PTV), (ii) near to organs at risk including the parotids and the lenses, (iii) at the thyroid lying out-of-field. EPR read out was always performed after all fractions were delivered. EPR results were compared to thermoluminescence dosimeter (TLD) measurements and to the planned total doses derived from the treatment planning system (TPS). Planned total doses to the EPR dosimeters ranged from about 2 to 64 Gy.ResultsBy taking uncertainties into account, the measured and planned doses were in good agreement. Exceptions occurred mainly at the thyroid (out-of-field) and lenses (extreme sparing). The maximum total dose difference between EPR results and corresponding planned doses was 1.3 Gy occurring at the lenses. Remarkably, each LFM and ALA pellet placed within or next to the PTV provided dose values that were within ±4% of the planned dose. Dose deviations from planned dose values were comparable for EPR and TLD measurements.ConclusionThe results of this proof of principle study suggests that superficial EPR-IVD is applicable in a wide dose range and in various irradiation conditions – being a valuable tool for monitoring cumulative total doses delivered by complex IMRT treatments. EPR-IVD in combination with helical tomotherapy is suitable to reliably detect local dose deviations at superficial dosimeter spots in the order of current national reporting thresholds for significant occurrences (i.e. 10%/4 Gy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号